An Introduction to
Fast Multipole Boundary Element Methods

Günther Of

1Institute of Computational Mathematics
Graz University of Technology

Workshop Fast BEM & BETI
Ostrava, June 18th, 2012
Examples and Applications
Outline

Model Problem and Boundary Element Method

Motivation of Low Rank Approximation

Clustering and Admissibility Condition

Fast Multipole Method

Numerical Examples
Outline

Model Problem and Boundary Element Method

Motivation of Low Rank Approximation

Clustering and Admissibility Condition

Fast Multipole Method

Numerical Examples
Indirect BEM Approach

Laplace Dirichlet boundary value problem

\[-\Delta u(x) = 0 \quad \text{for} \; x \in \Omega \subset \mathbb{R}^3\]

\[u(x) = g(x) \quad \text{for} \; x \in \Gamma = \partial\Omega\]
Indirect BEM Approach

Laplace Dirichlet boundary value problem

\[- \Delta u(x) = 0 \quad \text{for } x \in \Omega \subset \mathbb{R}^3 \]
\[u(x) = g(x) \quad \text{for } x \in \Gamma = \partial \Omega\]

Single layer potential ansatz:

\[u(\tilde{x}) := \frac{1}{4\pi} \int_{\Gamma} \frac{1}{|x - y|} w(y) ds_y \quad \text{for } \tilde{x} \in \Omega\]

is a solution of the Laplace equation.
Indirect BEM Approach

Laplace Dirichlet boundary value problem

\[-\Delta u(x) = 0 \quad \text{for } x \in \Omega \subset \mathbb{R}^3\]
\[u(x) = g(x) \quad \text{for } x \in \Gamma = \partial \Omega\]

Single layer potential ansatz:

\[u(\tilde{x}) := \frac{1}{4\pi} \int_{\Gamma} \frac{1}{|x - y|} w(y)ds_y \quad \text{for } \tilde{x} \in \Omega\]

is a solution of the Laplace equation.

Determine density function \(w \) from the boundary integral equation

\[(Vw)(x) = \frac{1}{4\pi} \int_{\Gamma} \frac{1}{|x - y|} w(y)ds_y = g(x) \quad \text{for } x \in \Gamma\]
Discrete Problem

Variational formulation: Find $w \in H^{-1/2}(\Gamma)$

$$\int_{\Gamma} (Vw)(x)v(x)ds_x = \int_{\Gamma} g(x)v(x)ds_x \quad \forall v \in H^{-1/2}(\Gamma)$$
Discrete Problem

Variational formulation: Find \(w \in H^{-1/2}(\Gamma) \)

\[
\int_{\Gamma} (Vw)(x)v(x) \, ds_x = \int_{\Gamma} g(x)v(x) \, ds_x \quad \forall v \in H^{-1/2}(\Gamma)
\]

Triangulation of the surface \(\rightarrow \) discrete approximation:

\[
w_h(x) = \sum_{k=1}^{N} w_k \psi_k(x) \in S_h^0(\Gamma) \subset H^{-1/2}(\Gamma)
\]
Discrete Problem

Variational formulation: Find \(w \in H^{-1/2}(\Gamma) \)

\[
\int_{\Gamma} (Vw)(x)v(x)ds_x = \int_{\Gamma} g(x)v(x)ds_x \quad \forall v \in H^{-1/2}(\Gamma)
\]

Triangulation of the surface \(\rightarrow \) discrete approximation:

\[
w_h(x) = \sum_{k=1}^{N} w_k \psi_k(x) \in S_0^0(\Gamma) \subset H^{-1/2}(\Gamma)
\]

Galerkin variational formulation:

\[
w_h \in S_0^0(\Gamma) : \quad \int_{\Gamma} (Vw_h)(x)v_h(x)ds_x = \int_{\Gamma} g(x)v_h(x)ds_x \quad \forall v_h \in S_0^0(\Gamma)
\]
Discrete Problem

Variational formulation: Find $w \in H^{-1/2}(\Gamma)$

$$
\int_{\Gamma} (Vw)(x)v(x)ds_x = \int_{\Gamma} g(x)v(x)ds_x \quad \forall v \in H^{-1/2}(\Gamma)
$$

Triangulation of the surface \rightarrow discrete approximation:

$$
w_h(x) = \sum_{k=1}^{N} w_k \psi_k(x) \in S_h^0(\Gamma) \subset H^{-1/2}(\Gamma)
$$

Galerkin variational formulation:

$$
w_h \in S_h^0(\Gamma) : \int_{\Gamma} (Vw_h)(x)v_h(x)ds_x = \int_{\Gamma} g(x)v_h(x)ds_x \quad \forall v_h \in S_h^0(\Gamma)
$$

equivalent system of linear equations: $V_h w = g$

where

$$
V_h[\ell, k] = \int_{\Gamma} (V \psi_k)(x)\psi_\ell(x)ds_x \quad g_\ell = \int_{\Gamma} g(x)\psi_\ell(x)ds_x
$$
Data-sparse Boundary Element Methods

Matrix times vector multiplication $\mathbf{v} = V_h \mathbf{w}$ for $\ell = 1, \ldots, N$:

$$
v_{\ell} = \sum_{k=1}^{N} V_h[\ell, k] w_k = \frac{1}{4\pi} \sum_{k=1}^{N} w_k \int_{\tau_{\ell}} \int_{\tau_{k}} \frac{1}{|x - y|} \, ds_x \, ds_y \quad \rightarrow O(N^2)
$$
Data-sparse Boundary Element Methods

Matrix times vector multiplication $\mathbf{v} = V_h \mathbf{w}$ for $\ell = 1, \ldots, N$:

$$v_{\ell} = \sum_{k=1}^{N} V_h[\ell, k] w_k = \frac{1}{4\pi} \sum_{k=1}^{N} w_k \int_{\tau_\ell} \int_{\tau_k} \frac{1}{|x - y|} ds_y ds_x \rightarrow O(N^2)$$

Fast / Data-sparse boundary element methods:

- Fast Multipole Method [Rokhlin 1985; Greengard, Rokhlin 1987]
- Panel Clustering [Hackbusch, Nowak 1989]
- Wavelets [Dahmen, Prössdorf, Schneider 1993]
- Adaptive Cross Approximation [Bebendorf, Rjasanow 2003]
- \mathcal{H} matrices [Hackbusch 1999]
- \mathcal{H}^2 matrices [Hackbusch, Khoromskij, Sauter 1999]
Comparison: Standard BEM and Fast BEM

- **quadratic vs almost linear complexity**
- **Standard BEM**: limited to 20000/30000 boundary elements
- **memory requirements** for 458752 elements: 1643 GB vs 3.4 GB
- **computational time** for 458752 elements: 875 h vs 20 min
- **uniform FE mesh**: 37.75 millions tetrahedrons, 458752 boundary elements
Outline

Model Problem and Boundary Element Method

Motivation of Low Rank Approximation

Clustering and Admissibility Condition

Fast Multipole Method

Numerical Examples
Low Rank Approximation, Singular Value Decomposition

Matrix block

\[A \in \mathbb{R}^{m \times n} \quad \text{with} \quad \mu = \text{rank} A \leq \min\{m, n\} \]

Low rank approximation

\[A_k = \sum_{i=1}^{k} u_i v_i^\top \quad u_i \in \mathbb{R}^m, \quad v_i \in \mathbb{R}^n \]

The singular value decomposition

\[A = U \Sigma V^\top = \sum_{i=1}^{\mu} \sigma_i(A) u_i v_i^\top \]

can be defined by means of the eigenvalue decomposition of the symmetric matrix \(A^\top A \).
1. Example [Rjasanow, Steinbach 2007]

Low rank approximation by SVD of A where

$$A[k, \ell] = K(x_k, y_\ell), \ k, \ell = 1, \ldots, N$$

and a uniform discretization of the domain $[0, 1] \times [0, 1]$ by nodes

$$(x_k, y_\ell) = ((k - 1)h, (\ell - 1)h), \ h = \frac{1}{N - 1}$$

for $k, \ell = 1, \ldots, N$.
1. Example [Rjasanow, Steinbach 2007]

Low rank approximation by SVD of A where

$$ A[k, \ell] = K(x_k, y_\ell), \ k, \ell = 1, \ldots, N $$

and a uniform discretization of the domain $[0, 1] \times [0, 1]$ by nodes

$$ (x_k, y_\ell) = \left((k - 1)h, (\ell - 1)h \right), \ h = \frac{1}{N - 1} $$

for $k, \ell = 1, \ldots, N$.

Function

$$ K(x, y) = \frac{1}{\alpha + x + y}, $$

with an artificial “singularity” for a small parameter $\alpha > 0$.
Singular Values of A

$N = 32$

$N = 1024$

- Logarithmic plot for $\alpha = 10^{-4}$
- Most singular values are almost zero.
- A few singular values are sufficient for a good approximation A_k by SVD.
Largest 32 Singular Values of A

$N = 32, 64, 128$

$N = 256, 512, 1024$

- Number of significant singular values increases only slightly with increasing dimension N.
Relative Accuracy of Low Rank Approximation A_k

$N = 32, 64, 128$

$N = 256, 512, 1024$

- relative accuracy over $k = 1, \ldots, 32$

$$\varepsilon(k) = \frac{\|A - A_k\|_F}{\|A\|_F}$$

- Number of singular values determines the quality of the approximation.
- The results just slightly depend on α, they even improve for smaller α.

G. Of
Introduction to Fast Multipole BEM
Ostrava 2012
14 / 39
2. Example: Function with Stronger Singularity

\[K(x, y) = \frac{1}{\alpha + (x - y)^2} \]

with artificial “singularity” along the diagonal \(\{(x, x)\} \).

- Rank \(k(10^{-6}) \) for accuracy \(10^{-6} \) of \(A_k \) as function of \(\alpha \) for \(N = 256 \)
- horizontal axis: \(-\log_2(\alpha)\) with \(\alpha \in [2^0, 2^{-8}] \)
- left: strong dependency of the rank on \(\alpha \) for \([0, 1] \times [0, 1] \)
- right: For \([0, 0.5] \times [0.5, 1]\) (separation of \(x \) and \(y \)) well behaved.
2. Example: Singular Values of A for Several α

complete square $[0, 1] \times [0, 1]$

quarter $[0, 0.5] \times [0.5, 1]$

▷ lower curve: $\alpha = 10^{-1}$; upper curve: $\alpha = 10^{-8}$; $N = 256$

▷ Total matrix (with singularity) cannot be approximated by low rank but the subblock (“without” singularity).
2. Example: Hierarchical Low Rank Approximation

- $N = 256$, $\alpha = 2^{-9}$, numbers = rank $k(10^{-6})$
2. Example: Hierarchical Low Rank Approximation

- $N = 256$, $\alpha = 2^{-9}$, numbers = rank $k(10^{-6})$
- main idea: Subdivide matrix A. First step: 4 blocks for subdomains

 $[0, 0.5] \times [0, 0.5]$, $[0, 0.5] \times [0.5, 1]$, $[0.5, 1] \times [0, 0.5]$, $[0.5, 1] \times [0.5, 1]$

- Off diagonal blocks can be approximated efficiently.
2. Example: Hierarchical Low Rank Approximation

- $N = 256$, $\alpha = 2^{-9}$, numbers = rank $k(10^{-6})$
- main idea: Subdivide matrix A. First step: 4 blocks for subdomains

$[0, 0.5] \times [0, 0.5]$, $[0, 0.5] \times [0.5, 1]$, $[0.5, 1] \times [0, 0.5]$, $[0.5, 1] \times [0.5, 1]$.

- Off diagonal blocks can be approximated efficiently.
- Diagonal blocks: same structure as A but half the size \rightarrow Subdivisioning.
- Block which require a large rank are subdivided.
2. Example: Hierarchical Low Rank Approximation

\[N = 256, \quad \alpha = 2^{-9}, \quad \text{numbers} = \text{rank} \ k(10^{-6}) \]

- main idea: Subdivide matrix \(A \). First step: 4 blocks for subdomains

 \[
 [0, 0.5] \times [0, 0.5], \quad [0, 0.5] \times [0.5, 1], \quad [0.5, 1] \times [0, 0.5], \quad [0.5, 1] \times [0.5, 1].
 \]

- Off diagonal blocks can be approximated efficiently.
- Diagonal blocks: same structure as \(A \) but half the size → Subdivisioning.
- Block which require a large rank are subdivided.
2. Example: Hierarchical Low Rank Approximation

▶ $N = 256$, $\alpha = 2^{-9}$, numbers = rank $k(10^{-6})$
▶ main idea: Subdivide matrix A. First step: 4 blocks for subdomains

$[0, 0.5] \times [0, 0.5]$, $[0, 0.5] \times [0.5, 1]$, $[0.5, 1] \times [0, 0.5]$, $[0.5, 1] \times [0.5, 1]$.

▶ Off diagonal blocks can be approximated efficiently.
▶ Diagonal blocks: same structure as A but half the size \rightarrow Subdivisioning.
▶ Block which require a large rank are subdivided.
▶ Memory requirements are decreased: $146N$, $94N$, $74N$ and $72N$.
▶ The rank of the separated blocks grows logarithmically ($7 - 8 - 9$).
Essential Ingredients of Hierarchical Approximation

for dense matrices with singularity along the “diagonal”:

- construction of the clusters for the variables x and y
- determine admissible blocks (separation of x and y)
- partitioning of the matrix
- efficient low rank approximation of the admissible blocks.
Essential Ingredients of Hierarchical Approximation

for dense matrices with singularity along the “diagonal”:

- construction of the clusters for the variables x and y
- determine admissible blocks (separation of x and y)
- partitioning of the matrix
- efficient low rank approximation of the admissible blocks.

Possible ways to construct a low rank approximation:

- SVD (not efficient)
- adaptive cross approximation
- expansion of the kernel (Taylor, spherical harmonics, ...)
- interpolation of the kernel (Chebychev polynomials (+SVD))
Outline

Model Problem and Boundary Element Method

Motivation of Low Rank Approximation

Clustering and Admissibility Condition

Fast Multipole Method

Numerical Examples
Clustering of elements: subdivide box into similar boxes (alt.: bisection)
Simple admissibility condition: direct neighbors are not admissible.
Geometric Clustering and Matrix Partitioning in 1D

Clustering of elements: subdivide box into similar boxes (alt.: bisection)
Simple admissibility condition: direct neighbors are not admissible.
Geometric Clustering and Matrix Partitioning in 1D

Clustering of elements: subdivide box into similar boxes (alt.: bisection)

Simple admissibility condition: direct neighbors are not admissible.
Geometric Clustering and Matrix Partitioning in 1D

Clustering of elements: subdivide box into similar boxes (alt.: bisection)
Simple admissibility condition: direct neighbors are not admissible.
Geometric Clustering and Matrix Partitioning in 2D
Geometric Clustering and Matrix Partitioning in 2D

\[\Omega_1 \quad \Omega_2 \quad \Omega_3 \quad \Omega_4 \]

nearfield

\[l_1^1 \quad l_2^1 \quad l_3^1 \quad l_4^1 \]
Geometric Clustering and Matrix Partitioning in 2D

\[\Omega_1^2 \quad \Omega_2^2 \quad \Omega_3^2 \quad \Omega_4^2 \quad \Omega_5^2 \quad \Omega_6^2 \quad \Omega_7^2 \quad \Omega_8^2 \quad \Omega_9^2 \quad \Omega_{10}^2 \quad \Omega_{11}^2 \quad \Omega_{12}^2 \quad \Omega_{13}^2 \quad \Omega_{14}^2 \quad \Omega_{15}^2 \quad \Omega_{16}^2 \]

- farfield
- nearfield

\[I_1^2 \quad I_2^2 \quad I_3^2 \quad I_4^2 \quad \ldots \quad I_{16}^2 \]
Partitioning of a BEM Matrix

Sphere, 3D, $N = 5120$
Admissibility Condition and Complexity

Definition

A pair of cluster \((\omega_i^\lambda, \omega_j^\lambda)\) is admissible, if

\[
\max\{\text{diam } \omega_i^\lambda, \text{diam } \omega_j^\lambda\} \leq \eta \text{ dist}(\omega_i^\lambda, \omega_j^\lambda)
\]

for a fixed parameter \(\eta < 1\).
Admissibility Condition and Complexity

Definition
A pair of cluster \((\omega_i^\lambda, \omega_j^\lambda)\) is admissible, if

\[
\max\{diam \omega_i^\lambda, diam \omega_j^\lambda\} \leq \eta \, dist(\omega_i^\lambda, \omega_j^\lambda)
\]

for a fixed parameter \(\eta < 1\).

Memory requirements for \(\mathcal{H}\) matrix:

\[
O\left(\frac{1}{\eta^{d-1}}\right) k(L + 1) 2N
\]

where

- rank \(k\) approximation of admissible blocks \((k \sim \log N)\)
- \(L + 1\) level in the cluster tree \((1 + L \sim \log N)\)
- \(N\) boundary elements
Outline

Model Problem and Boundary Element Method

Motivation of Low Rank Approximation

Clustering and Admissibility Condition

Fast Multipole Method

Numerical Examples
Kernel Approximation

Matrix times vector product $v = V_h w$ for $\ell = 1, \ldots, N$:

$$v_\ell = \sum_{k=1}^{N} V_h[\ell, k] w_k = \frac{1}{4\pi} \sum_{k=1}^{N} w_k \int_{\tau_\ell} \int_{\tau_k} \frac{1}{|x - y|} ds_y ds_x \quad \rightarrow O(N^2)$$
Kernel Approximation

Matrix times vector product \(\mathbf{v} = \mathbf{V}_h \mathbf{w} \) for \(\ell = 1, \ldots, N \):

\[
v_\ell = \sum_{k=1}^{N} \mathbf{V}_h[\ell, k] \mathbf{w}_k = \frac{1}{4\pi} \sum_{k=1}^{N} \mathbf{w}_k \int_{\tau_\ell} \int_{\tau_k} \frac{1}{|\mathbf{x} - \mathbf{y}|} \, ds_\mathbf{y} \, ds_\mathbf{x} \quad \rightarrow \mathcal{O}(N^2)
\]

If \(|\mathbf{x} - \mathbf{y}|^{-1} = f(\mathbf{x})g(\mathbf{y})\) hold, we would get:

\[
v_\ell = \frac{1}{4\pi} \int_{\tau_\ell} f(\mathbf{x}) \, ds_\mathbf{x} \sum_{k=1}^{N} \mathbf{w}_k \int_{\tau_k} g(\mathbf{y}) \, ds_\mathbf{y} \quad \rightarrow \mathcal{O}(N)
\]

Approximation of the kernel by expansion für \(|\mathbf{x}| < |\mathbf{y}|\)

\[
\frac{1}{|\mathbf{x} - \mathbf{y}|} \approx \sum_{n=0}^{p} \sum_{m=-n}^{n} |\mathbf{x}|^{n} Y_{n}^{-m}(\hat{\mathbf{x}}) Y_{n}^{m}(\hat{\mathbf{y}}) \frac{Y_{n}^{m}(\hat{\mathbf{y}})}{|\mathbf{y}|^{n+1}}
\]

with spherical harmonics für \(m \geq 0\) and \(\hat{\mathbf{x}} = \mathbf{x}/|\mathbf{x}|\):

\[
Y_{n}^{\pm m}(\hat{\mathbf{x}}) = \sqrt{\frac{(n-m)!}{(n+m)!}} (-1)^{m} \frac{d^{m}}{d\hat{x}^{m}} P_{n}(\hat{x}_{3})(\hat{x}_{1} \pm i\hat{x}_{2})^{m}.
\]
Fast Multipole Method

Inserting expansion into matrix entry where $|x| < |y|$

$$\int_{\tau_\ell} \int_{\tau_k} \frac{1}{|x - y|} ds_y ds_x \approx \int_{\tau_\ell} \int_{\tau_k} \left(\sum_{n=0}^{p} \sum_{m=-n}^{n} |x|^n Y_{n}^{-m}(\hat{x}) \frac{Y_{n}^{m}(\hat{y})}{|y|^{n+1}} \right) ds_y ds_x$$
Fast Multipole Method

Inserting expansion into matrix entry where $|x| < |y|

\[
\int_{\tau_\ell} \int_{\tau_k} \frac{1}{|x - y|} \, ds_y \, ds_x \approx \int_{\tau_\ell} \int_{\tau_k} \left(\sum_{n=0}^{p} \sum_{m=-n}^{n} |x|^n Y_n^{-m}(\hat{x}) \frac{Y_m^m(\hat{y})}{|y|^{n+1}} \right) \, ds_y \, ds_x
\]

\[
= \sum_{n=0}^{p} \sum_{m=-n}^{n} \int_{\tau_\ell} \left(|x|^n Y_n^{-m}(\hat{x}) \right) \, ds_x \int_{\tau_k} \frac{Y_m^m(\hat{y})}{|y|^{n+1}} \, ds_y
\]
Fast Multipole Method

Inserting expansion into matrix entry where $|x| < |y|$

\[
\int_{\tau_{k}} \int_{\tau_{k}} \frac{1}{|x - y|} \, ds_{y} \, ds_{x} \approx \int_{\tau_{k}} \int_{\tau_{k}} \left(\sum_{n=0}^{p} \sum_{m=-n}^{n} |x|^{n} Y_{n}^{-m}(\hat{x}) \frac{Y_{n}^{m}(\hat{y})}{|y|^{n+1}} \right) \, ds_{y} \, ds_{x}
\]

\[
= \sum_{n=0}^{p} \sum_{m=-n}^{n} \int_{\tau_{k}} (|x|^{n} Y_{n}^{-m}(\hat{x})) \, ds_{x} \int_{\tau_{k}} \frac{Y_{n}^{m}(\hat{y})}{|y|^{n+1}} \, ds_{y}
\]

Splitting in near- and farfield and interchanging the summation order:

\[
\nu_{\ell} = \sum_{k \in \text{NF}(\ell)} V_{h}[\ell, k] w_{k} + \sum_{k \in \text{FF}(\ell)} V_{h}[\ell, k] w_{k}
\]
Fast Multipole Method

Inserting expansion into matrix entry where $|x| < |y|

$$\int_{\tau_\ell} \int_{\tau_k} \frac{1}{|x-y|} \, ds_y \, ds_x \approx \int_{\tau_\ell} \int_{\tau_k} \left(\sum_{n=0}^{p} \sum_{m=-n}^{n} |x|^n Y_n^{-m}(\hat{x}) \frac{Y_n^m(\hat{y})}{|y|^{n+1}} \right) \, ds_y \, ds_x = \sum_{n=0}^{p} \sum_{m=-n}^{n} \int_{\tau_\ell} (|x|^n Y_n^{-m}(\hat{x})) \, ds_x \int_{\tau_k} \frac{Y_n^m(\hat{y})}{|y|^{n+1}} \, ds_y$$

Splitting in near- and farfield and interchanging the summation order:

$$v_\ell = \sum_{k \in \text{NF}(\ell)} V_h[\ell, k] \, w_k + \sum_{k \in \text{FF}(\ell)} V_h[\ell, k] \, w_k \approx \sum_{k \in \text{NF}(\ell)} V_h[\ell, k] \, w_k + \sum_{n=0}^{p} \sum_{m=-n}^{n} \int_{\tau_\ell} (|x|^n Y_n^{-m}(\hat{x})) \, ds_x \sum_{k \in \text{FF}(\ell)} \frac{w_k}{4\pi} \int_{\tau_k} \frac{Y_n^m(\hat{y})}{|y|^{n+1}} \, ds_y$$

$$= L_n^m(\ell)$$
Fast Multipole Method

Inserting expansion into matrix entry where $|x| < |y|$

$$\int_{\tau_\ell} \int_{\tau_k} \frac{1}{|x - y|} ds_y ds_x \approx \int_{\tau_\ell} \int_{\tau_k} \left(\sum_{n=0}^{p} \sum_{m=-n}^{n} |x|^n Y_n^{-m}(\hat{x}) \frac{Y_m^m(\hat{y})}{|y|^{n+1}} \right) ds_y ds_x$$

$$= \sum_{n=0}^{p} \sum_{m=-n}^{n} \int_{\tau_\ell} (|x|^n Y_n^{-m}(\hat{x})) ds_x \int_{\tau_k} \frac{Y_m^m(\hat{y})}{|y|^{n+1}} ds_y$$

Splitting in near- and farfield and interchanging the summation order:

$$v_\ell = \sum_{k \in \text{NF}(\ell)} V_h[\ell, k] w_k + \sum_{k \in \text{FF}(\ell)} V_h[\ell, k] w_k$$

$$\approx \sum_{k \in \text{NF}(\ell)} V_h[\ell, k] w_k + \sum_{n=0}^{p} \sum_{m=-n}^{n} \int_{\tau_\ell} (|x|^n Y_n^{-m}(\hat{x})) ds_x \sum_{k \in \text{FF}(\ell)} \frac{w_k}{4\pi} \int_{\tau_k} \frac{Y_m^m(\hat{y})}{|y|^{n+1}} ds_y$$

$$= L_n^m(\ell)$$

But: coefficients $L_n^m(\ell)$ depend on $\ell \rightarrow$ fast computation???
Matrix Representation

\[
\sum_{k \in NF(\ell)} V_h[\ell, k] w_k + \sum_{n=0}^{p} \sum_{m=-n}^{n} \int_{\tau_\ell} |x|^n Y^{-m}_n(\hat{x}) ds_x \sum_{k \in FF(\ell)} \frac{w_k}{4\pi} \int_{\tau_k} \frac{Y^m_n(\hat{y})}{|y|^{n+1}} ds_y \]

\[
= L^m_n(\ell)
\]
Idea of the Algorithm of FMM

matrix times vector product

\[\tilde{v}_\ell = \sum_{k \in \text{NF}(\ell)} V_h[\ell, k] w_k + \sum_{n=0}^{p} \sum_{m=-n}^{n} \left| x \right|^n Y_{n}^{-m}(\hat{x}) ds_x \sum_{k \in \text{FF}(\ell)} w_k \frac{\int_{\tau_k} Y_{n}^{m}(\hat{y}) \left| y \right|^{n+1} ds_y}{4\pi} = L_{n}^{m}(\ell) \]
Idea of the Algorithm of FMM

Matrix times vector product

\[
\tilde{v}_\ell = \sum_{k \in \text{NF}(\ell)} V_h[\ell, k] w_k + \sum_{n=0}^{p} \sum_{m=-n}^{n} \int_{\tau_\ell} |x^n Y_{n}^{-m}(\hat{x})| \, ds_x \sum_{k \in \text{FF}(\ell)} \frac{w_k}{4\pi} \int_{\tau_k} \frac{Y_{n}^{m}(\hat{y})}{|y|^{n+1}} \, ds_y
\]

Fast computation by means of hierarchical structure and kernel expansion:

\[
= L^m_n(\ell)
\]

→ almost linear complexity
Expansions of FMM

\[\frac{1}{|x - y_\ell|} \approx \Phi_\ell(x) = \sum_{n=0}^{p} \sum_{m=-n}^{n} \overline{S}_n^m(x)R_n^m(y_\ell) \]

\(\triangleright \) multipole expansion for \(\ell \in I_i^\lambda \)

\[\Phi_\ell(x) = \sum_{n=0}^{p} \sum_{m=-n}^{n} \overline{S}_n^m(x - C_i^\lambda)M_n^m(C_i^\lambda, \ell) \] \(\triangleright \) Compute multipole coefficients of a cluster

\[\tilde{M}_n^m(C_i^L, I_i^L) = \sum_{\ell \in I_i^L} q_\ell M_n^m(C_i^L, \ell) \] \(\triangleright \) local expansion

\[\Psi_\ell(x) = \sum_{n=0}^{p} \sum_{m=-n}^{n} L_n^m(C_j^\lambda, \ell)R_n^m(x - C_j^\lambda) \]

where

\[L_n^m(C_j^\lambda, \ell) = \overline{S}_n^m(y_\ell - C_j^\lambda) \]
FMM Operations

- **M2M**

\[
\tilde{M}_n^m(C_j^\lambda, I_j^\lambda) = \sum_{\omega_i^{\lambda+1} \in \text{sons}(\omega_j^\lambda)} \sum_{s=0}^{n} \sum_{t=-s}^{s} R_s^t(C_j^\lambda C_i^{\lambda+1}) \tilde{M}_{n-s}^{m-t}(C_i^{\lambda+1}, I_i^{\lambda+1})
\] (4)

- **M2L** for \((\omega_i^\lambda, \omega_j^\lambda)\) admissible

\[
\tilde{L}_n^m(C_i^\lambda, I_i^\lambda)) = \sum_{s=0}^{\infty} \sum_{t=-s}^{s} (-1)^n S_{n+s}^{m+t}(C_j^\lambda C_i^\lambda) \tilde{M}_s^t(C_j^\lambda, I_j^\lambda)
\] (5)

- **L2L**

\[
\tilde{L}_n^m(C_j^{\lambda+1}, \text{FF}(\omega_i^\lambda)) = \sum_{s=n}^{p} \sum_{t=-s}^{s} R_{s-n}^t(C_i^\lambda C_j^{\lambda+1}) \tilde{L}_s^t(C_i^\lambda, \text{FF}(\omega_i^\lambda))
\] (6)

\[
v_\ell \approx \sum_{k \in \text{NF}(\ell)} V_{h}[\ell, k] w_k + \sum_{n=0}^{p} \sum_{m=-n}^{n} \int_{\tau_\ell} (|x|^n Y_{-m}^n(\hat{x})) \, ds_x \sum_{\tilde{k} \in \text{FF}(\ell)} \frac{W_k}{4\pi} \int_{\tau_k} \frac{Y_{n}^{m}(\hat{y})}{|y|^{n+1}} \, ds_y
\]

\[= L_n^m(\ell)\]
Demo of the FMM Algorithm

Ramani Duraiswami: http://www.umiacs.umd.edu/~ramani/fmm/
Fast Boundary Element Methods

Analysis of FMM: [GO, Steinbach, Wendland 2006]

- preserves essential properties of the boundary integral operators
- control of the error of FMM
- almost linear complexity ($O(N \log^{d-1} N)$)
- can be extended to volume potentials [GO, Steinbach, Urthaler 2010]
Fast Boundary Element Methods

Analysis of FMM: [GO, Steinbach, Wendland 2006]
- preserves essential properties of the boundary integral operators
- control of the error of FMM
- almost linear complexity ($O(N \log^{d-1} N)$)
- can be extended to volume potentials [GO, Steinbach, Urthaler 2010]

Preconditioning:
- operator of opposite order [Steinbach, Wendland 1998; GO, Steinbach 2003]
- artificial multi-level preconditioner [Steinbach 2003]
- algebraic multigrid method for FMM [GO 2008]
Outline

Model Problem and Boundary Element Method

Motivation of Low Rank Approximation

Clustering and Admissibility Condition

Fast Multipole Method

Numerical Examples
Industrial Application: Controllable Reactor

with ABB, EU project CASOPT

Reactor coil

Control coils
Linear Elastostatics

- Fast multipole BEM extendable to linear elastostatics
 \[\text{GO, Steinbach, Wendland 2005; GO, Steinbach, Urthaler 2010}\]
Linear Elastostatics

- Fast multipole BEM extendable to linear elastostatics
 [GO, Steinbach, Wendland 2005; GO, Steinbach, Urthaler 2010]
Linear Elasticity: Newton Potentials

- Mixed boundary conditions, $\Omega = (0, 1)^3$
- Indirect computation of $N_1 f$
- $u(x) = (x_1^3, x_2^3, x_3^3)^T$

<table>
<thead>
<tr>
<th>N_Γ</th>
<th>N_Ω</th>
<th>$N_0 f$</th>
<th>Setup</th>
<th>Solve</th>
<th>it</th>
</tr>
</thead>
<tbody>
<tr>
<td>384</td>
<td>1536</td>
<td>8</td>
<td>22</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td>1536</td>
<td>12288</td>
<td>249</td>
<td>462</td>
<td>14</td>
<td>39</td>
</tr>
<tr>
<td>6144</td>
<td>98304</td>
<td>8032</td>
<td>11509</td>
<td>352</td>
<td>43</td>
</tr>
<tr>
<td>24576</td>
<td>786432</td>
<td>(71 h)</td>
<td>87 h</td>
<td>1.8 h</td>
<td>50</td>
</tr>
<tr>
<td>98304</td>
<td>6291456</td>
<td>(95 d)</td>
<td>105 d</td>
<td>1.3 d</td>
<td>53</td>
</tr>
</tbody>
</table>
Linear Elastostatics: Newton Potentials

- mixed boundary conditions, $\Omega = (0, 1)^3$
- indirect computation of $N_1 f$
- $u(x) = (x_1^3, x_2^3, x_3^3)^\top$

<table>
<thead>
<tr>
<th>N_Γ</th>
<th>N_Ω</th>
<th>$N_0 f$</th>
<th>Setup</th>
<th>Solve</th>
<th>it</th>
</tr>
</thead>
<tbody>
<tr>
<td>384</td>
<td>1536</td>
<td>8</td>
<td>22</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>16</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>1536</td>
<td>12288</td>
<td>249</td>
<td>462</td>
<td>14</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>91</td>
<td>21</td>
<td>39</td>
</tr>
<tr>
<td>6144</td>
<td>98304</td>
<td>8032</td>
<td>11509</td>
<td>352</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>102</td>
<td>440</td>
<td>117</td>
<td>43</td>
</tr>
<tr>
<td>24576</td>
<td>786432</td>
<td>(71 h)</td>
<td>(87 h)</td>
<td>(1.8 h)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>631</td>
<td>2132</td>
<td>890</td>
<td></td>
</tr>
<tr>
<td>98304</td>
<td>6291456</td>
<td>(95 d)</td>
<td>(105 d)</td>
<td>(1.3 d)</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3935</td>
<td>9829</td>
<td>4064</td>
<td></td>
</tr>
</tbody>
</table>
Elastostatics: Hinge

<table>
<thead>
<tr>
<th>N_Γ</th>
<th>N_Ω</th>
<th>N_0f</th>
<th>Setup</th>
<th>Solve</th>
<th>it</th>
<th>N_0f</th>
<th>Setup</th>
<th>Solve</th>
</tr>
</thead>
<tbody>
<tr>
<td>896</td>
<td>1179</td>
<td>7</td>
<td>67</td>
<td>38</td>
<td>109</td>
<td>21</td>
<td>119</td>
<td>19</td>
</tr>
<tr>
<td>3584</td>
<td>9432</td>
<td>78</td>
<td>328</td>
<td>286</td>
<td>109</td>
<td>640</td>
<td>1331</td>
<td>285</td>
</tr>
<tr>
<td>14336</td>
<td>75456</td>
<td>694</td>
<td>1997</td>
<td>2110</td>
<td>114</td>
<td>(5.7h)</td>
<td>(8.7h)</td>
<td>(4769)</td>
</tr>
<tr>
<td>57344</td>
<td>603648</td>
<td>4556</td>
<td>9114</td>
<td>11506</td>
<td>138</td>
<td>(7.6d)</td>
<td>(9.6d)</td>
<td>(25.7h)</td>
</tr>
</tbody>
</table>
Vibration Analysis of Ships

[Wilken, GO, Cabos, Steinbach 2009; Brunner, GO, Junge, Steinbach, Gaul 2010; GO, Steinbach 2011]

- fluid structure interaction
- FEM BEM coupling
- ship in sea (with A. von Graefe, GL)
Some References

G. Of, O. Steinbach and P. Urthaler

S. Rjasanow and O. Steinbach
The Fast Solution of Boundary Integral Equations.

G. Of, O. Steinbach and W. L. Wendland
The fast multipole method for the symmetric boundary integral formulation.

G. Of, O. Steinbach and W. L. Wendland
Applications of a fast multipole Galerkin boundary element method in linear elastostatics.

L. Greengard and V. Rokhlin
A fast algorithm for particle simulations.