Co_2FeX (X = Si,Al) Heusler alloys prepared by Planar Flow Casting and Arc Melting: microstructure and magnetism

Andrii Titov^{1,2}, O.Životský¹, Y. Jirásková², J. Buršík², A. Hendrych¹, D. Janičkovič³

¹ Department of Physics, VSB – Technical University of Ostrava
 ² Institute of Physics of Materials, AS CR Brno
 ³ Institute of Physics, AS Slovakia, Bratislava

June, 13 2016

A.Titov

 Co_2FeX (X = Si,AI) Heusler alloys

Table of Contents

1 Motivation

- 2 Sample preparation
- 3 Microstructure
 - XRD
 - SEM+EDX
- Bulk magnetizationVSM
- 5 Surface magnetization
 MOKE
 MOKM

A.Titov Co₂

 Co_2FeX (X = Si,AI) Heusler alloys

A 10

Motivation

- Prepare full Heusler alloys of common formula X₂YZ (X=Co; Y=Fe; Z=Al,Si) by arc melting and planer flow casting.
- Contribute to so far poor information concerning the relationships among different production conditions of selected Heusler alloys and subsequent structural/compositional physical properties.

Ongoing interest in investigation of Heusler alloys around the world

- various compositions
- interesting structure
- attractive magnetic properties:
 - high T_C, magnetic moment, magnetooptical characteristics
 - high saturation magnetization

CSMAG 2016

イロト 不得 トイヨト イヨト 二日

Sample preparation

sample preparation \rightarrow high-purity Co, Fe, Si, Al

Microstructure XRD

by ICSD database: 622893 for Co₂FeSi and 57607 for Co₂FeAI

A.Titov

 Co_2FeX (X = Si,Al) Heusler alloys

Microstructure SEM+EDX Co₂FeSi

CSMAG 2016

A.Titov

 Co_2FeX (X = Si,Al) Heusler alloys

Microstructure SEM+EDX Co₂FeAI

	Co (at.%)	Fe (at.%)	AI (at.%)		
D	48.51 ± 0.29	9.94 ± 2.21	27.55 ± 2.37		
			< □ >	・日・ ・日・	<.≣
A. Titov Co_2FeX (X = Si, Al) Heusler alloys					

Bulk magnetization Co₂FeSi by Vibrating Sample Magnetometer

(日)

 Co_2FeX (X = Si,Al) Heusler alloys

CSMAG 2016

 $\exists \rightarrow$

Bulk magnetization Co₂FeAl by Vibrating Sample Magnetometer

alloys CSMAG 2016

э

A.Titov

 Co_2FeX (X = Si,Al) Heusler alloys

Surface magnetization Magneto Optical Kerr Effect

	Co ₂ FeSi		Co ₂ FeAI	
	ribbon	disc	ribbon	disc
M_s (mrad)	0.49	0.89	1.06	0.77
<i>M_r</i> (mrad)	0.12	0.13	0.086	0.097
H_c (kA/m)	0.59	3.36	2.32	32.1

 Co_2FeX (X = Si,AI) Heusler alloys

CSMAG 2016

э

Surface magnetization

Magneto Optical Kerr Microscopy and Magnetic Force Microscopy, only disc surface

 Co_2FeSi

A.Titov

 $\mathsf{Co}_2\mathsf{FeX}\;(\mathsf{X}=\mathsf{Si},\mathsf{Al})\;\mathsf{Heusler\;alloys}$

▲ 同 ▶ ▲ 目

Conclusion

- Full ternary Heusler alloys were successfully prepared by both techniques.
- from view point of microstructure
 - disc and ribbon differ in grain size
 - Co and Si enrichment at grain boundaries
- from viewpoint of magnetic properties
 - ribbons looks slightly softer then discs
 - higher dipole interactions originating in lower magnetic fields of ribbons
- ribbon brittleness has caused the surface polishing impossible and the manipulation with the sample was difficult

Acknowledgment

- Projects No. LO1203 Regional Materials Science and Technology Centre - Sustainability Program
- LQ1602 IT4Innovations Excellence in Science