Low-temperature magnetic transitions in Fe₂MnSi and Fe₂MnAl Heusler alloys prepared in bulk and ribbon form

Ondřej Životský¹, Andrii Titov^{1,2}, Jiří Buršík², Dušan Janičkovič³, Yvonna Jirásková²

¹Department of Physics, VSB-Technical University of Ostrava, 17.listopadu 15, 708 33 Ostrava-Poruba, Czech Republic ²Institute of Physics of Materials, AS CR, Zizkova 22, 616 62 Brno, Czech Republic ³Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava, Slovakia

AIM: Characterization of Fe₂MnSi and Fe₂MnAl alloys prepared by traditional arc and induction melting techniques and non-traditional planar flow casting.

Samples preparation

Materials - Fe₂MnSi and Fe₂MnAl alloys prepared from high-purity elements (Fe - 99.95%, Mn - 99.9%, Si - 99.9%, and Al - 99.95%) at Institute of Physics, Slovak Academy of Sciences in Bratislava

Technological procedures - arc melting (AM) using a MAM-1 furnace, induction melting (IM), and planar flow casting (PFC)

DAM and DIM samples

AM and IM used for production of button- and cylindrical-type ingots, melted four times to ensure good homogeneity, subsequently cut using spark erosion in deionized water into **discs 500** µm thick, polished using Vibromet for 24h

Ribbon (R) samples

R samples 2 mm wide and 20 μm thick, side in contact with surrounding atmosphere denoted as **air side**, the opposite one as **wheel side**, high brittleness excluded any of surface treatment, higher surface roughness especially from wheel side

Experimental techniques

SEM (Scanning Electron Microscopy) - TESCAN LYRA 3XMU FEG/SEM, accelerating voltage 20 kV, Xmax80 Oxford Instruments detector for Energy Dispersive X-ray (EDX) analysis

XRPD (X-Ray Powder Diffraction) - X'PERT PRO powder diffractometer, CoK α radiation ($\lambda = 0.17902$ nm), Bragg-Brentano geometry, $2\theta = 25^{\circ}$ - 135°, HighScore Plus software with Rietveld structure refinement method

MS (Mössbauer spectroscopy) - ⁵⁷Co(Rh) source, measurements at room temperature, Transmission MS applied for ribbons, Backscattering MS used for ingots, calibration of velocity scales with α -Fe, in the measured spectrum the crystalline components represented by singlet and doublets determined by discrete values of hyperfine parameters corresponding to paramagnetic phases: δ - isomer shift(s), Δ - quadrupole splitting(s)

Magnetic measurements - VSM Microsense EV9 magnetometer used for experiments at elevated temperatures (293 K - 573 K) with maximal field ± 1600 kA/m (± 2 T), PPMS Quantum Design Inc. applied for hysteresis loops at constant temteratures (293 K, 2 K) with maximal field ± 400 kA/m (± 5 T) and for FC-ZFC curves in magnetic field of 8 kA/m

Fe₂MnSi alloys

Phase and chemical composition, morphology

- XRD patterns analyzed by ICSD data sheet 659018 and results are shown in table below

- the presence of cubic L2₁ phase confirmed

- diffractograms taken for different surfaces of the R sample were identical

sample type		а	E	d	Fe	Mn	Si
		(nm)	(%)	(nm)	(at.%)	(at.%)	(at.%)
DAM		0.569(3)	0.000	4.9	48.30±0.14	24.69±0.09	27.01±0.05
DIM		0.571(5)	0.000	3.7	48.08±0.25	24.69±0.17	27.23±0.18
R	air side	0.569(1)	0.051	86.5	47.10±0.19	27.62±0.52	25.28±0.36
	wheel side	0.560(2)	0.062	409.4	43.36±0.67	30.54±0.19	26.10±0.84

Lattice constant (*a*), microstrain (*E*), and diffracting domains size (*d*) estimated from XRD patterns; element concentration obtained by EDX analysis from areas about 1 mm^2 .

Fundamental magnetic parameters determined	
i undamentar magnetic parameters determined	
from hysteresis loops at 2 K and 293 K,	Л

Magnetic and Mössbauer results

- similar magnetic properties of DAM and DIM at room temperature (RT)

- RT hysteresis loops and Mössbauer spectra indicate paramagnetic behaviour of all samples

- Mössbauer spectra analyzed using dominant singlet and three doublets

- precise identification of Curie temperature (T_c) done using the Curie-Weiss law:

$1/\chi = (T - T_c)/C,$

where χ is magnetic susceptibility of hysteresis loop, *C* describes the Curie constant, and *T* denotes applied temperatures in the range 293 K - 573 K

comple tupe	Т	<i>M</i> 5	M_r	H_{c}	С	T_{c}	T_{R}
sample type	(K)	(Am²/kg)	(Am ² /kg)	(kA/m)	(m ³ K/kg)	(K)	(K)
	293	10.55	0.02	8.84	2.37.10-4	215.78	68.58
DAM	2	57.83	11.22	8.61			
DIM	293	10.65	0.04	10.14	1.82.10-4	230.04	66.42
DIM	2	59.04	9.55	10.35			
D	293	13.55	0.01	1.13		(0.02	
K	2	57.05	10.11	16.02	1.64.10 271.52		69.02

DAM

DIM

R (air side)

EDX point analysis from the wheel side of the R sample

Spectrum	Si	Mn	Mn Fe		
	(at. %)	(at. %)	(at. %)		
1	28.19	32.07	39.73		
2	27.59	35.25	37.16		
3	27.49	34.49	38.02		
4	27.00	27.47	45.53		
5	27.69	26.86	45.46		
6	27.38	27.58	45.04		

FC-ZFC curves, and Curie-Weiss law; M5 magnetization at 5T; M_r - remnant magnetization; H_c - corcive field; C - Curie constant; T_c - Curie temperature; T_R temperature of maximum of ZFC curve.

> —FC --ZFC

FC --ZFC

50 100 150 200 250 300

50 100 150 200 250 300

Temperature (K)

Temperature (K)

2 K

-4000

2 K

-4000

-2000

- hysteresis loops measured below T_R consist of ferromagnetic part at lower magnetic fields followed by linear increase of magnetization indicating antiferromagnetic coupling of Mn atoms

- at 2 K hysteresis loops spontaneous magnetization was estimated to 53 Am²/kg (1.85 μ_B) for all samples, while high field magnetic susceptibility changes slowly from 1.3·10⁻⁶ m³/kg at 50 K to 1.4·10⁻⁶ m³/kg at 2 K

Fe₂MnAl alloys

a) DIM

b) R

- XRD confirmed the presence of $L2_1$ cubic phase in all samples with lattice constant 0.582(1) nm practically independent on production technology

mpla typa	Т	<i>M</i> 5	M _r	H_{c}	С	T_{c}	T_{R}
ampie type	(K)	(Am²/kg)	(Am²/kg)	(kA/m)	(m ³ K/kg)	(K)	(K)
	293	7.75	0.21	3.52			

- conversely, stronger dependence of magnetic properties on preparation techniques than in the case of Fe₂MnSi alloys

- hysteresis loops at 293 K indicate paramagnetic behaviour of samples together with weak magnetization reversal more precisely seen for DAM

DAM	2	35.34	16.93	87.16	2.82.10-4	136.90	38.12
D	293	12.05	0.02	1.63	1.60.10-4	2(2.27	59.64
ĸ	2	45.66	28.56	32.12		263.37	58.64

- high-temperature loops up to 573 K consisting of weak magnetization reversal at low magnetic fields and paramagnetic contribution at higher fields used for estimation of Curie temperature using the Curie-Weiss law

2000

0 2000 4000

Magnetic field (kA/m)

Magnetic field (kA/m)

- both low-temperature magnetic transitions (T_c, T_R) markedly different for R and DAM samples, see table and FC-ZFC curves

- different magnetic behaviour of samples below T_R contrary to Fe₂MnSi

- spontaneous magnetization and high field magnetic susceptibility estimated from 2 K hysteresis loops are 28.1 Am^2/kg (0.97 μ_B) and 2.23 $\cdot 10^{-6}$ m³/kg for DAM and 39.5 Am^2/kg (1.37 μ_B) and 1.63 $\cdot 10^{-6}$ m³/kg for R

This work was supported by the Regional Materials Science and Technology Centre - Sustainability Programme (No. LO1203) and the CEITEC 2020 - National Sustainability Programme II (No. LQ1601), both funded by Ministry of Education, Youth and Sports of the Czech Republic, by the project SP2018/43, and by the Slovak research and development agency - projects Nos. VEGA 2/0082/17 and APVV-15-0049.