Model of a double-sided surface plasmon resonance fiber-optic sensor

Dalibor Ciprian, Petr Hlubina
Department of Physics, Technical University Ostrava, Czech Republic
dalibor.ciprian@vsb.cz, petr.hlubina@vsb.cz

Motivation

- To understand the polarization properties of a double-side deposited surface plasmon resonance (SPR) fiber-optic sensor [1, 2].
- To evaluate the influence of SPR layer geometry on the sensor performance.

SENSOR SETUP

- Sensing structure is based on a step-index, multimode optical fiber.
- Interrogation in the wavelength domain is considered.
- Analysis carried out in frame of thin film optics.

- Fiber excited by a collimated/focused centered (CFC) beam.
- Input beam is linearly polarized.
- Double-side deposition of metal sensing SPR layer.

DOUBLE-SIDE GEOMETRY

- Double-side deposition leads to inhomogeneous layer \Rightarrow layer thickness depends on polar angle: $t=t(\alpha), t \in\left\langle t_{\min }, t_{\max }\right\rangle$.
- The outer layer boundary approximated by an ellipse: semi-major axis: $a=t_{\max }+\frac{D}{2}$, semi-minor: axis $a=t_{\min }+\frac{D}{2}$.
- Because the layer thickness is much smaller than fiber core diameter D (low-eccentricity ellipse), skew rays in the layer are omitted.

- Input polarization azimuth given by φ (with respect to x-axis)
- Local decomposition of linear polarization to p-component (normal \boldsymbol{n}) and s-component (tangent \boldsymbol{t}) is needed.

POWER TRANSFER CALCULATION

- Polar angle dependence is considered \Rightarrow double integration.
- Normalized power transfer spectrum on output of sensing part:

$$
P_{\mathrm{tn}}(\lambda)=\frac{\int_{\alpha}^{2 \pi} \int_{\theta_{\mathrm{c}}(\lambda)}^{\pi / 2}\left[p^{2}(\varphi, \alpha) R_{\mathrm{p}}^{N}(\lambda, \theta)+s^{2}(\varphi, \alpha) R_{\mathrm{s}}(\lambda, \theta)^{N}\right] A(\theta) \mathrm{d} \theta \mathrm{~d} \alpha}{\int_{\alpha}^{2 \pi} \int_{\theta_{\mathrm{c}}(\lambda)}^{\pi / 2} A(\theta) \mathrm{d} \theta \mathrm{~d} \alpha}
$$

- Integration with respect to polar angle α and angle of incidence θ.
- $R_{\mathrm{p}, \mathrm{s}}$ - reflectances, $N_{\text {ref }}=L /(D \tan \theta)$ - number of reflections.
- Polarization projectors: $p=\frac{1}{\sqrt{2 \pi}} \cos (\varphi-\alpha), s=\frac{1}{\sqrt{2 \pi}} \sin (\varphi-\alpha)$.
- Angular power distribution: $A(\theta)=\frac{n_{1}^{2}(\lambda) \sin \theta \cos \theta}{\left(1-n_{1}^{2}(\lambda) \cos ^{2} \theta\right)^{2}}$ (CFC beam).

Parameters of computation

- Opt. fiber: $N A=0.22, D=200 \mu \mathrm{~m}, L=1 \mathrm{~cm}$, fused silica core.
- Sensing layer: Au on a bare fiber core, $t_{\min }=0, t_{\max }=50 \mathrm{~nm}$.
- The shape of layer outer boundary is approximated by an ellipse.
- Model analyte: aqueous solution of NaCl .

Results

Effect of layer geometry

\triangleright Double-side deposition leads to thickness change along the circumference of the core.
\triangleright The position of SPR resonance dip depends on film local thickness.
\triangleright The p-polarized component spectra I_{p} with different dip position are summed \Rightarrow integration over polar angle α leads to 'average' dip.

Influence of φ on SPR spectra

\triangleright The dip position is affected by φ.
\triangleright The effect is higher for low c_{NaCl} - low refractive index of analyte.
\triangleright Increasing φ leads to broad shallow dips \Rightarrow detection ability decreases.
\triangleright For $\varphi>47^{\circ}$ the detection is not possible for low c_{NaCl}.

Dip shift with concentration

\triangleright For increasing c_{NaCl} the dip position is shifted to longer wavelength as the analyte refractive index increases.
\triangleright The increasing azimuth causes an opposite effect.
\triangleright The effect of azimuth orientation is more pronounced for low c_{NaCl}.

Sensitivity of the setup

\triangleright The sensitivity $S=\frac{\Delta \lambda_{\text {dip }}}{\Delta c_{\text {mas }}}$ increases with the analyte refractive index (increasing c_{NaCl}).
\triangleright The increase can be approximated by a linear function.
\triangleright The sensitivity increases with the input linear polarization azimuth.

References

[1] Gonzalez-Cano, A. et all. Sensors 14, 4791-4805, (2014)
[2] Nguyen Tan Tai et all. Opt. Express 22, 5590-5598, (2014)

ACKNOWLEDGMENTS

The research was partially supported by the COST TD1001 action "OFSeSa" through the project LD12003.

