
Front-end frameworky,
etc.

Basics of Information Technology
Ing. Michal Radecký, Ph.D. MBA

Frond-end frameworks

They offer tools for effective implementation of web design

It is based on CSS frameworks (e.g. Blueprint – grid, typography, form
elements)

They mainly bring …
• Supporting responsibility and cross-platform

• Creating layouts

• Working with typography

• User Controls

• Extension libraries

Bootstrap, Tailwind, Foundation, Skeleton, etc.

Foundation

• http://foundation.zurb.com/

• Version 6, MIT licence, approx. 150 kB

• Preprocesor SASS, Vanilla JS (ES5)

• Modular architecture (custom build) vč. JS components

• Comprehensive and flexible

http://foundation.zurb.com/
http://foundation.zurb.com/

Bootstrap

• http://getbootstrap.com/

• Version 5, MIT licence, approx. 250 kB

• Preprocesor SASS from 4, Vanilla JS (ES6)

• Semi-modular (code-level)

• Large community, many components, templates, etc.

• Easy and flexible integration

http://getbootstrap.com/
http://getbootstrap.com/

Tailwind

• http://tailwindcss.com/

• Version 4, MIT licence, approx. 300 kB (dynamic)

• It does not work with components, but with "utilities" – a set of classes
replacing direct CSS creation

• High flexibility and popularity

• Tailwind Plus (UI) – modular and component extension inc. JS

http://tailwindcss.com/
http://tailwindcss.com/

Why Use Styling Frameworks

Efficiency and scope of application for a particular project should always be considered

Advantages
• Rapid development within a "standardized" environment
• Native CSS preprocessor support
• Implementation of most commonly used elements (also with regard to cross-platform)
• Small entry barrier with spectacular results
• Optimization thanks to composite construction
• Support for customization and themes
• Support in development tools (extensions in VSCode) and web frameworks
• Wide deployment licensing rules (MIT)

Disadvantages
• From a certain point of view, too complex
• Link to a number of other tools and libraries with the need to interconnect, manage, etc.

(node.js, Grunt, Rails, Compass, etc.)

Bootstrap - grid

https://www.w3schools.com/bootstrap5/index.php

• The basis of the page layout is the grid system (12 cells)

• Container (Responsive/Fluid) - Row – Cell/Columns

• Division by resolution – otherwise under each other, possibility of combination

https://www.w3schools.com/bootstrap5/index.php

Bootstrap – Styling the appearance

Native styling – direct styling of some elements (h1-6, attr, blockquote, code, ...)

Component styling – use existing components (.btn) first

Styling utilities – primarily use utilities (.text-center) for customization

Setting variables – setting CSS variables to customize the final appearance (--bs-link-color)

User styling - customize existing styling (custom class)

Never interfere with the original sources of Boostrap, but create your own in "rewrite" mode!

• The basic principle is to "not style directly", but everything using predefined styles. Basically, (for
the main level) there is no need to create your own styling at all.

• The HTML structure (modal dialog) must also correspond to this

• For more complex interaction, an API built on JS is used

• Thanks to the grid, simple implementation of the "mobile-first" approach

Bootstrap – Components

Selection of consistent visual elements (including functionality) only thanks to the combination of HTML and
the set CLASS, příp. JS.

• Structural elements - cavbar, header, footer, grid, container, layout utilities

• Content elements - cards, list groups, tables, alerts, badges, text utilities

• Form elements - inputs, selects, toggles, sliders, floating labels, validace, stavy

• Interactive Elements (JS) – modal, tooltip, accordion, carousel

No need to write JS, just data attributes (data-bs-*)

Bootstrap – interaction

It uses a DOM-driven approach – everything is defined in HTML, using attribute data. These are searched for
and activated by the corresponding JS when Bootstrap is loaded. It is still possible to add your own JS
implementation (events, etc.) incl. Bootstrap API.

Data attributes allow

• activate components

• change status

• manage interactions

At the same time, Bootstrap uses ARIA attributes
(aria-expanded, aria-controls, role=)
to ensure full accessibility and proper behaviour
for readers and assistive technologies.

Bootstrap – Plugins & Themes

In addition to native components, it is also possible to use third-party extensions or your own

• Material Design - https://mdbootstrap.com/

• Pixel UI Kit - https://github.com/themesberg/pixel-bootstrap-ui-kit

• Telerik - https://www.telerik.com/design-system/docs/themes/kendo-themes/bootstrap

Boostrap versions are not compatible, so it is always necessary to take versions into account!

In addition to component packages, it is also possible to implement complex templates that are focused on
specific visual modifications and specific functionality

• AdminKit - https://adminkit.io

• AyroUI - https://ayroui.com

• CoreUI - https://coreui.io/product/free-bootstrap-admin-template

Expansion packages can be free (MIT, General Public License) or commercial.

https://mdbootstrap.com/
https://github.com/themesberg/pixel-bootstrap-ui-kit
https://github.com/themesberg/pixel-bootstrap-ui-kit
https://github.com/themesberg/pixel-bootstrap-ui-kit
https://github.com/themesberg/pixel-bootstrap-ui-kit
https://github.com/themesberg/pixel-bootstrap-ui-kit
https://github.com/themesberg/pixel-bootstrap-ui-kit
https://github.com/themesberg/pixel-bootstrap-ui-kit
https://www.telerik.com/design-system/docs/themes/kendo-themes/bootstrap
https://www.telerik.com/design-system/docs/themes/kendo-themes/bootstrap
https://www.telerik.com/design-system/docs/themes/kendo-themes/bootstrap
https://www.telerik.com/design-system/docs/themes/kendo-themes/bootstrap
https://www.telerik.com/design-system/docs/themes/kendo-themes/bootstrap
https://adminkit.io/
https://ayroui.com/
https://coreui.io/product/free-bootstrap-admin-template
https://coreui.io/product/free-bootstrap-admin-template
https://coreui.io/product/free-bootstrap-admin-template
https://coreui.io/product/free-bootstrap-admin-template
https://coreui.io/product/free-bootstrap-admin-template
https://coreui.io/product/free-bootstrap-admin-template
https://coreui.io/product/free-bootstrap-admin-template

Tailwind – Basic concept

Does not include components - Utility-first CSS framework - styling using small, reusable classes, where each
class has one responsibility (eg. p-4, text-center, bg-blue-500)

• Composition - combining utilities creates more complex styling and appearance

• Mobile-first - classes can be
targeted by
breakpoints (sm:, md:, lg:…)

• Status variants - hover, focus,
active, disabled
(hover:bg-blue-700)

• Dark mode - dark: variants

• JIT engine - generates only
utilities used – minimal
resulting CSS

Tailwind – Components

Tailwind is CSS only. You can extend components or interactive elements by using libraries.

• Tailwind Plus - https://tailwindcss.com/plus

• DaisyUI - https://daisyui.com

• Flowbite - https://flowbite.com

It is possible to customize
the appearance,
by setting CSS variables
or work with templates (@theme)

https://tailwindcss.com/plus
https://daisyui.com/
https://flowbite.com/

Summary

• Frontend CSS frameworks have their justification and can significantly increase the efficiency and final
effect of web applications.

• Many things can be solved without knowledge of CSS or JS, but for complex applications, the link to other
web technologies is a necessity.

• Using frameworks at a deeper level means using the CSS preprocessor and other integration tools.

• The key is the choice of a specific framework and related options.

https://metadrop.net/en/articles/tailwind-css-vs-bootstrap

Packaging tools

• Tools for installing, managing and updating libraries, frameworks and dependencies. Modern projects have
hundreds of dependencies – manual management is practically impossible.

• They allow you to connect the project with external packages: CSS frameworks, JS libraries, utilities

• They ensure consistency of versions according to package.json - elimination of manual downloading of ZIP
archives, management is done automatically

• Automate build processes (SCSS, TypeScript, minification, etc.)
– CI/CD (Continuous Integration/Continuous Delivery/Deployment)

Packaging tools – How they work

Each package is placed in the registry (private/public, adding to the registry requires a publishing and
approval process)
• NPM registry – largest, web frameworks, tools (npm, yarn, pnpm - registry.npmjs.org)
• PyPI – central registry for Python packages(pip)
• RubyGems – packages for Ruby(gems)
• NuGet registry - .NET platform (nuget)
• GitHub, GitLab, etc.

Package integration
1. The package is searched for by name (version) in the registry (npm install bootstrap)
2. The package metadata (versions, dependencies, configurations, ...) is obtained and written to the lock

file (package-lock.json)
3. Download the package source files (node_modules)
4. Dependencies are resolved – the package needs additional packages, dependecy tree/graph – lock

files
5. Integrity and signatures are checked for changes compared to the register
6. It is also possible to run "post-installation" scripts, e.g. for compilation or build

Packaging tools – package.json

• This is the project manifest (npm/yarn/pnpm).

• It defines information about the project, dependencies, scripts, build processes, and metadata.

• Complex management and evaluation issues
versions – lock file maintains state

• It may also contain

• Configure the project environment

• Configuring specific packages

• Data for package publication

• Support for script definition and execution (automation)
npm run release
- lint, test, build, deploy

Packaging tools

NPM, Yarn, Ppnpm
• Very similar principles

• Different principles of working
with cache (node_modules)

• Speed differences, API

• They enable both local and global
installation

https://metadrop.net/en/articles/tailwind-css-vs-bootstrap

Packaging tools

Advantages

• Automatic updates

• Reduce the risk of version conflicts and dependency control

• Faster development thanks to scripts (npm run build)

• Links to other advanced development mechanisms
• Build tools– webpack, vite, esbuild, etc.

• Transpilers – TypeScript, SASS, etc.

• Frameworks – Angular, React, etc.

• Security mechanisms for addictions

• Easy project sharing (no package content) and project reproducibility in different environments

Disadvantages

• Possible dependence on the tools used and their internal functioning

• More complex ecosystem and project management

• Great dynamics of package versions and their problematic tracking/control

• More complex configuration in relation to downstream tools and environments

	Default Section
	Snímek 0: Front-end frameworky, etc.
	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18

