

ERSITY OF SILESIA

Preparation and characterization of the nanostructured cerium dioxide sorbents

J. Luňáček¹, O. Životský¹, A. Chrobak²,

Y. Jirásková^{3,4}, J. Buršík³, P. Janoš⁵

¹Department of Physics, VŠB-Technical University of Ostrava, Ostrava-Poruba, Czech Republic ²Institute of Physics, University of Silesia in Katowice, Katowice, Poland ³Institute of Physics of Materials, ⁴CEITEC, Academy of Sciences of the Czech Rep., Brno, Czech Republic ⁵Faculty of the Environment, University of Jan Evangelista Purkyně, Ústí nad Labem, Czech Republic

AIM: Preparation and characterization of CeO₂ nano-sorbents used for the removal of pesticides and nervous agents.

Sample preparation

• An input material for preparation of samples was cerium(III) nitrate, $Ce(NO_3)_3.6H_2O$, dissolved in deionized water.

•An insoluble cerous carbonate precipitated using NH_4HCO_3 (precursor 1) and using homogeneous hydrolysis of urea (precursor 2).

•Cerium(III) carbonate was filtered, washed with deionized water number of times and dried at 110 °C in a box drying apparatus for several hours to remove excess water and to form CeO_2 .

•The temperature treatments of the precursors were done in an open porcelain crucibles at temperatures ranging between 500 °C/2 h and 800 °C/2h, step 100 °C in muffle furnace.

Experimental techniques

• SEM (Scanning Electron Microscopy) – TESCAN LYRA 3XMU FEG/SEM microscope with an Xmax 80 Oxford Instruments detector for EDX

• **XRPD (X-Ray Powder Diffraction)** – X'PERT PRO diffractometer by PANALYTICAL, CoK α irradiation (λ = 0.1789 nm), Bragg-Brentano geometry, 2 θ range 20° ÷ 135°

• MS (Mössbauer Spectroscopy) – at room temperature in transmission geometry using a ⁵⁷Co(Rh) source, velocity calibration performed by α -Fe, data evaluated using the program CONFIT

SQUID (Superconducting Quantum Interference Device) – Quantum Design MPMS, magnetization curves measured at room (300 K) and low (2 K) temperatures with maximal applied magnetic field ± 70 kOe (7 T), field-cooled (FC)/zerofield-cooled (ZFC) curves

Microstructure **Precipitation using NH**₄HCO₃ **Homogeneous hydrolysis**

Spectrum 3 10μm Electron Image 1						"Spectrum 4	Dµm	Spectrum 5	n Image 1	
	annealed at 500°C					a	nnea	led a	t 800)°C
	1	2	3	4	5	1	2	3	4	5
	80.49	79.84	81.32	82.00	77.28	80.08	77.49	82.08	27.70	77.63
	19.51	20.16	18.68	18.00	22.72	19.92	22.51	17.92	72.30	22.37

a lattice personator de envetalliter	
a – lattice parameter, a – crystallite s	size

	<i>a</i> (nm)	<i>d</i> (nm)		
precursor	-	-		
500 °C	0.541746(22)	9.91(10)		
600 °C	0.541299(21)	13.92(10)		
700 °C	0.541303(19)	24.49(10)		
800 °C	0.541218(6)	44.68(10)		

precursor 1								precursor 2				
	1	2	3	4	5	Spect.	1	2	3	4	5	
	85.99	78.80	86.95	86.52	85.07	O (at. %)	82.81	85.46	87.19	88.80	89.06	
	14.01	21.20	13.05	13.48	14.93	Ce (at. %)	17.19	14.54	12.81	11.20	10.94	

	· · ·	20	Dμm	Electro	n Image 1	
С		ar	nnea	led a	t 500	°C
5		1	2	3	4	5
67.52		75.55	79.54	79.57	80.52	82.11
32.48		24.45	20.46	20.43	19.48	17.89

20	J. Margano di Anglia Jim	Electron	Image 1		20	Dμm	Electro	n Image 1
an	neal	ed at	800'	ar	nnea	led a	t 5	
1	2	3	4	5	1	2	3	4
52.98	81.21	81.41	78.34	67.52	75.55	79.54	79.57	80.
47.02	18.79	18.59	21.66	32.48	24.45	20.46	20.43	19.

	<i>a</i> (nm)	<i>d</i> (nm)	
precursor	0.543346(5)	9.60(4)	
500 °C	0.541472(36)	8.87(5)	
600 °C	0.541405(13)	13.00(0)	
700 °C	0.541372(15)	29.30(0)	
800 °C	0.541359(11)	70.35(0)	

700 °C 800 °C

precursor

Electron Image 1

20

40

Magnetic properties Mössbauer spectroscopy: annealing of precursor 1

Precursors 1 and 2

• Both precursors show linear dependence of magnetization on the applied external magnetic field.

2Theta (deg)

• Hysteresis loops of annealed samples exhibit ferromagnetic response at low magnetic fields followed by a para- and diamagnetic behaviour at higher fields.

100

120

14(

- Saturation magnetization of annealed powders is very low (thousandths of emu/g) without clear dependence on the annealing temperature.
- As confirmed by Mössbauer spectroscopy the ferromagnetic response comes from the low amount of iron oxide nanoparticles (units of ppm).
- Hyperbolic shapes of the FC/ZFC curves in the temperature range 2 K 300 K at constant magnetic field 1 T indicate paramagnetic behaviour of CeO₂ with the Curie constant about $3 \cdot 10^{-7}$ (emu·K)/(g·Oe).

This work was supported by the projects No. LQ1601 (CEITEC 2020 – NSP II) and No. LM2015073 ", the Research Infrastructure NanoEnviCz".