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Abstract

A decomposition of a given graph U is a set of subgraphs such that each edge
of U appears in exactly one subgraph of the set. The decomposition is called
a factorization if each of the subgraphs is a factor of U. A factor of U is each
connected subgraph containing all vertices of U.

We investigate factorizations of complete graphs Ky, into isomorphic spanning
trees. Particularly, we show that for every integer d, such that 3 < d < 4n — 1,
there exists a spanning tree with diameter d that factorizes Ky,. The question of
existence of a factorization of Ky, .5 into isomorphic spanning trees with a given
diameter d was positively answered by D. Froncek [6]. Further, in this thesis we
examine factorizations of K4, into caterpillars with diameter 4. Presented results
together with the results of P. Eldergill [4], D. Froncek [7], and M. Kubesa [16]
give a complete classification of caterpillars with diameter 4 that factorize Kj,.

The methods for complete graph decompositions are based mainly on graph
labelings. In general, a labeling of a graph is an assignment of numbers (usu-
ally nonnegative integers) to vertices, or edges, or both. For the purpose of
decompositions of K, we introduce two methods based on new types of vertex
labelings. First, a fixing labeling and a 2n-cyclic labeling which allow decompo-
sitions of Ks,, where k£ is odd and n,k > 1. We show that if a graph G with
2nk — 1 edges has one of these labelings, then there exists a G-decomposition of
Ky, into nk copies of G. Second, a swapping labeling which is used for decom-
positions of Ky,, where n is any positive integer. A swapping labeling of a graph
G with 4n — 1 edges guarantees the existence of a G-decomposition of Ky, into
2n copies of G.

Fixing labelings and swapping labelings are further generalizations or mod-
ifications of the blended p-labeling introduced by D. Fronéek [6] as a tool for
spanning tree factorizations of Ky, .
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Chapter 1
Introduction

All graphs we deal with are finite and simple. Undefined graph theory terms can
be found in any introductory graph theory textbook. We refer the reader for
instance to [26]. As isomorphic decompositions of complete graphs are the main

topic of this thesis we state the definition of a graph decomposition first.

Definition 1.1 Let U be a graph on n vertices. A decomposition of the graph
U is a family of pairwise edge disjoint subgraphs D = {Gy, G1,...,Gs} such that
every edge of U belongs to a member of D. If each subgraph G, is isomorphic to
a graph G we speak about G-decomposition of U. If G has exactly n vertices and
none of them 1is isolated, then G is a factor of U and such a G-decomposition is
called a G-factorization. The decomposition is cyclic if there exists an ordering
(x1,22,...,x,) of the vertices of U and isomorphisms ¢, : Gy — G,, r =
0,1,2,...,s, such that ¢.(x;) = wiy, for each i = 1,2,...,n. Subscripts are
taken modulo n.

The topic of graph decompositions is very wide with many aspects and was
intensively studied over past 4 decades. A lot of research was inspired by Ringel’s
conjecture from 1963 [23]. Ringel conjectured that the complete graph Ko, can
be decomposed into 2n + 1 copies of any tree T with n edges. Decompositions of
complete graphs and complete bipartite graphs received special attention. How-
ever, most of the papers deal with decompositions into smaller isomorphic graphs
or not necessarily isomorphic factorizations into factors with given diameter (see
for instance [1, 2, 22]). The area of isomorphic spanning tree factorizations of
complete graphs that are of our main interest remained almost unexplored. It
is a part of graph theory folklore that there exists a factorization of K, into

Hamiltonian paths Ps,. It is also easy to observe that a cyclic factorization of
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K5, into symmetric double stars is possible. (A symmetric double star is a graph
obtained by connecting the central vertices of two stars K ,_1 by an edge.) Until
recently, almost nothing was published about other classes of spanning trees.

The methods for decompositions of complete graphs are mainly based on
graph labelings. Typically a vertex labeling of a graph is a mapping which as-
signs distinct nonnegative integers to the vertices of a graph. An edge label can
be induced from the labels of the endvertices. There are many different ways how
to define such an edge label. However, for the purpose of a graph decomposition
the edge label is usually defined naturally as the “length” of the edge. An ex-
tensive survey of the results published on the topic of graph labelings is given by
Gallian in [10].

The most popular labelings, which are used as tools for isomorphic decompo-
sitions of complete graphs, are p-labelings and graceful labelings introduced by
A. Rosa [25] in 1967. The existence of a p-labeling or a graceful labeling of a
graph G with n edges guarantees a cyclic G-decomposition of the complete graph
Koy, 11 into 2n + 1 copies of G, as was proved by A. Rosa [25]. Especially graceful
labelings become very popular because of the famous Graceful Tree Conjecture by
Kotzig and Ringel from 1964 [26]. The conjecture is that every tree has a graceful
labeling. Since then many classes of trees were investigated to have a graceful
labeling but the conjecture is open till today. The first wide family of trees that
was proved to have the labeling are caterpillars (Rosa [25]). A caterpillaris a tree
such that a path is obtained after removal of all its endvertices. The definition
can be slightly changed to obtain other class of trees called lobsters. A lobster
is a tree such that the removal of all its endvertices leaves a caterpillar. There
are some partial results on the gracefulness of lobsters but the general result is
not known. All trees with at most four endvertices were proved to be graceful
by Huang, Kotzig and Rosa [13]. For the survey of the results on trees with the
graceful labeling we recommend again [10].

Graceful or p-labelings were often used to construct new types of labelings,
which in some sense generalize their properties. Among them are: p-symmetric
graceful labelings or symmetric graceful labelings introduced in 1997 by Eldergill
[4]. Eldergill gave a necessary and sufficient condition for the existence of a
cyclic factorization of K, into symmetric spanning trees. By a symmetric tree

we understand a tree with an automorphism ¢ and an edge (z,y) such that

Y(z) =y and P(y) = z.
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Methods for factorizations of Ky, o into a wider class of trees are due to
D. Froncek [5, 6], and are based on blended p-labelings or flexible ¢-labelings.
The only methods known till recently for factorizations of Ky, are Eldergill’s
symmetric labelings and switching blended labeling introduced by D. Fronéek and
M. Kubesa in [9]. Both of them require certain strong types of automorphisms
which reduce the class of trees permissible for factorizations.

The general problem of finding a factorization for a given spanning tree is
far from being solved. Using the methods mentioned above some special classes
of spanning trees for factorizations of Ky, were described [5, 17], and a con-
struction of a spanning tree of any diameter that factorizes Ky, was given by
D. Froncek [6]. The most general existing result is a classification of caterpillars
on 4n + 2 vertices with diameter 4 which is due to D. Fronéek [7] and M. Kubesa
[17, 16]. They achieved a significant progress also in classification of caterpillars
of diameter 5, but the classification is not complete yet [16, 18, 19, 20, 21]. The
constructions of labelings of caterpillars with diameter 5 become very technical
but not a trivial problem, since many subclasses need to be considered separately.

There are two other problems closely related to complete graph decomposi-
tions, namely problems on graph coverings or packing of graphs.

If Definition 1.1 of a decomposition of a graph U is relaxed so that the sub-
graphs Gy, Gy, ...,Gs do not have to be edge disjoint we obtain a covering of
the graph U. An orthogonal double cover (ODC) of the complete graph K, is
a family of subgraphs G, for r = 1,2,...,n, with n — 1 edges each, such that
every edge of K, is covered precisely twice and any two subgraphs intersect in
exactly one edge. The problems on ODCs of complete graphs have been inten-
sively studied over past 25 years. For a survey of the topic see [11]. Especially
the methods used for ODCs of K, by trees are very similar to those used for
spanning tree decompositions. The main tool are so called orthogonal labelings
defined in [12], which can be considered as graceful type labelings. Again several
classes of trees were investigated for the existence of ODCs and the results led
Gronau, Mullin and Rosa [12] to the conjecture that for any tree 7 on n > 2
vertices different from the path on 4 vertices there exists an ODC of K, by T.
The conjecture is of course open, and the difficulty of the existence problem of
ODCs for trees in general can be anticipated if we consider that even for paths
the question remains unsolved.

Alternatively, Definition 1.1 of a decomposition D = {Gy,Gy,...,Gs} of a
graph U can be modified so that not every edge of U has to belong to a member
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of D. Then we speak about packing of Gy, G4, ...,G, into the graph U. Many
papers on packing problems for complete graphs were motivated by well known
conjecture of Bollobds and Eldridge. They conjectured that there exists a packing
of Go,G1,...,Gs into K, if |[E(G,)| < n—s—1, where r = 0,1,...,s. There
are results concerning special cases of the conjecture (for a survey see [27]). For
instance in [3] Brandt and Wozniak consider packing of k£ copies of the same
tree into K, for k = |%]. As the main tool to find a packing they use so called
distinct length labelings, which also have their origin in Rosa’s graceful or p-
labelings. Because of the similarity of used methods we believe that some of the
ideas of the methods for spanning tree decompositions introduced further could
be used or modified to answer some questions on ODCs by trees or packing of
trees into K, as well.

The aim of this thesis is to develop methods suitable for factorizations of Ky,
into spanning trees which would enable to achieve complementary results to those
known for Ky, s or allow further investigation on spanning tree factorizations of
Ky, in general. Our methods are based on new types of labelings, namely a
2n-cyclic labeling, a fixing labeling, and a swapping labeling. First two of them
are further generalizations or extensions of the blended p-labeling introduced by
D. Froncek [6] and can be used for decomposition of Ko, where n,k > 1 and k
is odd. It means the case when the number of vertices of a complete graph is a
power of two is not covered. A swapping labeling can be used for decompositions
of K,,, where n is a positive integer. In combination the new methods enabled
us to find constructions of spanning trees with given diameter d for factorizations
of Ky,, where 3 < d < 4n — 1, and especially to complete the classification of
caterpillars with diameter 4 for spanning tree factorization of any Ks,. Most of
the results were submitted for publication in [8, 14, 15].



Chapter 2
Known methods

Here we give an overview of previously known methods and labelings, which form

the base for our own approach introduced in following chapters.

2.1 Basic counting

An obvious necessary condition for the existence of a G-decomposition of K, is
that the number of edges of G' divides the number of edges of K,,. The number
of edges of K, is

B = (3) =2

Since the number of edges of a spanning tree of K, is n — 1, it follows that

we consider decompositions of K, into § copies of a graph with n — 1 edges.
Obviously, such a decomposition of K, is impossible when the number of vertices
n is odd. Therefore we deal only with complete graphs K5, with an even number
of vertices. Since the number of edges of a spanning tree on 2n vertices is 2n — 1
we can in general investigate isomorphic decompositions of Ky, into n copies of
a graph G with 2n — 1 edges.

Another easily observed necessary condition for the existence of the spanning
tree factorization of K5, is that the largest degree of a vertex of a spanning tree
is at most n. This condition is called the Degree Condition in [17]. Proof is very

simple but for the completeness we state our own version here.

Lemma 2.1 (Degree Condition) Let T be a tree on 2n vertices such that there
is a T-factorization of Ka,. Then for each vertex v in T is deg(v) < n.
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Proof.  There are n factors 1y,71,...,7,_1 all isomorphic to 7" in Ksy,. Let u
be a vertex of Ky,, and by deg;(u) we denote the degree of u in the factor T;,
where 1 =0,1,...,n — 1. Then

n—1
deg(u) = Zdegi(u), and
i=0

n—-1 = z_:degi(u). (2.1)

Without loss of generality we assume that deg,(u) = A(T). Since in any other
factor the degree of u is at least one, the following holds:

A(T) + nZdegi(u) > A(T)+n-1 (2.2)

From (2.1) and (2.2) together we obtain
n—1 > A(T)+n—1.
Therefore is
AT) < n,
which implies Degree Condition,
deg(v) < n for any v e T.

2.2 Basic labelings

As we already mentioned, two fundamental types of vertex labelings are the p-
labeling and the graceful labeling (also called p or f-valuations) defined by A.

Rosa.

Definition 2.2 Let G be a graph with n edges and the vertez set V(G) and let
A be an injection A : V(G) — S where S is a subset of the set {0,1,2,...,2n}.
The length of an edge (x,y) is defined as ¢(x,y) = min{|\(z) — A(y)|,2n + 1 —
IA(z) — A(y)|}. If the set of all lengths of n edges is equal to {1,2,...,n} and
S C{0,1,2,...,2n}, then X is a p-labeling; if S C {0,1,2,...,n} instead, then
A s a graceful labeling.

Every graceful labeling is indeed also a p-labeling, and a graph which admits
a graceful labeling is called graceful. The following theorem shows how these

labelings are related to decompositions of complete graphs.
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Theorem 2.3 (Rosa, 1967) A cyclic decomposition of the complete graph Kop 1
wnto 2n+ 1 isomorphic copies of a graph G with n edges exists if and only if there
exists a p-labeling of a graph G.

The idea of the proof is the following. We assign the elements of the additive
group Zo,.1 to the vertices of Ky,,1. The lengths of the edges of Ky, are
assigned as in the definition of the p-labeling. Then we obtain 2n + 1 edges of
each length 7 for 4+ = 1,2,...,n. The first copy of G in Ky, ,; can be found by
unifying the vertices of G and Ky, ; which have the same label. Since in G there
is exactly one edge of each length, by rotating G' 2n-times we obtain a cyclic

G-decomposition of Ky, ;.

Figure 2.1: Cyclic decomposition of Kg into 9 copies of T with graceful labeling.

Among labelings that form the base for our own methods belongs the labeling
defined by D. Fronéek in [6]. This labeling is a generalization of the bigraceful
labeling introduced earlier by Ringel, Llado, and Serra [24].

Definition 2.4 Let G be a bipartite graph with n edges and the vertex set
V(G) = Vo UVi. Let X\ be an injection X : V; — S;, where S; is a subset of the
set {0;,1;,...,(n—1);}, i =0,1. The length of an edge (zo,y1) for zo € Vy and
y1 € Vi with Mxg) = ag and A(yy) = by is defined as £y (z9,y1) = b — a (modn).
If the set of all lengths of n edges is equal to {0,1,2,...,n — 1}, then X\ is a
bipartite p-labeling.

As shown in [6], the existence of a bipartite p-labeling of a graph G with n
edges guarantees a bi-cyclic decomposition of the bipartite complete graph K, ,

into n isomorphic copies of G. An example is shown in Figure 2.2.
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Vo Vi
(o—0)
1p0 ) o1,
200 24
30 31
40 o 41

Figure 2.2: Bipartite p-labeling of G with 5 edges.

2.3 Symmetric labelings

Here we state the notions related to decomposition of Ky, into symmetric graphs
introduced by Eldergill [4]. To simplify our notation we will from now on occa-
sionally unify a vertex with its label. It means that rather than “the vertex z

such that A(z) = 4", we will say just “the vertex 7”.

Definition 2.5 A connected graph G with an edge (x,y) (called a bridge) is
symmetric if there is an automorphism ¢ of G such that ¥(z) =y and ¥(y) = z.
The isomorphic components of G — (z,y) are called banks and denoted by H, H',
respectively. A labeling of a symmetric graph G with 2n+1 edges and banks H, H'
is p-symmetric graceful if H has a p-labeling and (i) = i +n (mod 2n) for each
vertex i in H. A labeling of a symmetric graph G with 2n — 1 edges is symmetric
graceful if it is p-symmetric graceful and the bank H is moreover graceful. A graph
which admits a p-symmetric graceful labeling or a symmetric graceful labeling s

called p-symmetric graceful or a symmetric graceful, respectively.

Eldergill proved the following theorem for symmetric trees. Since the as-
sumption that the graph must be acyclic was never used, the theorem is true for
symmetric graphs in general.

Theorem 2.6 (Eldergill) Let G be a symmetric graph with 2n — 1 edges. Then
there exists a cyclic G-decomposition of Ko, if and only if G is p-symmetric
graceful.

One can easily observe how the construction of a p-symmetric graceful labeling
is based on the p-labeling or graceful labeling. In a graph with n—1 edges that has
either a graceful or a p-labeling there is only one edge of each length 1,2,... n—1,

while in a graph with 2n — 1 edges which is symmetric graceful or p-symmetric
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graceful there are two edges of each length 1,2,...,n — 1 except for just one
edge of the maximum length n. Since any graceful graph with n — 1 edges yields
a symmetric graceful graph with 2n — 1 edges, one can find an infinite class of
symmetric graceful graphs whenever an infinite class of graceful graphs is known.
Again an example is given in Figure 2.3.

Eldergill’s method is too restrictive, allowing decompositions only into sym-
metric graphs. For instance symmetricity restrict decompositions only to graphs
with an odd diameter. To answer the question about factorizations into spanning

trees with more general structure a more powerful decomposition method was

needed.
0
1 \5 copies of G
8 2
7 3

Figure 2.3: Symmetric graceful labeling of G with 9 edges.

2.4 Blended type labelings

To find a more general method, D. Fronéek defined in [6] a blended p-labeling. As
one of our new labelings used for decompositions of Ky, is just a straightforward
extension of the blended p-labeling, we state its definition here.
Definition 2.7 Let G be a graph with 4n+1 edges, V(G) = VoUVy, VonV; =0,
and |Vo| = [Vi| = 2n+ 1. Let X be an injection, \ : V; — {0;,1;,...,(2n);},
1=0,1.

The pure length of an edge (x;,y;) with x;,y; € V;, where i € {0,1}, for
Az;) = a; and A(y;) = b; is defined as

Em(fvl,yl) = min{|a - b|, 2n+1— |a — b|}

The mixed length of an edge (xg,y1) with zo € Vo, y1 € Vi, for A(zy) = ag
and A(y1) = by, is defined as

lo1(zo,y1) = b—a mod (2n + 1).
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Then G has a blended p-labeling (briefly blended labeling) if
(1) {lii(ziyyi)|(zs,v:) € E(G)} ={1,2,...,n}fori =0,1
(2) {lo1(z0,y1)|(x0,31) € E(G)} = {0,1,...,2n}.

The edges (x;, y;) for i = 0,1 with the pure length ¢;; are called pure edges and
the edges (xo,y1) with the mixed length £y, are called mized edges. A graph G
with a blended labeling can be split into three subgraphs as follows. Subgraphs
of G induced on vertices of V; and V; are denoted by H,, H; respectively, and
Hy; denotes a bipartite subgraph with partite sets V5, Vi. If a blended labeling
is restricted to these subgraphs, the labelings of Hy and H; can be viewed as the
usual p-labelings in case that the subscripts of the labels are omitted. A p-labeling
guarantees a cyclic decomposition of the complete graph Ks,,; into n copies of
Hy or H,. The labeling of the subgraph Hy; is then a bipartite p-labeling which
allows a bi-cyclic decomposition of the complete bipartite graph Ko, 1125+1 into

2n + 1 isomorphic copies of Hy;. See an example in Figure 2.4.

Vo Vi
0o o 0y
Q 1o 11 Q
2 2
H, ° Yo
30 31
4y Hy, 4y

Figure 2.4: Blended p-labeling of a tree on 10 wvertices.

Blended labelings are suitable for decompositions of Ky, 1.

Theorem 2.8 (Froncek) Let G with 4n + 1 edges have a blended p-labeling.
Then there exists a bi-cyclic decomposition of Kynio into 2n+ 1 copies of G.

D. Froncek gives constructions of several special infinite classes of non-
symmetric trees that admit blended p-labelings. Also based on blended labelings
he found factorizations of Ky, into spanning trees of any possible diameter [6].

However, a blended p-labeling cannot be used for decompositions of com-
plete graphs with 4n vertices. A cyclic decomposition in each of the partite
sets separately as in the method based on the blended labeling is not possible
when decomposing K,,. By splitting vertices of Ky, into two equal partite sets
Vi,i = 0,1, the number of vertices in a partite set is even, namely |V;| = 2n, and
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a cyclic decomposition of Ks, into 2n copies of a graph H; does not exists. It is
so because the basic condition that the number of edges of Ky, is divisible by the
number of copies of H; is not satisfied.

The known method which allows decomposition of Ky, into other than sym-
metric graphs is based on a switching blended labeling. This labeling is a mod-
ification of the blended labeling and was defined by D. Fron¢ek and M. Kubesa
in [9].

Definition 2.9 Let T be a tree on 4n vertices such that V(T) = VoUVy, VonNVy =
0 with |Vy| = |Vi| = 2n. Let X be an injection, X : V; — {04, 14, 2;,..., (2n—1);},
i =0,1. The pure length £;;, fori € {0,1} and the mized length Ly, of an edge are
defined as for the blended labeling. The tree T has a switching blended labeling
(or just switching labeling for short) if

(1) {oo(zo, yo)|(z0, %) € E(T)} ={1,2,...,n},
(2) {u(zy,y1)[(z1,51) € E(T)} ={1,2,...,n— 1},
(8) {lo1(xo,v1)|(z0, 1) € E(T)} ={0,1,2,...,2n — 1}, and

(4) there exists an automorphism ¢ of T — (xg, (x + n)o), where (xq, (x + n)o)
is the unique edge of the pure length n in T, such that p(xo) = y1 and
o((@ +n)o) = (y +n)y for some y1 € V4.

In [9] the following theorem is proved.

Theorem 2.10  (Fronc¢ek, Kubesa) Let T' be a tree with 4n vertices with a
switching blended labeling A. Then there is a T-factorization of Ky, into 2n
copies of T

Switching blended labeling is still too restrictive, since it requires certain
“strong” type of automorphism, which does not exist for some classes of trees. We
will show that trees with diameter 4 do not allow a switching blended labeling at
all. Therefore, we develop new techniques for decompositions of complete graphs
with an even number of vertices, especially those which allow us to consider more

general classes of spanning trees for factorizations of Ky,.
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Figure 2.5: Switching blended labeling of a tree on 8 vertices.
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Chapter 3
K9,k decompositions

The methods introduced in this chapter are suitable for isomorphic decomposi-
tions of complete graphs on 2nk vertices, where n, k are positive integers such
that n,k > 1 and k is odd. The methods are strongly based on Eldergill’s cyclic
decomposition of Ky, into symmetric graphs and at the same time they generalize
the properties of the blended labeling.

3.1 Notation and definitions

We introduce the notation using permutations, which will better suit our further
needs. A permutation m of a set A is a bijection 7 : A — A. It is a well known
fact that all permutations of a set A form a group under composition. By ¢ we will
denote the identity of a permutation group. By «,, we mean the cyclic permutation
on the set A = {0;,1;,2;,...,(n — 1);} defined as a,(a;) = (a + 1); (modn) for
any a; € A, where 7 is some integer.

Definition 3.1  Let G be a graph with a vertex labeling A, where X\ is an injection
from V(G) to A, and let ™ be a permutation on the set of labels A. We define
a permutation of G to be a copy of G with the vertex labeling A\, : V(G) — A
such that A\;(u) = m(A(u)) and denote it by w|G|. If the set of labels is A =
{0i,1;,24, ..., (n — 1);} and m = «, then ol [G] is called a rotation of G for any
r={1,2,...,n}.

Since we usually identify a vertex with its label we will talk about permuta-
tions of vertices rather than permutations of labels. By the permutation 7(a) of
a vertex a we mean the permutation of the label a assigned to the vertex x by a
labeling A(z) = a.

13



CHAPTER 3. Ky, DECOMPOSITIONS 14

Definition 3.2  Let U be a graph with the vertex set V(U) = Uy Vi, where
Vi =40;,14,2;,...,(k = 1);} fori=0,1,2,...,m — 1. Let © be a permutation
of the vertices of U such that m = momimy ... Tym_1, where m; is the permutation
of the set V; and m; = «, for each i = 0,1,2,...,m — 1. A G-decomposition
Go,G1,Gs,...,Gs of a graph U is called m-cyclic if G, = 7"[Gy] for any r =
1,2,...,s.

A cyclic decomposition is just a special case of the previous definition. It
means that a cyclic G-decomposition of Ky, with the vertex set Zs,, where Zy, is
the additive group modulo 2n, is obtained by permuting the vertices of Gy = G
by the cyclic permutation ag,. (In this case the subscript is omitted so that
A = Zy, and ag,(a) = a+ 1 (mod 2n), where a € Z,,.) Then each copy of the
graph G is a rotation G, = of,[Gy].

A bi-cyclic G-decomposition of K, , with partite sets V; = {0;,1;, ...,(n —
1);}, for i = 0,1 is obtained when the vertices of Gy = G are permuted by the
permutation m = mym; composed of two cyclic permutations m; = «,, for 1 =0, 1.

Further we will also make use of a slightly more general definition of the pure
length and the mixed length of an edge than is given in Definition 2.7 of the
blended labeling. We will allow the vertex set of a graph G to be split into
more than only two partite sets. Then the edges connecting vertices between
two different partite sets will be assigned the mixed lengths, while the edges
connecting vertices inside a partite set will be assigned the pure lengths.
Definition 3.3 Let G be a graph with the verter set V(G) = U,' Vi, where
Vil = k and V; N V; = 0 for i # j. Let X\ be an injection, A : V; —
{0i,1;,24,...,(k—=1);}, fori=0,1,...,m — 1.

The pure length of an edge (x;,y;) with z;,y; € V;, for Mx;) = a; and \(y;) =
b; is defined as

Lii(zs,y;) = min{|a — b|, k — |a — b|}.

The mixed length of an edge (z;,y;), where i < j, with x; € V; and y; € Vj,
for XM(z;) = a; and A(y;) = b; is defined as

Eij(xi; y]-) =b—a (IHOd k)
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3.2 Multicyclic decomposition of Ko,

Here we give a method of factorization of the complete graph on 2nk vertices into
n isomorphic “locally dense” factors. The method is based on cyclic factoriza-
tion of Ky, into symmetric trees. The idea of the method is the following: We
take a tree T on 2n vertices with a symmetric graceful labeling, which allows a
factorization of Ky,. Then we “blow up” this tree to construct a bigger graph U
on 2nk vertices (for any £ > 1), which is a connected factor of Ky, and show
that there is a U-factorization of Ky,.

In the next section we develop a method for further decomposition of a graph
U into k isomorphic copies of a graph G with 2nk — 1 edges (for £ odd). Finally,
by decomposing each copy of the graph U into k isomorphic copies of G we obtain
a G-decomposition of Ky, into nk isomorphic copies of G.

The construction of the graph U = U(T, s; k) can be described in two steps.
First we obtain the graph T[K}] by blowing up each vertex i of the tree T into
the set V; with k vertices and each edge (4, 7) of T into all k? edges between the
vertices of the partite sets V; and V;. Then we choose a vertex s in 7" and its
symmetric image 1(s) = s + n and add all edges into the corresponding partite
sets Vi and Vi,, so that we have two complete graphs K} in addition to the
edges of T[K}]. For convenience we use the following notation: Ky, denotes
the complete graph on the vertices of the vertex set V; and Ky;y, denotes the
complete bipartite graph on the vertices of the partite sets V;, V.

Definition 3.4 Let T be a symmetric tree on 2n, n > 1, vertices with a p-
symmetric graceful labeling. We define the graph U(T, s; k) with the underlying
tree T, where s is the label of any verter of T, 0 < s <n —1, and k is a positive
integer, to have the verter set

2n—1

VU, s:k) = | Vi, Vil =k, VinV; =0 for i # j,

i=0
and the edge set

EU(T,s;k) = {(z,y)|zeVi,yeV; A (i,j) € E(T)}
UA(z,y)lz,y € Vi} U {(z,9)|z,y € Viyn}

In other words, the graph U(T, s; k) is a union of 2n — 1 complete bipartite
graphs Ky; y; on the vertices of the partite sets V;,V; whenever i is adjacent to j
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in T and two complete graphs Ky, and Ky, , on the vertices of the vertex sets
Vs, Vsin for the chosen vertex with label s in 7. Each vertex set V; is of size k
and the subscript 7 is the label of the corresponding vertex in 7. It is easy to
observe that Ks,; can be decomposed into n isomorphic copies of U(T, s; k) (see
Figure 3.1) and we will give a proof of this fact.

One can also notice that similar approach can be used for other G-
decompositions of K,,. For instance, we can blow up any graph G for which
there exists a bi-cyclic G-decomposition of the complete graph Ky, into n copies
of G. Recall that bi-cyclic decompositions are based on blended labelings. Even
more general types of decomposition can be probably used—one must be just
careful about the choice of the two particular vertices in GG that correspond to
the complete graphs K in U.

Underlying tree T' = P, — o o 3

3 Pa, 0 3 Py, 0
P,-factorization of K, ]/I E

2 1 2 1

Graph U(Py, 1;3) @%@

v,i"

2

,‘
)
f
\

U(Py, 1; 3)-factorization of Ko

Figure 3.1: U(T, s; k)-factorization of Kopy.



CHAPTER 3. Ky, DECOMPOSITIONS 17

Lemma 3.5 Let T be a tree on 2n vertices with a p-symmetric graceful label-
ing. Then there is a U(T, s; k)-factorization of Konk into n isomorphic copies of
U(T,s;k) for any k > 1.

Proof. =~ When T is a p-symmetric graceful tree on 2n vertices, then accord-
ing to Theorem 2.6 there is a cyclic T-factorization of Ky, with the factors
To,T1,...,T,—1. By Definition 3.4, the graph U(T,s;k) with the underlying
tree T is a connected factor of Ky,;. From each copy of T' we obtain an
isomorphic copy of U(T,s;k). We may assume that 77 = T, and construct
the graph U(To, s; k). Every other factor 7, for r = 1,...,n — 1 is the rota-
tion of,[Tp]. Using the same permutation of, for the subscripts of the par-
tite sets of U(Ty, s; k) we get the remaining factors U(T,,s + r; k). Together
U(Ty,s; k), U(Ty,s+1;k),...,U(T, 1,s+n—1;k) form a U(T, s; k)-factorization
of Ko,x. We just need to convince ourselves that each edge of Ky, belongs to
exactly one copy of U(T, s; k).

The vertices of the complete graph Ks,; can be split into 2n partite sets V; for
1 =20,1,...,2n — 1 with k vertices in each of them. Then we can view the edge
set of Ky, as a union of the edge sets of n(2n — 1) complete bipartite graphs
Kv,v;, @ # j and 2n complete graphs Ky, on k vertices of each of the partite
sets V;.

Since there is a T-factorization of Ks,, each edge (7,j) of Ks, belongs to
exactly one factor 7,. By the definition of U(T,s;k), the edge (i,5) € E(T})
corresponds to the complete bipartite graph Kv; v, in U(1;,s + r; k). Then each
complete bipartite graph Ky;y, also belongs to exactly one factor of Koy, in
particular, to U(T}, s + 7; k).

Now we check the complete graphs Ky, fori =0,1,...,2n—1. In T} the vertex
s and its symmetric image s +n (mod 2n) are chosen to add Ky, and Ky, into
U(To, s; k). In T, the corresponding vertices are of, (s) = s+ r (mod2n) and
ab,(s+n)=s+n+r (mod2n). So we have two different vertices in each 7, for
r=0,1,....,n—1.

Suppose now that while making copies of 7" we obtain the same image of the
vertex s or s + n in two different factors 7, and 7;. Because our T-factorization
is cyclic, we can assume without loss of generality (WLOG) that » = 0 and
te{l,2,...,n—1}



CHAPTER 3. Ky, DECOMPOSITIONS 18

(i) Firstly, let

ab (s) = ad,(s), then
s+t = s (mod2n), and
t = 0,

which contradicts our assumption that ¢ # 0.

(ii) If
ab.(s+n) = ad,(s+n), then
s+n+t = s+n(mod2n), and
t = 0,

we again get the same contradiction.

(iii) Finally, if
ab (s+n) = ad,(s), then
s+n+t s (mod2n), and
n+t = 0 (mod2n),

which is impossible, since we have assumed that ¢t € {1,2,...,n —1}.

Therefore the images of the vertices s and s+n appear in 2n different vertices
of K5, and each of them is in exactly one factor 7,. This means that also each
corresponding complete graph Ky, for i = 0,1,...,2n — 1 is in exactly one factor
U(T,,s; k).

Since all complete graphs Ky, and all complete bipartite graphs Ky; v, are
pairwise edge disjoint, then also each edge of Ky, is in exactly one U(T,, s; k), and
so U(To, s;k), U(T1, 83 k), ..., U(Th_1, s; k) give a U(T), s; k)-factorization of Kopy.

O

3.3 2n-cyclic blended labeling

Now we find a decomposition of the graph U(T, s; k) into k isomorphic copies of a
graph G with 2nk — 1 edges, and consequently we obtain also a G-decomposition
of Ky, into nk isomorphic copies of G. Hence, we need to explore the properties
of a graph G that would decompose U(T, s; k). To characterize such a graph G
we introduce a new type of labeling.

The labeling is in fact a generalization of the blended p-labeling. The main
idea is that we split the graph U(T, s; k) into two copies of the complete graph
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K}, and 2n — 1 copies of the complete bipartite graph K} ;. Each of these graphs
is then decomposed separately using known methods based on known vertex
labelings. The complete graphs K}, are both decomposed cyclically into k copies
of a graph with (k — 1)/2 edges, which requires k£ to be odd. Each complete
bipartite graph Kj j is then decomposed bi-cyclically into k copies of a graph
with £ edges.

Definition 3.6 Let G be a graph with 2nk — 1 edges, for k odd and k,n > 1,
and the vertex set V(G) = Ufzal Vi, where |V;| =k and V;NV; = 0 fori # j. Let
A be an injection, X : V; — {0;,1;,2;,...,(k = 1);}, fori=0,1,...,2n — 1. By
H;; we denote the bipartite subgraph of G' induced on the vertices of the partite
sets Vi and V; with edges of mized length ¢;;, and by H; we denote the subgraph
of G induced on the vertices of V; with edges of pure length £;;.

We say that G has a 2n-cyclic blended labeling (shortly 2n-cyclic labeling)
if there exists an underlying tree T on 2n wvertices with a p-symmetric graceful
labeling such that the following holds:

(1) For some vertex s € T and its symmetric image t = s +n (mod 2n) is
{lss(ws, ys) (s, y5) € E(Hs)} ={1,2,...,(k—1)/2}, and
{lu(z, yo)|(ze, ) € E(Hy)} =A{1,2,...,(k—1)/2},

(2) and for each edge (i,j) € E(T) is
{Eij(xiayj”(xi:yj) € E(Hw)} = {07 L2,... k — 1}'

Similarly as a graph with a blended p-labeling, a graph G with a 2n-cyclic
blended labeling is split into two subgraphs H,; and H; on the vertices of the
partite sets V; and V; with pure edges, and 2n — 1 subgraphs H;; for each (i, j) €
E(T) with mixed edges. The labelings induced by A on the vertices of Hy or H
are p-labelings (if we omit the subscripts of the labels), and the labeling induced
on the vertices of any H;; is a bipartite p-labeling. (To have exactly a bipartite
p-labeling we shall substitute 0, 1 for i, 7).

Further we show that a graph G' with a 2n-cyclic labeling allows a 2n-cyclic
decomposition of the graph U(T,s; k). We get the decomposition by permuting
the vertices of U(T,s;k) by the permutation composed of 2n cycles, each of
them of length k, so that the vertices of each of the partite sets V; permute
separately. Then the p-labelings of the subgraphs H; and H; guarantee, according
to Theorem 2.3, a cyclic decomposition of Ky, and Ky, into k copies of H; and

H,;, respectively. Similarly, the bipartite p-labelings of subgraph H;; guarantee
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a bi-cyclic decomposition of each of the complete bipartite graphs Ky; y; into &
copies of H;;. From these facts the existence of the decomposition of U(T, s; k) is
almost evident. However in the proof we decided to follow the general idea of a
G-decomposition, which is to find isomorphic and edge disjoint copies of G and

show that each edge of the decomposed graph is covered.

Lemma 3.7 Let a graph G with 2nk — 1 edges, for k,n > 1 and k odd, have
a 2n-cyclic blended labeling. Then there exists a 2n-cyclic G-decomposition of

U(T, s; k) into k isomorphic copies of G.

Proof.  Let a graph U(T, s; k) have the vertex set V(U(T,s;k)) = U7V
where V;NV; = 0 for ¢ # j and V; = {0;,1;,2;,...,(k —1);}, i = 0,1,2,...,
2n — 1. Let m be the permutation on the vertex set of U(T,s;k) such that
T = TgM1 - .. Ton_1, Where m; is the cyclic permutation oy on the vertices of V; for
each71=0,1,2,...,2n — 1.

Now suppose that Gy = G and G, = 7"[G] for r = 1,2,...,k — 1. Then
Go,G1,Go, .. .,Gy_1 are k isomorphic copies of G on vertices of U(T, s; k). We
show that Gy, G1, G, ..., Gk_1 is a G-decomposition of U(T) s; k).

Permutations 7" preserve the lengths of the edges. In particular, if (z;, (x +
a)t), t € {s,s +n} is an edge of a pure length a, 1 < a < %, in Gy, then
(7" (), 7" ((x + a))) = ((z +7)s, (z + a + 7)) is the edge of the pure length @ in
Gy, and if (z;, (x +b);) is an edge of a mixed length b, 0 < b < k —1, in Gy, then
(7" (z;), 7" ((x + b);)) = ((x +7);, (x + b+ n);) is the edge of the mixed length b
in G,.

In U(T, s; k) we have k edges of each pure length ¢; € {1,2,... %}, where
t € {s,s+n}, and k edges of each mixed length ¢;; € {0,1,2,...,k — 1} for each
(i,7) € T. In G we have one edge of each pure length ¢;;, where t € {s,s+n}, and
one edge of each mixed length ¢;; for each (4, j) € T. Because the lengths of the
edges are preserved, while making & isomorphic copies of G we obtain k copies of
the edge of each mixed or pure length. If they are all different we obtained the
decomposition.

Suppose now that the same edge (x4, (x + a);) of the pure length ¢, = a
is in two different copies of G, G, and G). We can again WLOG assume that
r = 0. But if (z¢, (x + a);) € Gy, then (zy, (z +a):) = (y +p)t, (y + p + a),) for
some y since each edge of GG, arises from an edge of Gy by adding p to both its
endvertices. Hence, (y;, (y + a);) € Go. However, (z, (z + a)) is the only edge
of the pure length /;; = a in G, which yields x = y and therefore p = 0. This
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contradicts our original assumption that G} is different from Gy. Similarly we
suppose that an edge (z;, (z + b);) of a mixed length ¢;; = b is in two different
copies of G, Gy and G, where p € {1,2,...,k —1}. If (z;, (v + b);) € G,, then
(zi, (x +0);) = ((y + )i, (v + p + a);) for some y for the same reasons as above,
and (y;, (y + b);) € Go. From the uniqueness of the edge of the mixed length
¢;; = b in Gy we again get x = y and p = 0, which is a contradiction.

Thus in & copies of G we have all k(2nk — 1) different edges of U(T, s; k), and
so Gy, G1,Gy, ..., Gi_q form a 2n-cyclic decomposition of U(T), s; k). ]

Finally we can state the theorem, which is just a direct consequence of the

previous two lemmas.

Theorem 3.8 Let G with 2nk — 1 edges be a graph that allows a 2n-cyclic
blended labeling for k odd and k,n > 1. Then there exists a G-decomposition of
Ko into nk copies of G.

Proof. By Lemma 3.5 the complete graph Ky, can be factorized into n copies
of U(T, s; k), and by Lemma 3.7 the graph U(T, s; k) can be decomposed into k
copies of G if G has a 2n-cyclic blended labeling. Therefore, Ko, is decomposable

into nk isomorphic copies of G. 0

We conclude this section with a simple example of a 2n-cyclic labeling for
a tree of a small order. For Ks,; decomposition we choose the smallest case
which is obtained when k£ = 3 and n = 2. As we already mentioned Eldergill’s
method enables factorizations only into symmetric spanning trees which all have
odd diameter. For instance with our method we can easily find a factorization of

K5 into a spanning trees with the largest even diameter, which is d = 10.

Construction 3.9 To find a 4-cyclic labeling of any spanning tree G' of K5 we
must have also an underlying tree T" with 4 vertices and a p-symmetric graceful
labeling. The only symmetric (with respect to an edge) tree on 4 vertices is the
path P;. We use the symmetric graceful labeling of P, given in Figure 3.1. An
example of a 4-cyclic labeling of a spanning tree G with the vertex set V(G) =
U?ZOVZ-, where V; = {0;,1;,2;}, and diameter d = 10 is in Figure 3.2.

In each of the partite sets V; and V3 there is one pure edge of the length
f11 = £33 = 1. In each of the three pairs of the partite sets V1,V and Vy, Vo and
V4, V3 corresponding to the three edges of P, there are always mixed edges of all
the lengths 0, 1, 2. If we permute G by the permutation 7 = mymmom3, where 7; is

the cyclic permutation a4 on the vertices of V; for : = 1,2, 3,4, we obtain a 4-cyclic
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G-factorization of the graph U(Py, 1;3). In Figure 3.1 a U(Py, 1; 3)-factorization
of K15 is shown. Then according to Theorem 3.8 there is a G-factorization of K.

Vi Vo Vo Vs
01 0o 02 03
13 1o 1y 13

21 20 22 23
d=10

Figure 3.2: 4-cyclic blended labeling of the spanning tree G of K19 with d = 10.

3.4 Fixing blended labeling

We will now relax the definition of a 2n-cyclic blended labeling to obtain another
labeling, which will allow us to find more general constructions of spanning trees
for decompositions of Ky,, where k is odd.

To decompose the bipartite complete graph K, , into n copies of G with
n edges we relied so far on the existence of a bipartite p-labeling. A bipartite
p-labeling guarantees that the edges of the bipartite graph G with the partite sets
[Vo| = |Vi| = n have all different lengths 0,1,...,n — 1 which enables bi-cyclic
decomposition. Now suppose that G has the following property. The degree of
each vertex xy € Vj is deg(zo) = 1. In other words each vertex in V; has exactly
one neighbor in V;. It is not required that the edges have different mixed lengths.
Then by permuting the vertices of Vi by the cyclic permutation «,,, while the
vertices of Vj are fixed under identity permutation + we obtain the decomposition
of K, , into n isomorphic copies of G. This idea is used in the following definition

of the fixing labeling. For an illustration see Figure 3.3.

0

L (I Qs
10% 1
20 ® 9 2;
30% 3
4o o4y

Figure 3.3: Decomposition of K55 into 5 isomorphic copies of G.

fixed set Vj G i rotates
0. )
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Definition 3.10 Let G be a graph with 2nk — 1 edges, for k odd and k,n > 1,
and verter set V(G) = U2 ' Vi, where |Vi| = k and V;\V; = 0 fori # j. Let A
be an injection, A : V; — {0;,1;,2;,...,(k—1);}, fori=0,1,...,2n — 1. By H;;
we denote the bipartite subgraph of G induced on the vertices of the partite sets V;
and V; with edges of the mized length {;;, and by H; we denote the subgraph of G
induced on the vertices of V; with edges of the pure length £;. We say that G has
a fixing blended labeling (briefly a fixing labeling) if there exists an underlying
tree T on 2n vertices with a p-symmetric graceful labeling such that the following
holds:

(1) For some vertex s € T and its symmetric image t = s +n (mod 2n) is
{lss (s, ys) (75, y5) € E(H,)} ={1,2,...,(k—1)/2}, and
{Ett(xta yt)|(xta yt) € E(Ht)} = {17 2: R (k - 1)/2}

(2) Let F = {i € T|i # s,i # s+ n; deg(x;) = 1foreachz; € H;jandj €
N(i)}, then F is the set of fixable vertices in T for given G, and each
vertex © in I is called fixable. Let Vi be any independent set of fixable
vertices in T called the fixed set. A wvertexr i € Vi is called a fixed vertex.

Then for every edge (i,7) € E(T) is one of the endvertices i or j the fized
vertex or {€;;(z;,y;)|(xi,y;) € E(Hi;)} =1{0,1,2,...,k — 1}.

Notice that the fixed vertices are not uniquely determined, since there might
be several ways to choose the set Vi C F. The set of fixed vertices Vi might be
chosen to be a maximal independent subset of the set F' of fixable vertices, but
it might be chosen to be also the empty set, depending on the structure of the
labeled graph G. In the case that Vz = ) a fixing labeling of G is also a 2n-cyclic
labeling.

We will show that also this labeling allows a G-decomposition of a complete
graph Ko, if G has the labeling.

Lemma 3.11 Let a graph G with 2nk — 1 edges, for k odd and k,n > 1, have
a fizing blended labeling. Then there exists a G-decomposition of U(T, s; k) into
k copies of G.

Proof Let a graph U(T), s; k) have the vertex set V(U(T, s;k)) = Ufﬁgl Vi, where
VinV;=0fori#jand V; = {0;,1;,2,...,(k — 1)}, i = 0,1,2,...,2n — 1.
Let Vi be any independent set of fixable vertices in 7" for a given graph G, and
T = MgMiTy...TMoy_1, Where m; is a cyclic permutation a4 on vertices of V; if

1 ¢ Vr, and 7; is an identity permutation ¢ on vertices of V; if i+ € V.
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Now suppose that Go = G and G, = 7n"[G] for r = 1,2, ..., k—1, then Gy, G,
..., Gy_1 are k isomorphic copies of G' on vertices of U(T, s; k). We show that
Go, Gy, ..., G 1 is a G-decomposition of U(T), s; k).

In Gy the labeling of the subgraph H; induced by X is a p-labeling. Since
s € Vr, the copy of H, in G, is 7}[Hs] = «}[H,]. This means that with each
permutation m of G we obtain a rotation of H; on the vertices of V. The p-
labeling of H, guarantees (Theorem 2.3) that the complete graph Ky, in U(T, s; k)
is cyclically decomposed into k£ copies of H,. Similarly, Ky,  in U(T,s;k) is
cyclically decomposed into k copies of H,.,, while we make permutations 7 of G.

Also 2n — 1 complete bipartite graphs Ky, vy, in U(T),s; k) are decomposed
while permuting G. This is easy to see if neither ¢ nor j is a fixed vertex. Then
the labeling of H;; induced by A is a bipartite p-labeling, and the copy of H;; in G,
is obtained by the permutation 7} 7}[H;;] = ajaj[Hy;]. Thus the vertices of both
partite sets V; and V; permute separately under the cyclic permutation «;, while
G permutes under the permutation 7, and Ky, y, is decomposed bi-cyclically into
k copies of H;;, which is guaranteed by the bipartite p-labeling of H;; (see page 7).

The remaining case is when one of the endvertices of the edge (i,7) € T is
a fixed vertex. Since the pair (,7) is unordered we can assume without loss of
generality that ¢ € V. Notice that if 7 € Vi, then for any (i,5) € T is j & V.
Because i is fixable, any vertex x; € V; has exactly one neighbor in V; for any j
such that (i,7) € T. So there are exactly k edges in the subgraph H;;. In G, the
copy of Hj; is min}[H;;] = wo[H;;]. The vertices of V; are fixed under identity
permutation ¢ and the vertices of V; are permuted by the cyclic permutation .
Let eg = (x;,y;) be the single edge incident with the vertex z; in H;;. The edge
eo has the mixed length ¢;;(eo) = y — 2 (modk). The copy of the edge e, in
G, is e, = (1"(x:), 7" (y;)) = («(), a(y;)) = (i, (y + 7);), so it has the mixed
length l;; = r+y — 2 (modk). For r =0,1,2,...,k — 1 we obtain & copies of
the edge ey, which are all incident with z; and have all different mixed lengths
lij =0,1,2,...,k — 1. The same is true for any vertex z; € V;, and so while the
vertices of H;; are permuted by the permutation toy, we obtain k different edges
incident to each vertex x; in V;, which are all together £? different edges of K ViVi-
Thus also in this case Kvy; y; is decomposed into k isomorphic copies of H;.

This completes the proof that there is a G-decomposition of U(T, s; k) when
G has a fixing labeling. O
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Theorem 3.12 Let a graph G with 2nk — 1 edges, for k odd and k,n > 1, have
a fixing blended labeling. Then there exists a G-decomposition of Kopy into nk
copies of GG.

Proof. By Lemma 3.5 the complete graph Ky, can be factorized into n copies
of U(T,s; k), and by Lemma 3.11 the graph U(T, s; k) is decomposable into k
copies of G if G has a fixing labeling. Therefore G decomposes Ko, into nk

isomorphic copies. O

Fixing labelings proved to be useful for classification of caterpillars with di-
ameter 4 on 2nk vertices, as is shown further in Chapter 6. Finally we provide
an example of a tree G with a fixing labeling, which shall help the reader to
understand easier the concept of this new labeling.

Construction 3.13 Let G be a tree with 29 edges and the vertex set V(G) =
U?:()Vi, where V;NV; = ( for i # j and V; = {0,,1;,2;} forany i = 0,1,...,9. To
find a fixing labeling of G' we use the symmetric underlying tree 7" on 10 vertices

with the symmetric graceful labeling given in Figure 3.4.

Figure 3.4: Symmetric graceful labeling of an underlying tree T.

To construct the subgraphs with the pure edges we choose the partite sets V}
and V5 corresponding to the vertex 0 and its symmetric image 5 in 7". Then the
tree G given in figures 3.6 and 3.8 has a fixing labeling, and there are more options
to form a G-decomposition of U(T', 0; 3), depending on a choice of the fixed set V.
The factors of U(T,0;3) are G, = 7"[G] for r = 0,1,2 and © = w7y . .. 79, Where
m; is a permutation on the vertices of V; such that m; = ¢ for ¢+ € Vg, otherwise
m; = ag. In figures we have omitted the labels of the vertices of GG, since it should
be obvious, also from the previous examples, that they are assigned consecutively

in the same way in each partite set.
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a) Vi G Ve

(@ - fixable vertex
(® — fixed vertex

(e]
(e]

Figure 3.6: Fizing labeling of G with F = {1,2,3,4,6,7,8,9} and Vr = {3,4,6,7}.

b) Vi o Ve

(© - fixable vertex
(® — fixed vertex

Figure 3.8: Fizing labeling of G with F = {1,2,3,4,6,7,8,9} and Vr = {1,2,8,9}.



Chapter 4
K4, decompositions

The case when the number of vertices of the complete graph Ky, is a power of
two is not covered by the methods for decompositions of Ky, introduced in the
previous chapter. It is impossible to split the vertex set of K4, = K¢ into partite
sets of the same odd size. If the number of the vertices in a partite set is even the
cyclic decomposition based on the p-labeling within a partite set cannot be used.

If we try to use a graph G with n edges and a p-labeling (see Definition 2.2) for
a cyclic decomposition of Ks,, after 2n rotations of G each edge of K5, is covered
exactly once, except of the edges of the maximum length n which are covered
twice. Suppose V(Ks,) = Zy, and let G, = o}, [G], for r = 0,1,...,2n. The
copy of the edge ey = (a, a+k) of the length & in G| is the edge e, = (a+r, a+k+7)
of the length & in G,, where a € {0,1,...,2n—1} and k£ € {1,2,...,n}. Suppose
eo = e, for some r # 0. This happens in two cases:

i) If
. a=a+r (mod2n) and a+k=a+k+r (mod2n).
Thus
r =0 (mod 2n),
which contradicts the assumptions r =0,1,...,2n — 1 and r # 0.
(i) If

a=a+k+r (mod2n) and a+k=a+r (mod2n).

We obtain the set of congruences

= k+r (mod2n),
k = r (mod2n),

27
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which simplifies to
2k = 0 (mod2n),

2r = 0 (mod2n).

The only solution for r = 1,2,...,2n—1and £k =1,2,...,nis r = n and
k=n.

Thus the only repeated edge is the edge of the maximum length k£ = n always
after r = n rotations. This can be easily observed from Figure 4.1.

3 2

Figure 4.1: Cyclic covering of K¢ by a tree with graceful labeling.

4.1 Switching labelings and diameters of span-

ning trees

As was already mentioned, possible approach which can be used for decompo-
sitions of any K}, and does allow more general constructions of spanning trees
than just symmetric ones is based on the switching blended labeling (see Defini-
tion 2.9). Nevertheless, we have found that the labeling is not suitable to solve

the problems we are interested in, which is implied by the following theorem.

Theorem 4.1 If a tree T on 4n vertices, where n > 2, allows a switching
blended labeling, then diamT > 4.

Proof.  Suppose to the contrary that a tree 7" with 4n vertices has a switching
labeling, and diam7T = d < 4. Then there is the edge ey = (ig, (i + 1)) of
the maximum pure length £yo(eg) = n in T. Let e; be the edge of the same
pure length ¢11(e;) = n in Vi, such that e; = (j1, (j +n)1) € T and ¢(iy) = j1,
o((i+n)o) = (j +n)s-
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By G we denote the graph G = T+ e;. Then the graph G — ¢, is isomorphic
to T and in G there is a cycle ), which contains both edges e, e;. Since the
endvertices of ey are both in V; and the endvertices of e; are both in Vi, the
minimum length of the cycle C) is p = 4.

Suppose first that p = 4. Tt means that Cy = ig, (¢ + n)o, (j + n)1,71 or
Cy = g, (i + n)o, J1, (j + n)1. Notice that these cases are equivalent, since j =
j+n+n (mod2n). Hence we investigate just the former case. Then the edges
(i, 71) and ((¢+n)o, (j+n)1) must be in 7. But this is not possible, because they
are both of the same mixed length £y1((ig,71)) = 7 — ¢ (mod 2n), and £y (((7 +
n)o, (j+mn)1)) =j+n—(i+n)=j—i (mod2n), which contradicts property (3)
of the switching labeling. Therefore the length of the cycle C, is at least p = 5
and the diameter d of T is at least 4.

Now suppose that p = 5. Then there is a cycle Cs = g, (1 + n)o, (j + 1)1, j1, v
(again the case Cs = iy, (1 +n)o, J1, (j + 1)1, v is equivalent). In order of diameter
d of the tree T' (or equivalently of G—e; or G—eg) to be d = 4, all other edges in T
must be incident to the vertex v. This is true because if there is an edge x7y, where
x # (i 4+ n)o, v, then from (4) it follows that there must be also an edge yji,y #
(j +n)1,v, and vice versa. But then there is the path x, iy, v, j1, (j +n)1, (i +n)o
in G — e or x,j1,v,00, (i + n)o, (j + n); in G — e1, both of them of length 5,
which contradicts our assumption that d < 4. Similarly, if there is one of edges
z(i+n)o,y(j + n)1, where z # iy, (j + n)1 and y # j1, (i + n)o, then there must
be the other one, too. Then again there is the path z, (i + n)o, ( + 1)1, J1, v, 0
in G—eyorz,(j+n), 1,0, (i +n)y in G — ey, giving the same contradiction.

But now if the vertex v belongs to Vj, all its neighbors except for j; belong
to Vo and there is only one pure edge in Vi, namely (ji,(j + n)1) of length
n > 2. This is impossible, since the tree T" must contain edges of all pure
lengths ¢1; = 1,2,...,n. The same argument holds when v € V; and the proof is
complete. O

It is obvious now that the method based on switching labelings is not sufficient
to answer the questions about diameters of spanning trees or to complete the
classification of caterpillars with diameter 4 for factorization of Kjy,.
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4.2 Swapping labeling

In this section we introduce a new type of the vertex labeling, namely swapping
labeling, which allows the decompositions of Ky,. Similarly as for a graph G
with a switching labeling we split the vertex set of G with a swapping labeling
into two equal partite sets and we require for GG certain type of an isomorphism.
Despite of that, in general the labelings seem to be easier to find than switching
labelings. Swapping labeling enabled us to complete the solutions of the problems
on diameters of the spanning trees and classification of caterpillars in the case
when the number of vertices of K4, is a power of two as is shown later.

Definition 4.2 Let G be a graph with 4n — 1 edges and the vertezr set V(G) =

VoUWV, VonVi =0, and |Vy| = |Vi| = 2n. Let A be an injection, X : V; —

{0;,1;,...,(2n—1);} fori = 0,1. The pure length £;;, fori € {0,1} and the mized

length £y1 of an edge are defined as in Definition 2.7 of the blended labeling.
Then G has a swapping blended labeling (briefly swapping labeling) if

(1) {li(zi, yi)|(zi,y:) € E(G)} ={1,2,...,n}fori =0,1,

(2) there exists an isomorphism ¢ such that G is isomorphic to G \ {(ko, (k +
n)o), (b, (I +n)1)} U {(ko, (I +n)1), (K + n)o, 1)},

(8) {€o1(wo,y1)|(z0,91) € E(G)} ={0,1,...,n — 1} \ {€o1(ko, (I + n)1)}.

We shall notice again that G' with a swapping labeling can be split into sub-
graphs Hy and H; on the vertices of V) and V; respectively and a bipartite sub-
graph Hy; with the partite sets V4 and V. The labelings of Hy and H; induced
by A are again p-labelings (condition (1)), and the labeling induced by A on the
vertices of Hy; is an “almost” bipartite p-labeling. It is not a true bipartite p-
labeling, since one edge of the mixed length £y (ko, (I+n)1) = l+n—k (mod 2n)
is missing (condition (3)).

It is not difficult to observe what happens if we let G rotate bi-cyclically so
that the vertices of Vj or Vi permute separately under cyclic permutation ag,.
Then Ky, is decomposed into 2n copies of Hj, but since the number of vertices
of V4 is even each edge of the maximum pure length is covered twice. Similarly
it holds for Ky,. Therefore we keep the edges of the maximum pure length in
Hy and H; only for the first n rotations. In the remaining n rotations they are
exchanged (or swapped) for the mixed edges of the missing length in Hy;. The
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isomorphism ¢ required by the condition (2) guarantees that after swapping the
edges isomorphic copies of G' are obtained.

Theorem 4.3 Let G be a graph on 4n vertices with 4n — 1 edges which has a
swapping blended labeling. Then there exists a G-decomposition of Ky, into 2n

1somorphic copies of G.

Proof.  Suppose that a graph G on 4n vertices has a swapping labeling A. By U
we denote the graph G — {(ko, (k+n)o), (I1, ({+n)1)}, where k,l € {0,1,...,2n—
1}. Let Ky, has the vertex set V(Ky,) = Vo U Vi = {0g,1p,...,(2n — 1)} U
{01,14,...,(2n—1),}. It means that we view Ky, as a union of the two complete
graphs Ky, = Ky, = Ky, and the complete bipartite graph Ko, o, = Ky; 11 -

We define Uy, Uy, ...,Usp_1 by U, = 7"[U] for r = 0,1,...,2n — 1, where
m = mom; and m; is the cyclic permutation s, on the vertices of V; for i € {0,1}.
Then Uy, Uy, ...,Us,_1 are 2n isomorphic copies of the graph U on the vertices
of Ky,.

If the edge (z;, (x +a);) is the unique edge of the pure length ¢; = a, 1 < a <
n—1fori € {0,1} in Uy then (7" (x;), 7" ((x +a)i)) = ((x+7)s, (x +a+71);) is the
unique edge of the same length ¢;; = a in U,.. Similarly, if the edge (xo, (x+0b),) is
the unique edge of the mixed length £y = 6,0 < b < n—1, and b # £y (ko, ({+n)1)
in Uy, then (7" (zo), 7" ((x+b)1)) = ((x+7)o, (x+b+7)1) is the unique edge of the
mixed length £y, = bin U,. Obviously, for r = 0,1,...,2n—1 there are all 2n edges
of each pure or mixed length in Ky, covered exactly once with two exceptions. In
copies of U does not appear any edge of the maximum pure length {oo = /11 =n
and any edge of the mixed length £y (ko, (I +n)1) =1+ n — k (mod 2n).

Each copy of the graph U can be completed to a copy of the graph G. We
let Go be Uy U {(ko, (K + n)o), (l1, (! +n)1)} and for r = 1,2,...,n — 1 we define
G, =U,U{((k+71)o,(k+n+7)),((l+7)1,(l+n+7))}. Hence we have used
all n edges of the maximum pure length n of Ky, and also of Ky,.

Because G has a swapping labeling, G is isomorphic to UyU{(ko, (I+n)1), ((k+
n)o,11)}. Therefore we can set the next copy of G to be G,, = U, U{((k+n)o, (I +
n+n)1), (k+n+n),(+n))} = U, U{((k+n),l), (ko (I +n)1)}, and for
r=n+1,n+2,...,2n—1 we obtain remaining n — 1 copies as G, = U, U{((k +
n+r)o, (L+7)1), ((k+7)o, (Il +n+7)1)}. It is easy to check that we have used in
remaining n copies of G all 2n edges of the mixed length ¢y; = [ +n —k of Ky, v;.
It is so because the endvertices in Vj of the added edges ((k 4+ n + 7)o, (I +7)1)

and ((k+7)o, (I+n+7)1) are in “distance” n. Therefore when r is changed from
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r =mn tor =2n — 1 the added edges have as endvertices all 2n different vertices
of V4, and to have the same edge with the different endvertex is absurd. The
same is true for the endvertices in the partite set V.

Thus Ggy,Gy,...,Go,_1 form the G-decomposition of K4, and the proof is

complete. 0

We again conclude with an example of a graph which has the labeling. Even
if the factorizations of any K4, into Hamiltonian paths are known and easily
found using any of the previously known methods, we choose the graph to be the
path on 8 vertices, Pys. The simplicity of the example allows to observe easier the
existence of the isomorphism ¢ and how the factors are formed. See Figures 4.2
and 4.3.

G G\ {(10,30), (11,31)} U {(T0,31), (30, 11)}

Figure 4.2: Swapping labeling of G = Ps.

AR

Figure 4.3: Ps-factorization of Kg based on the swapping labeling.



Chapter 5

Spanning trees with given

diameter

In this chapter we give an answer to the question if for a given number d there
exists a spanning tree factorization of Kj, such that the spanning tree has the
diameter d. The diameter d can have any of the considerable values which are
3 <d < 2n—1. The only spanning tree of K5, with the smallest diameter d = 2
is the star K 9, 1. But obviously a factorization into stars does not exist, since
Degree Condition 2.1 is not satisfied.

As was already mentioned Froncek positively answered the question about

diameters of spanning trees for factorizations of Ky,,2 [6].

Theorem 5.1 (Fronc¢ek) For every d such that 3 < d < 4n + 1, where n > 1,

there is a factorization of Ky,yo tnto isomorphic spanning trees with diameter d.

Therefore it remains to solve the problem whenever the number of vertices of
a complete graph is a multiple of 4.

While solving the problem we found factorizations based on 2n-cyclic labelings
first [14]. Recall that the method can be used for factorizations of Ky, where
n,k > 1 and k is odd. Of course the case when the number of the vertices
is a power of two cannot be solved by this method. Later the method based on
swapping labelings enabled us to answer the question about diameters completely.
We introduce here both types of constructions. The reason is that the spanning
trees with a diameter d for which we have found 2n-cyclic labelings have different
structure than the spanning trees with a diameter d for which we have found

swapping labelings. The problem is quite useful for demonstration of both of the

33
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methods. Consequently one will have an opportunity to compare the methods
and gain more intuition in deciding which method is more suitable depending on

the structure of a spanning tree.

5.1 Constructions based on 2n-cyclic labelings

The method of decomposition based on 2n-cyclic blended labeling can be used
whenever the number of vertices of Ky, is not a power of two. By this condition
we are left with complete graphs Koq, where £ is odd and k,q > 1. Therefore
we construct spanning trees of Kyq with 29-cyclic blended labelings. Because for
each such a spanning tree there must be also an underlying tree on 29 vertices with
p-symmetric graceful labeling, we first introduce a class of symmetric graceful
trees which are used in constructions.

All symmetric graceful trees we deal with are caterpillars. A caterpillar on n
vertices, which is a star K 5, where 1 < h <n—1, with a path P,_; attached to
its central vertex is called a broom and denoted by B(n, h). By X (2n, h) we denote
the symmetric caterpillar with banks H, H' both isomorphic to B(n, h) and with
the symmetric edge connecting the endvertices of the paths P,_j. In other words,
the tree X (2n,h) is a union of two stars K, and the path Py, _p) connecting
their central vertices. To obtain a symmetric graceful labeling of X (2n, h) it is
sufficient to find a graceful labeling of one bank H = B(n, h) since the labels of
the other bank H' are induced by the isomorphism (i) = 7 + n (mod 2n) (see
Definition 2.5).

There are of course more ways how to assign the labels to the vertices of

B(n, h) to obtain a graceful labeling. We will consider the following labeling.

Graceful labeling of a broom B(n,h)

e The label 0 is assigned to the central vertex of Ky, the labels n —1,n —
2,...,n — h are assigned to the h attached vertices of degree one. Lengths

of the edges are n —1,n—2,...,n — h.

e The vertices of the path P,_j receive the labels:
(7) O,n—h—1,1,n—h—2,...,%—1,”2;h for n — h even,

() 0,mn—h—1,1,n—h-2,..., ”_g_l—i-l, ”_g_l for n—h odd, consecutively.
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The edges of the path have remaining lengths n —h —1,n—h —2,...,1.
For an example of this labeling see Figure 5.1.

7 15
6o N0 3 1 2 10 9 11 8/ ol4

3 13
4 12

Figure 5.1: Symmetric graceful labeling of X (16,4).

Before we state the theorem we define two types of trees with bipartite

p-labelings.

Construction of S; and S;;

By Sr and S7; we denote double stars with bipartite p-labelings and the
vertex set V(S]) = V(S[[) = V; U V;', V; = {02,11,21,,(1€ — 1)1}, V; =
{05,1;,24,...,(k—1),}, where k =2m +1 for m > 1.

e The double star S; is constructed as two stars Ki,_; with the central
vertices m; and m; connected by the edge (m;, m;) of the mixed length ¢;; =
0. The endvertices connected to the central vertex m; are 0;,1;,. .., (m—1),.
The edges have mixed lengths /;; = m+1,m+2,...,2m. The endvertices
connected to the central vertex m; are 0;,1;,..., (m —1); so that the edges

have the missing lengths /;; = 1,2,...,m.

e The double star S;; is isomorphic to S; so that there is an isomorphism
f:V(Sr) — V(Syr) defined by f(z,) = (2m — ), for every vertex z, €
V(Sr) and r € {i,7}.

St Srtr
0; 0; 0 o o 0;
1 ;é 1 1, 0 o1
3i o o 3j 3,- % 3]'
4i ° ° 4]' 4, 4j

Figure 5.2: Double stars Sy and Syy for k =5.
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Construction of C;(D) and Cy;(D)

By C;(D) or Cy;(D) we denote the tree with a bipartite p-labeling, diameter D,

and

the vertex set V; UV;, V; ={0;,1;,2;,...,(k—1);}, V; ={0;,1;,2;,...,(k —

1);}, where k = 2m+1 for m > 1. The diameter D is odd, ranging from minimum

3 to

maximum k. Let D = 2t + 1, where 1 <t < m.
e The tree Cr(D), for ¢t odd, has the diametrical bipartite path Ppy; =
my, Oja (m - 1)1: ]-ja SR (m - %)Za (%)ja (%)Z: (m - %)J: SRR ]-i7 (m -
1)j,0i,mj.

For ¢ even, PD+1 = my;, Oj, (m— 1)1, 1]', ey (% — 1)]', (m— %)Z, (m— %)ja (% —

1), .-
The edges on the path have the mixed lengths ¢;; = m+1,m+2,...,m+
t,00m—t+1,m—t+2,...,m—1,m, and the missing lengths are ¢;; =
L,2,...om—tand m+t+1,m+t+2,...,2m.

alia (m - 1)J’Ol’mj

We obtain the edges of the missing lengths by adding two stars K ,,_; with

the central vertices on the path Pp.;. When ¢ is odd, the central vertices

are (%)T, r € {i,j}. The vertices of degree one are in the other partite

set than the central vertex. They are (% + 1), (% +2)gen, (m— % _

1)s, where s = ¢ for r = j and s = j for r = i. When ¢ is even, the

central vertices are (% —

2
are (L), (5 +1)s,...,(m—

)T. The endvertices in the opposite partite set
t_q
2~ Us:

e The tree Cy7(D) is isomorphic to C7(D) by the isomorphism f : V(C(D))

— V(Cy1(D)) defined as f(z,) = (2m—zx), for every vertex z, € V(C;(D))
and r € {i,7}.

Cr(3) Cr(7) Crr(5)
0; 0; 0 0j 0o o 0;
L; L1 L Lo ° 1
2; 2; 2; 2; 2; 0 o 2;
3i 3; 3i 3; 3i 3;
4; 0 o 4, 4; 0 o 4, 4; o\ /O 4;
H; 0 o 9 5; o o d; 51’% 9;
6; o o 6, 6; o o 6, 6; 6;

Figure 5.3: C1(D) and Cr;(D) for k =17.
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Theorem 5.2 For any d, 3 < d < 29k — 1, there exists a tree T with the
diameter d such that there is a T-factorization of the complete graph Koy, where
g,k >1 and k is odd.

Proof.  To obtain a spanning tree of Ko, with any odd diameter is easy. We
can take for instance X (2%, h), which cyclically factorizes Ko and has the
diameter d = 2(277'k — h) + 1, where 1 < h < 207k — 1. If h = 297k — 1,
the caterpillar X (2%, h) is a double star with the diameter d = 3, which is the
smallest possible. If h = 1, X (2%, h) is the path Py, and the diameter is the
largest possible d = 29k — 1. Further we will concentrate only on spanning trees
with an even diameter.

We will complete the proof in three steps, constructing spanning trees of
even diameters with a 29-cyclic blended labeling. We always consider a spanning
tree T with the vertex set V(T) = |J2 "' Vi, where V; N V; = @ for i # j and
Vi=40;1:,24...,(k—1);},i=0,1,2,...,29— 1. We set k =2m + 1.

(1) Stretching the underlying tree into Hamiltonian path
(diameters: 4 < d < 29).

As the underlying tree we consider X (27, h) with the symmetric graceful
labeling given above. We will construct subgraphs H;; with mixed edges
for each (i,j) € E(X (29, h)) and subgraphs Hy and Ha-1 with pure edges

separately.

We construct each H;; corresponding to an edge (7, 7) on the path Pae—1_p)
as a double star. More precisely, we alternate double stars S; and Sy;.

When 297 — h is even, H;; = S; for
(,5) € {(z,27 —h—1—2), (x+2971,29—h -1 1)},
where 0 < z < % — 1, and H;; = Syr for

(i,7) € {27 —h—z,2), (2 —h— 2,2 +2771)}
U{(Et, 2ok e ),

Wherelgxgﬁ—l.
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When 27! — h is odd, H;; = Sy for
(i,5) € {(2,27 ' —h—1—2), (¢ +27 1,2 —h— 1 -2)}

U {(2%12—11—1’ 2‘1—12—h—1 + 2q—1)},

where 0 <z < % — 1, and H;; = Sy for
(7”]) € {(2(]—1 —h— .’17,.’13), (2q —h— xz,T + 2q—1)}’

where 1 < z < %

The subgraphs H;; corresponding to the edges connecting 2/ endvertices in
X (29, h) are constructed as the stars K om1-

For (i,5) € {(0,2771 —1),(0,27' = 2),...,(0,27 — h)},

the star K o,,+1 has the central vertex (m + 1), and the attached vertices

of degree one are all 2m + 1 vertices of Vj.
For (Za]) € {(2(1_17 27 — 1)a (2q_17 27 — 2)a T (2q_17 27 — h)}a

the star Kiom41 has the central vertex mg.-1 and again 2m + 1 endver-
tices in Vj.

Obviously, in each star Kjom41 we have 2m + 1 edges, one edge of each
mixed length ¢;; =0,1,...,2m.

To obtain Hy and Hj—1 we add the star K, on vertices of V; for ¢ €
{0,271}, The central vertex of K, is m; and the endvertices are (m +
1)i, (m+2);,...,(k—1); so that we have all required edges of pure lengths
i =1,2,...,m.

Now if we “glue” all subgraphs H;;, Hy, and Hs—1 together, we ob-
tain the tree T" with the 29-cyclic labeling which guarantees the 2%-cyclic
T-factorization of U(X (2%, h),0,k) and consequently the T-factorization
of Kqu.

Our spanning tree 7" has the diameter d = 29 —2h+ 2. It is so because each
of the 27 — 2h — 1 double stars, Sy or St7, contributes by 1 to the diameter
d of T, and the stars K, and K s,41 contribute together by 3. For h
ranging from 1 to 297! — 1 we get spanning trees with even diameters from

the interval 4 < d < 27. See examples in Figure 5.4.
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The underlying tree is X (8, 3).

Vs os0 00r V5
130 ol7
230 027
330 % ‘/;1 037
‘/2 43 Ooo 004 47 ‘/6
020 00g
10 oA
1 <> 1
22 .A.f 26
20 4 247\ 026
320 30 340 03¢
420 040 440 04g
010 o005
10 ols
210 d =4 025
310 035
Vi ho oty Vs

The underlying tree is X (8,1).

Vs Vo Va Vi Vs Ve Va Va
d=2S8

Figure 5.4: Spanning trees of Ky with 8-cyclic blended labelings and diame-
tersd =4 and d = 8.

(2) Stretching the bipartite paths (diameters: 274+ 2 < d < 2% — k + 1).

The largest diameter in the previous case was obtained for A = 1 when the
underlying tree was the path X (27,1) = Py. The underlying tree cannot
be stretched any more, therefore to obtain larger diameter than d = 27 we

have to increase the diameters of the subgraphs H;;.

Suppose the underlying tree is X (2%,1) = Psq, again with the symmetric
graceful labeling given above (see page 34). We start with a spanning tree
T of the odd diameter d = 29 — 1. We let each subgraph H;; corresponding
to the edge (i,j) € E(Py) be a double star Sy or Sy.
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For
(i) € {@ ' =1 =z,2), (2' =1 —z,2+ 271},

where 0 < z < 2972 — 1, the subgraph H;; is constructed as Si.
For

(i,7) € {(x,27 ' —2—1x,), (z+29 1,292z )} U {(22%2-1,3-2772 1)},
where 0 < x < 2972 — 2, the subgraph H;; is constructed as Sy;.

We choose the endvertices of Psq, which are 2971 —1 and 29— 1, to construct
two subgraphs Hoq-1_1, Hoe_; with pure edges. The subgraph Hos-1_; is
the star K, with the central vertex 0; and m vertices of degree one (m +
1)i, (m + 2)i,...,(2m);, where 7 = 297! — 1. The subgraph Hye_; is also
the star K, with the central vertex m; and m vertices of degree one
(m=+1);, (m+2);,...,(2m);, where i = 29 — 1.

All subgraphs Haq_1, Hoe-1_1, and H;; give together the spanning tree 7' of
U(Py, 2971 —1; k) with the 29-cyclic labeling. Diametrical path of T can be
chosen so that the subgraphs H;; = St corresponding to the first and the
last edge on P»q contribute to the diameter d by 2 and all the other 27 — 3
subgraphs H;; contribute by 1. Two stars K, do not increase diameter
and so d =274 1.

Now we replace the first double star S; corresponding to the first edge on
Py, by the tree Cy(D). Diameter D of Cy(D) is odd, ranging from 3 to k,
which extends the diameter d of the spanning tree always by 2 from 27 + 2
to 27 —1+k. Similarly we replace stepwise all 22— 1 double stars St and Sy
by trees C7(D) and Crr(D), respectively. When one of the stars is replaced
and D is changed gradually we obtain spanning trees with the next %
even diameters. The largest diameter is d = 29 — 1 + k + (27 — 2)(k —
1) = 2% — k + 1. Overall we obtain spanning trees with even diameters
294+ 2 < d<2% — k+ 1. Examples are shown in Figure 5.5.
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Vs W Vi Wz

=3

d=10

Figure 5.5: Spanning trees of Ko with 8-cyclic labelings and diameters d = 10
and d = 36.

(3) Stretching subgraphs with pure edges (diameters: 27k —k+2 < d < 27k —1)

In this case the underlying tree is of course again the path P,,. The sub-

graphs H;;, for each edge (i,j) € E(Py) are constructed as for the longest

259
diameter in the previous case. It means that they alternate between the
graphs Cr(k) and Cp7(k). The only way how to increase the diameter d of
the spanning tree 7" is to extend the diameter of the subgraphs Ho-1_; and

Hy, | with pure edges.

We start with the odd diameter d = 29k — k + 2 which is obtained if both
subgraphs Hge-1; and Hye_q are the stars K, with the central vertices
m;, where i € {2971 — 1,29 — 1}. Then we convert one of the stars, say in
partite set V; for 7 = 2971 — 1, to a broom B(m+1, s), where 1 < s <m—1.
If m+1—s = 2r, the vertices of the path P, i, are my;,2m;, (m +
1);,(2m — 1)4,...,(m + 7 —1);,(2m + 1 — r);, and the star K ; has the
central vertex (2m + 1 — r); with attached vertices of degree one, (m +
i, (m+7r+1);...,2m—r);. Im+1—s=2r+1, the path P, has
the vertices mg, 2m;, (m + 1);, (2m — 1)4,...,(2m + 1 —r);, (m + r);, and
the star K ¢ has the central vertex (m + r);. The attached endvertices are
(m+7r4+1);,(m=+7r+2);,...,(2m —7);. The edges have in both cases pure
lengths ¢;; = m,m —1,...,1. Each broom B(m + 1, s) contributes by the

diameter m +1 — s.
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When s is changing from m —1 to 1, we obtain the spanning trees with even
and odd diameters 29k —k+3,2% —k+4,...,2% —k+m+1 = 2%—%—!—1.
We can repeat the procedure with the brooms in the partite set Vo 1 to
obtain the spanning trees with the missing diameters 29k — % + 2,29k —
% +3,...,2% — % +m = 2% — 1. See example in Figure 5.6.

Figure 5.6: Spanning tree of Kog with 4-cyclic blended labeling and diameter
d = 26.

Now we have constructed spanning trees of all possible diameters 3 < d < 29k —1

and so the proof is complete. O

It remains to solve the problem for Ky. This case is covered by the result

introduced in the following section, where we use swapping labelings.

5.2 Constructions based on swapping labelings

With the swapping labeling available we prove the following theorem.

Theorem 5.3 For any d, 3 < d < 4n — 1, there exists a tree T with the
diameter d such that there is a T-factorization of the complete graph K,,, where

n 18 a positive integer.

Proof. In constructions we consider a spanning tree 7' with the vertex set
V(T) = U, Vi, where Von Vi = 0 and V; = {0;,1;,2;, ..., (2n—1);}, for i = 0, 1.
We will view each spanning tree with a swapping labeling as a union of the
subgraphs Hy, H; and Hy;. Subgraphs Hy, H; and Hy; will contribute by dy, d;
and dy; respectively to the diameter d = diam(7") so that d = dy + di + dp1.
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(1) Stretching the subgraphs Hy and H; (diameters: 3 < d < 2n —1).

Hy; is constructed as the double star (similarly to the construction of S;
in page 35). Two stars K;,_; have the central vertices (n — 1)o, (n — 1);
connected by an edge of the mixed length f3; = 0. The endvertices attached
to (n —1); for i € {0,1} are 0;,1,...,(n —2);, where j =0 for i =1 and
j = 1for ¢ = 0. The edges have the mixed lengths /p; =1,2,...,n—1,n+
1,n+2,...,2n — 1. There is no edge of the length £y; =n in Hy;.

The smallest diameter is obtained if Hy and H; are the stars K, with the
central vertices (n—1);, 7 € {0, 1}, and endvertices n;, (n+1);,..., (2n—1),.
Clearly, edges have all required pure lengths in both subgraphs. In this case
dy = dy = dop; = 1 which gives d = 3.

Further we increase the diameter d by converting one of the subgraphs H
or H; or finally both of them to a broom B(n + 1,t), where 1 <t <n —2.
We choose to start with the subgraph Hj.

— If n+ 1 —t = 2r the vertices of the path P,.;_; are (2n — 1)g, (n —
1)o, (2n — 2)o, 0, - - -, (2n —7)0, (n — 2+ 7)o, and the star K, has the
central vertex (n — 2+ 7)o with attached endvertices (n—147), (n+
7)oy ---5 (20 —7 — 1)o.

— If n+1—1t=2r+1 the vertices of the path P,,; ; are (2n—1)q, (n —
1)o, (2n — 2)o,n0, - - -, (n — 2+ 7)o, (2n — 7 — 1)p, and the star K;; has
the central vertex (2n — r — 1)y with attached endvertices (n — 1 +
o, (N + 7)oy ..., (2n — 1 — 2),.

In both cases the edges have all required pure lengths £y = 1,2,...,n.
Each broom contributes by diameter dy = n — t. Because d; = dp; = 1 we
obtaind=n—t+2,and for 1 <t<n—-2is4<d<n+1.

Further we apply the same procedure to the graph H; which so far remained
to be the star K, ,. Then H, contributes by the maximum value dy = n—1,
doyy =1, and dy =n —t. This yieldsd =2n —t, and for 1 <t <n—2is
n+2<d<2n-—1.

By that we completed the construction of spanning trees with diameters

from the interval 3 < d < 2n — 1. For an examples see Figure 5.7.

To show that our spanning trees have swapping labelings it remains to find

an isomorphisms required by condition (2) of Definition 4.2. For the case
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(1) each spanning tree T is isomorphic to G = T\{((n—1)o, (2n—1)), ((n—
1)1, (2n—1)1)}U{((n—=1)0, (2n—1)1), ((n—1)1, (2n—1),) } by an isomorphism
¢ : T — G such that ¢((2n —1)y) = (2n — 1)1, ©((2n — 1);) = (2n — 1)y,
and ¢(z;) = z; for any vertex z; € V(T') different from (2n—1)q or (2n—1);.

T

Vi G

0o

Vi 17 Vo

0o 01

1o 1 1o

2 2, 2

3g

Figure 5.7: Spanning tree of K¢ with the swapping labeling and diameter
d=4.

(2) Stretching the subgraph Hy; (diameters: 2n < d < 4n — 1).

We start with the construction of the subgraphs Hy, H;. Hj is constructed
as a broom B(n +1,2).

— If n—1 = 2r the vertices of the path P,_; are (n—1)o, (2n—1)g, ng, (2n—
2)o, .-, (m—2+7)o, (2n — 7)o, and the star K » has the central vertex
(2n — r)o with attached endvertices (2n — 1 — 7)o, (2n — 2 — 7)o.

— If n — 1 = 2r 4+ 1 the vertices of the path P,_; are (n — 1)y, (2n —
1)o, 7o, (2n —2)g, ..., (2n — 7)o, (n — 1 + 1)y, and the star K 5 has the
central vertex (n—1+7)o with attached endvertices (n+r7)o, (n+7+1)o.

Again in both cases edges have the pure lengths fo0 = 1,2,...,n. The
subgraph Hj contributes to the whole diameter d of the spanning tree by
dy =diam(P, ;) +1=n—1.

H; is the path P,.;. For n+ 1 = 2s the vertices of the path are (n —
1)1, (2n—1)1,n1,(2n—2)1,...,(2n—s)1. For n+1 = 2s+1 the vertices of
the path are (n — 1)1, (2n — 1)1, n1,(2n — 2)1,...,(n — s+ 1);. It is easy to
check that the edges have the pure lengths ¢y = 1,2,...,n, and the path
contributes by the diameter d; = n.
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In the first step we let the subgraph Hj; be the double star as given by
the construction in case (1). Then dyp; = 1, and the whole diameter of the

spanning treeisd =n—14+n+ 1= 2n.

Further we increase the diameter dy; by replacing bipartite double star by
a graph similar to Cy(D) (see page 36). It means that we will obtain only
odd values of dy; from the interval 3 < dy; < 2n — 1. Let dy1 = 2r + 1,
where 1 <r <n-—1.

For r odd, Hy; has the diametrical bipartite path Py, 11 = (n—1)0,01, (n —
2)05 11, SR (”—1_%% (%)la (%)Oa (n_l_%)la SRR 105 (n_Q)la 005 (’I'L—
1)17

for r even, Py, 11 = (n—1)o,01, (n —2)o, 14,..., (% —1),(n—1- %)0, (n—
1—%)1,(5—=1)0,---,10,(n—=2)1,00, (n—1)1. The edges of the path have the
mixed lengths fg; = n+1,n+2,...,n+r,0,n—r+1,n—r+2,...,n—2,n—1.
To obtain the edges of the missing lengths we add two stars K ,_;_, with
the central vertices on the path Py, ;. For r odd, the central vertices
are (%)Z, i € {0,1}. The attached endvertices are (5t + 1);, (55F +

2)jy...,(n—2—="1); where j = 1ifi=0and j =0if ¢ = 1. Forr

even, the central vertices are (% — 1)i, i € {0,1} with the endvertices in
the opposite partite set (5);, (5 +1)j,...,(n—2—F);, where j = 1ifi =0
and j =0 if + = 1. The edges have in both cases the missing mixed lengths
bpp=12,....,.n—r,n+r+1,n+r+2,...,2n—1. There is no edge of the

mixed length £y = n.

By this construction we obtained the spanning trees with diameters d =
n—1+n+2r+1=2n+2r. Since 1 < r < n—1 we have all even values of
d from the interval 2n + 2 < d < 4n — 2. The odd values of d are obtained
when the subgraph Hj is replaced by the path P, constructed in the same
way as for the subgraph H;. An example is shown in Figure 5.8.

Each spanning tree T constructed in the case (2) is isomorphic to G =
T\{((n=1)o, (2n=1)o), ((n = 1)1, 2n = 1)1)} U{((n—1)o, (2n—1)1), ((n -
1)1, (2n — 1)g)} by the isomorphism ¢ : T — G, such that ¢(z;) = z; if
z € {n,n+1,....2n— 1} and i € {0,1}, p(zo) = z1 and (1) = x¢ if
z€{0,1,...,n—1}.

[y

—
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T G
Vo Vi @ Vo Vi

0o 01 R\ 0o 01
1o 19 1o
20 21 20
30 31 30

4o 4

50 51

60 61

7o 71 0

Figure 5.8: Spanning tree of K¢ with the swapping labeling and diameter d = 12.

We have found swapping labelings of spanning trees on 4n vertices with diam-
eters 3 < d < 4n — 1. Since a swapping labeling of a T" guarantees the existence

of a T-factorization of Ky, (Theorem 4.3), our proof is complete. O

Finally we can conclude this section by the following statement, which is just

the direct consequence of Theorem 5.1 and Theorem 5.3.

Theorem 5.4  For any integer d, such that 3 < d < 2n — 1 the complete graph

Koy, can be factorized into n isomorphic copies of a spanning tree with diameter d.



Chapter 6
Caterpillars

This chapter is devoted to the problem of isomorphic factorizations of Ks, into
caterpillars with diameter 4. By a caterpillar we mean a tree such that by deleting
of all vertices of degree one we obtain a path P. (We consider one isolated vertex
to be a path P; of length 0.) The path P is called the spine of the caterpillar.

A caterpillar with the smallest diameter is a star, and we know by now that a
factorization of any complete graph with more than 2 vertices into stars does not
exist. If the diameter of a caterpillar on 2n vertices is 3, then the caterpillar is a
double star. As was already mentioned, it is a well known fact that each complete
graph Ky, can be factorized into symmetric double stars [4]. If a double star is
not symmetric, one of the central vertices of the double star has a degree larger
than n, thus by Degree Condition 2.1 a factorization does not exist. Therefore
the first interesting case is when the diameter of the caterpillar is 4.

Each caterpillar can be characterized by the degree sequence of the vertices
of the spine. The spine of the caterpillar with d = 4 consists of three vertices and
two edges. Further we will use the same notation as in [7] or [16]. We denote the
endvertices of the spine by A and C' and the central vertex by b. The two edges
of the spine are then (A, b) and (b, C). By a (d1, do, d3)-caterpillar we denote the
caterpillar of diameter 4, such that deg(A) = dy, deg(b) = da, and deg(C) = ds.
By a [t1, to, t3]-caterpillar where t; > to > t3 we specify the degrees of the vertices
of the spine without determining their exact order on the spine.

Known necessary conditions for a [t1, 9, t3]-caterpillar on 2n vertices to factor-
ize Ky, are the following. By Degree Condition the largest degree of a caterpillar
is at most n, which implies t; < n. Moreover D. Fronéek showed in [6] that the
largest degree must be n, thus t; = n. Obviously the sum of the degrees of the

47
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vertices on the spine is always t; + t3 + t3 = 2n 4+ 1. In combination with the
previous condition we obtain t5 +t3 = n+1. It was proved by P. Eldergill [4] that
a (dy, 2, ds)-caterpillar does not factorize Ko, for any n. He also showed that the
(2, 3, 2)-caterpillar does not factorize Kg. This, together with the following theo-
rem by M. Kubesa [17] is the complete classification of caterpillars with diameter

4 for factorization of K5, when n is odd.

Theorem 6.1 (Kubesa) Letn be an odd integer, n > 5. Let Ry, be a caterpil-
lar on 2n vertices with diameter 4. For any Ry, which is a (n,ds, ds)-caterpillar
with 3 < dy < n—1, dy+d3 = n+1 ora (di,n,ds)-caterpillar with 2 < d; < n—1,
di +ds =n+1 there is an Ry, -factorization of Ko,.

In following two sections we complement this results in order to obtain the
classification of caterpillars with diameter 4 for factorization of K, when n is
even. We split the problem into two cases according to the number of vertices
of the complete graph. Firstly for K5,, where n is even but not a power of two,
we use the method of factorization based on fixing labelings. Secondly for K,

where n is a power of two, we use swapping labelings.

6.1 Caterpillars on 27k vertices

In the following four lemmas we give constructions of fixing labelings for caterpil-
lars Ry on 2nk vertices with d = 4, such that 2nk = 29, where ¢,k > 1. Then
the number of vertices 29k is a multiple of 4, but different from a power of 2. For
each graph with a fixing labeling there must exist an underlying tree 7" with a
p-symmetric graceful labeling. Further in our constructions we use a symmetric

double star Sy, on 2n vertices, where n > 1.

Symmetric graceful labeling of a double star 5,

To obtain a symmetric graceful labeling of S,,, we assign labels 0 and n to the
central vertices of the stars K, 1, which are then connected by the symmetric
edge (0,n) of the maximum length n. The labels of the vertices of degree 1
joined to the central vertex 0 are 1,2,...,n —1. Thus the edges have the lengths
1,2,...,n — 1. The labels of the vertices of degree 1 joined to the central vertex

naren+1,n+2, ...,2n—1, and the edges again have the lengths 1,2,...,n—1.
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Figure 6.1: Symmetric graceful labeling of Sig.

The constructions differ when one of the endvertices of the spine has the
largest possible degree, we can assume deg(A) = A(Rgy,) = nk, from the con-
structions when the central vertex of the spine has the largest possible degree
deg(b) = A(Ronk) = nk. We start with the case when deg(A) = nk.

Every (nk,m,nk + 1 — m)-caterpillar, where 3 < m < k — 1 can be reduced
by “cutting off” 2(n — 1)k vertices of degree one to a (k,m, k+ 1 —m)-caterpillar
on 2k vertices. Kubesa in [17] gives constructions of blended p-labelings for
(k,m, k+1—m)-caterpillars, where £ > 1 and odd, and 3 < m < k—1. Kubesa’s
constructions can be easily extended to the constructions of 2n-cyclic labelings
of (nk,m,nk + 1 — m)-caterpillars. Just to recall, a 2n-cyclic labeling is also a
fixing labeling with empty fixed set Vz = (). Based on Kubesa’s results we prove

the following lemma.

Lemma 6.2 Let 2nk = 2%, where g,k > 1 and k is odd. Then every
(nk,m,nk + 1 — m)-caterpillar, where 3 < m < k — 1, has a 2n-cyclic blended
labeling.

Proof. ~ As the underlying tree we consider Ss, with the symmetric graceful
labeling given above. Let Ry, be an (nk, m, nk+1—m)-caterpillar, such that n =
2971 where ¢, k > 1, and k is odd, with the vertex set V; = {0;,1;,2;, ..., (k—1);},
fori =0,1,...,2n — 1. Let Ry be a (k,m,k + 1 — m)-caterpillar, where £ > 1
and odd, and 3 < m < k — 1, with the vertex set V; = {0;,1;,2;,..., (k —1);},
for 2+ = 0 and n.

We construct a (k,m,k + 1 — m)-caterpillar with a blended p-labeling on
the vertices of the partite sets V and V,, according to the construction given by
Kubesa. (In Kubesa’s construction the partite sets are denoted by V; and V;.)

To have a 2n-cyclic labeling of Ry, we need to add bipartite subgraphs Hjg
and Hj, fori =1,2,...,n—1and j =n+1,n+2,...,2n — 1 with bipartite
p-labelings. We construct each subgraph H;y as the star K ;. The central vertex
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is the vertex A on the spine of Ry;. Each of the subgraphs Hj, is again the
star K with the central vertex C on the spine of Ry;. This is possible since in
Kubesa’s constructions the vertices A and C' of the spine of a caterpillar Ry are
always in different partite sets. Then H;y and Hj, have exactly k& mixed edges of
all different mixed lengths ¢y; and /,,;, respectively. In this way (n — 1)k vertices
are connected to the vertex A and another (n — 1)k vertices are connected to the
vertex C of Ry, thus we have obtained a caterpillar Ry, with 2n-cyclic labeling.

Examples are shown in Figure 6.3. O

Lemma 6.3 Let 2nk = 2%, where g,k > 1 and k is odd. Then every
(nk,m,nk + 1 — m)-caterpillar, where k < m < nk — 1, has a fizing blended
labeling.

Proof.  Again the underlying tree is Sy, with given symmetric graceful labeling.
Let Ryni be an (nk, m, nk+1—m)-caterpillar, such that n = 297!, ¢,k > 1 and k
is odd, with the vertex set V (Roni) = Ui, Vi, where V; = {0;,1;,2;,..., (k—1);},
fori=0,1,...,2n — 1. We set k = 2h + 1. Let the vertices of the spine have the
labels:

A =0,, b= 0y, and C = (2h),.

We start with the construction of a 2n-cyclic labeling for the case when m = k.
The labeling will then be easily transformed to fixing labelings for all remaining
cases k <m < nk — 1.

Then the (nk, k,nk + 1 — k)-caterpillar consists of

(i) Subgraphs Hy, and H, with p-labelings. There are pure edges (0o, (2h)o),
(0o, (2h — 1)p), ..., (09, (h + 1)o) of all the lengths £yo = 1,2, ..., h and
pure edges (0, (2h),), (0,, (2 — 1),), ..., (0,, (B + 1),) of all the lengths
bon=1,2,... L.

(ii) Bipartite subgraph Hy, with a bipartite p-labeling. Hy, contains mixed
edges (0g,0y), (0, 1), ..., (0g, hy) of the lengths ¢y, = 0,1,2, ..., h, and
mixed edges (ho,0,), ((h — 1)o,0,),---, (10,0,) of the remaining lengths
lon=h+1,h+2,...,2h.

(iii) Bipartite subgraphs H;y for i =1,2,...,n —1, and Hj, for j =n+1,n+
2,...,2n, which again have bipartite p-labelings. Each of the subgraphs H;,
is the star K with the central vertex (2h)y. Obviously in each of them

there are exactly k£ mixed edges of all different mixed lengths £y;. Similarly,
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each of the subgraphs Hj, is the star K, with the central vertex 0, and k&
mixed edges of different mixed lengths ¢,,;.

Now it suffices to change slightly the previous construction to obtain fixing
labelings when £ < m < nk — 1.

Let i € Vg for i = 1,2,...,n — 1. Then an (nk,m,nk + 1 — m)-caterpillar
consists of the same subgraphs H, and H,, with p-labelings and the same bipartite
subgraph Hy, with a bipartite p-labeling as given in steps (i) and (i¢) of the
previous construction. Also each Hj, for j =n+1,n+2,...,2n is again the star
K, j, with the central vertex 0, as in step (4i1).

Each vertex of the n vertices in the fixed partite sets V; can be connected
arbitrarily to the vertex b = 0y or C' = 2hy so that we obtain required degrees.

For example let m — k = pk + r, where 0 < r < k. Since £k < m < nk — 1,
it holds that 0 < p < n — 2. We connect all the vertices of the fixed partite sets
Vifori=1,2,...,p, and the vertices Opt1, 1pt1, 2p11, - - -, Tp41 Of the fixed partite
set Vp4+1 to the vertex 0. The remaining nk — m vertices in the fixed partite sets

are connected to the vertex (2h). m

For an easier verification of the proofs we will demonstrate our constructions
on an example. Particularly we will illustrate by figures labelings of all caterpillars
with 40 vertices and d = 4, which are considered in Lemmas 6.2 and 6.3. For
Ronk = Ry is k = 5 and n = 4. We deal now with the cases when deg(A4) =
A(Ry4y) = 20. An overview is given in Table 6.1.

Ry type of the labeling | Figure | Lemma
(20,3,8) | 2n-cyclic labeling 6.3 6.2
(20,4,17) | 2n-cyclic labeling 6.3 6.2
(20,5,16) | 2n-cyclic labeling 6.4 6.3
(20,6,15) | fixing labeling 6.4 6.3
(20,19,2) | fixing labeling 6.4 6.3

Table 6.1: Caterpillars on 40 vertices with d = 4 and deg(A) = 20 that

factorize Kyg.
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By “cutting of” 30 vertices (5, 3, 3)-caterpillar is obtained with the blended
p-labeling given by Kubesa.

Vi o | o Vi
o Vo v; ;

Vs o o o Ve
O O . I O
O I I O
Vi o (20, 3, 18)-caterpillar | o Vs

By “cutting of 7 30 vertices (5,4, 2)-caterpillar is obtained with the blended
p-labeling given by Kubesa.

Vs o | : oV
: Vo Vs :

Vi oo o Ve
: \ C & |
O ‘ | O
Vi o (20,4, 17)-caterpillar | o Vs

Figure 6.3: 8-cyclic labelings of caterpillars on 40 vertices with deg(A) = 20

and diameter d = 4.
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Vi

Vs

Vy

Vi

Vi

(20, 5, 16)-caterpillar

VF = {17 2: 3}

(20, 6, 15)-caterpillar

Vi ={1,2,3}

(20,19, 2)-caterpillar

93

Vs

Vz

Ve

Vs

Vs

Figure 6.4: Fizing labelings of caterpillars on 40 vertices with deg(A) = 20

and diameter d = 4.
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Now we continue with the constructions of labelings for caterpillars Ry, where

deg(b) = nk. Without loss of generality we can assume that deg(A) < deg(C).
k

%1
“cutting oft” 2(n—1)k vertices of degree one to an (m, k, k+1—m)-caterpillar on

Also each (m,nk,nk+1—m)-caterpillar, where 2 < m < , can be reduced by
2k vertices which allows a blended p-labeling as was proved by Kubesa [17]. Again
we use Kubesa’s constructions to find 2n-cyclic labelings of (m, nk, nk +1 — m)-
caterpillars.

Lemma 6.4 Let 2nk = 2%k, where g,k > 1 and k is odd. Then every

(m,nk,nk + 1 — m)-caterpillar, where 2 < m < %, has a 2n-cyclic blended

labeling.

Proof.  The underlying tree is S5, with the graceful symmetric labeling given
on page 48. Let Ry, be an (m, nk,nk + 1 — m)-caterpillar, such that n = 2971,
where ¢,k > 1 and k is odd. The vertex set is V; = {0;,1;,2;,...,(k — 1);}, for
i=0,1,...,2n— 1. Let Ry, be an (m, k, k + 1 — m)-caterpillar, where k > 1 and
odd, and 2 < m < %, with the vertex set V; = {0;,1;,2;, ..., (k—1);}, for i =0
and n.

We take a caterpillar Ry, on the vertices of the partite sets Vy and V,, with
a blended p-labeling given by Kubesa. (In Kubesa’s notation partite sets are
denoted by V4 and V7.)

To obtain a 2n-cyclic labeling of R, we add bipartite subgraphs H;, and
Hj, fori=1,2,...,n—1and for j =n+1,n+2,...,2n — 1 with bipartite
p-labelings. Since in Kubesa’s constructions the vertices b and C' of the spine
of the caterpillar Ry, are in different partite sets, the following construction is
possible. Each subgraph Hj, is the star K;j, with the central vertex C' on the
spine of Ry;. Each subgraph Hj, is also the star K;;, with the central vertex
b of the spine of Ry;. Then each H;y and Hj, has exactly k mixed edges of all
different mixed lengths £y; and ¢,;, respectively.

In this way (n— 1)k vertices are connected to the vertex b and another (n—1)k
vertices are connected to the vertex C' of Ry, thus we obtained a caterpillar Ry,
with a 2n-cyclic labeling. Examples are shown in Figure 6.5. O

Lemma 6.5 Let 2nk = 2%k, where g,k > 1 and k is odd. Then every

: k+1 k : ~
(m,nk,nk+1—m)-caterpillar, where 3= < m < &%, has a fizing blended labeling.
Proof.  As the underlying tree we again consider Ss, with the given symmetric

graceful labeling (see page 48). Let Ry, be an (m,nk,nk + 1 — m)-caterpillar,
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such that n =271, ¢,k > 1 and £ is odd, with the vertex set V(Ronx) = U, Vi,
where VVZ = {02,11,21,,(1{}— 1)1}, for i = 0,1,...,2”— 1. We set £k = 2h + 1.

Suppose the vertices of the spine have the labels:

Azho,b:OnandCzoo.

First we construct a 2n-cyclic labeling for the case when m = % Similarly
to the proof of Lemma 6.3 we transform this labeling to fixing labelings for all
remaining cases % <m < "7’“
Then the (%, nk,nk +1— %)—caterpillar consists of
(i) Subgraphs Hy and H,, with p-labelings. There are pure edges (hg, (h+1)o),
(ho, (h + 2)9), - - -, (ho, (2h)o) of all the lengths oo = 1,2, ..., h and pure
edges (0, (2h)n), (0n, (2h — 1)), ..., (On, (h 4+ 1),) of all the lengths £, =

1,2,...,h.

(ii) Bipartite subgraph Hy, with a bipartite p-labeling. Hy, contains mixed
edges (0g,0y), (0o, 1), --., (0o, hy) of the lengths fo, = 0,1,2, ..., h, and
mixed edges (hg,0,),((h — 1)o,0,),.-.,(10,0,) of the remaining lengths
lon =h+1,h+2,...,2h.

(iii) Bipartite subgraphs H;y for i =1,2,...,n —1, and Hj, for j =n+1,n+
2,...,2n, with bipartite p-labelings. Each of the subgraphs H;, is the star
K, i, with the central vertex 0. Also each of the subgraphs Hj, is the star
K with the central vertex 0,. It is obvious that in each of them are k
mixed edges of all different mixed lengths £o; or £,;, respectively.

Now we change slightly the previous construction to obtain fixing labelings
when % <m< ”7’“

We choose the fixed set Vi as follows. Let i € Vi fort=1,2,...,n—1. Then
an (m,nk,nk + 1 — m)-caterpillar consists of the same subgraphs H, and H,
with p-labelings and the same bipartite subgraph Hj, with a bipartite p-labeling
as given in steps (i) and (4i) of the previous construction. Also, each Hj, for
j=n+1,n+2,...,2n is again the star K;; with the central vertex 0, as in
step (44).

We reconnect some of the vertices in the fixed partite sets V; to the vertex
A = hg so that the required degrees of the vertices A and C' are obtained. One

of many possibilities how to do that is the following.
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Letm—%zpk+r,where0§r<k. Since% <m< %isogpg 5— 1
We connect to the vertex A = hy all the vertices of the fixed partite sets V; for
¢ =1,2,...,p and also the vertices Op;1, 1541, 2p41,...,7p+1 of the fixed partite

set V,,1. Remaining nk — -1 — m vertices in fixed partite sets are connected to

2
the vertex C = 0. O

In Table 6.2 we consider caterpillars Ry with deg(b) = 20. Their labelings

are given in proofs of Lemmas 6.4 and 6.5.

Ry type of the labeling | Figure | Lemma ‘
(2,20,19) | 2n-cyclic labeling 6.5 6.4
(3,20,18) | 2n-cyclic labeling 6.6 6.5
(4,20,17) | fixing labeling 6.6 6.5
(10,20,11) | fixing labeling 6.6 6.5

Table 6.2: Caterpillars on 40 vertices with d = 4 and deg(b) = 20 that

factorize Kyg.

By “cutting of 7 30 vertices is obtained (2,5, 4)-caterpillar with the blended
p-labeling given by Kubesa.

Vs V7
Vo Vi
V2 Vs

b C
/: ;

Vi | o Vs

(2,20, 19)-caterpillar

Figure 6.5: 8-cyclic labeling of caterpillar on 40 vertices with deg(b) = 20
and diameter d = 4.
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V3

Vy

Vi

V3

Vy

Vi

Vi

A

(3,20, 18)-caterpillar
VF = {17 2: 3}

Vi
b

QX

4

7 o ’/.1

N

(4,20, 16)-caterpillar

(10,20, 11)-caterpillar

o7

Vz

Vs

|

Ve

Vs

Vs

Figure 6.6: Fizing labelings of caterpillars on 40 vertices with deg(b) = 20

and diameter d = 4.
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Based on previous four lemmas we can state the following theorem.

Theorem 6.6 Let 2nk = 2%, where ¢,k > 1 and k is odd. Let Ro, be a
caterpillar with diameter 4. There is an Rou-factorization of Kony if and only if
Roni is an (nk,ds, ds)-caterpillar with 3 < dy < nk —1, dy+ds =nk+1 or a
(dv, nk,ds)-caterpillar with 2 < dy <nk —1, dy +d3 = nk + 1.

Proof.  The theorem gives the necessary and sufficient condition for the exis-
tence of an Ry,,-factorization of Ky, when n = 29, ¢,k > 1 and k is odd. The
sufficiency is a direct consequence of Theorem 3.12 and Lemmas 6.2, 6.3, 6.4, and
6.5, where fixing labelings of Ry, are given. The necessity follows from already
mentioned results by Eldergill [4] and Fronéek [6]. m

6.2 Caterpillars on 27 vertices

In this section we focus on the case of factorization of Ks, into caterpillars with
diameter four which is not covered by any of the previously mentioned results. It
is the case when the number of vertices of K5, is a power of two, thus 2n = 27 for
g > 2. We do not consider K, since the diameter of a spanning tree on 4 vertices
is at most 3.

We set 2n = 4k and show that there exist factorizations of Ky, where 4k = 29
using the method based on swapping labelings. The constructions of labelings
will again differ depending on which of the vertices on the spine of Ry has
the largest degree A(Ry) = 2k. In the proofs we always consider a caterpillar
Ry, where 4k = 29, ¢ > 2, with the vertex V(Ry) = Vo U VL, VUV = 0,
and V; = {0;,1;,...,(2k — 1);} for i € {0,1}. To find a swapping labeling of
Ry, we give labelings of the subgraphs Hy, H; and the bipartite subgraph Hy;
separately and then we show that there exists also the required isomorphism ¢
(see Definition 4.2).

Lemma 6.7 Let 4k = 29, where ¢ > 2. Then every (2k,m,2k — m + 1)-
caterpillar, for 3 < m < 2k — 1, has a swapping blended labeling.

Proof.  Let Ry be a (2k, m, 2k — m + 1)-caterpillar, where k = 2972 and ¢ > 2.
We split the proof of the lemma into two cases.

Case 1 For3<m<k+1.
We let the vertices of the spine of R4 have the labels:

AZOO,b:(k+m—2)1, andC’:(k)l.
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H, - has the pure edges (0o, (2k — 1)o), (0o, (2k — 2)0), - - -, (0o, (2k — m + 2))
of the pure lengths oo = 1,2,...,m — 2 and the pure edges (0g, (m —
1)o), (09, mg), - - ., (0g, ko) of the pure lengths log = m — 1,m, ... k.

H, — has the pure edges (ki, (k+1)1), (k1, (K +2)1,..., (k1, (2k —1)1)) and the
pure edge (01, k1) of all the required pure lengths ¢;; = 1,2,..., k.

Hy; — has the mixed edges (0g, 11), (09, 21), - .., (0p, (k—1)1) of the mixed lengths
lo1 = 1,2,...,k — 1 and the mixed edges ((m — 2)g, (kK +m — 2)1), ((m —
3o, (k+m —2)1),...,(0g, (k +m — 2)1) of the mixed lengths ¢y; = k, k +
1,...,k +m — 2. Further, for m # k + 1, there are the mixed edges
((2k — m + 1)o, k1), ((2k — m)o, k1), ..., ((k + 1)o, k1) of the mixed lengths
by =k+m—1,k+m,...,2k — 1. There is no edge of the mixed length
ly; = 0.

Case 2 Fork+2<m<2k-—1.
The vertices of the spine of Ry are assigned the labels:

AZOO,b:(k))l, andCz(m—k—l)l

Hy — has the pure edges (0q, ko), (0o, (K + 1)), .., (00, (2k — 1)o) of all the
required pure lengths loo =k, bk —1,..., 1.

H; — has the pure edges (ki,01),(k1,11),-..,(k1,(m — k — 1);) of the pure
lengths ¢1; = k,k —1,...,2k — m + 1 and the pure edges ((k — 1)1, (m —
k—1)1),((k—2),(m—k—1)1),...,((m —k)1,(m — k — 1); of the pure
lengths ¢1; =2k — m,2k —m —1,...,1.

Hy — has the mixed edges (0, k1), (0o, (K + 1)1),...,(00,(2k — 1)1) of
the mixed lengths f/yy = n,n + 1,...,2n — 1 and the mixed edges
(Lo, k1), (20, k1), - -, ((k — 1)g, k1) with the remaining mixed lengths £y =
k—1,k—2,...,1. There is again no edge of the mixed length ¢5; = 0.

Each caterpillar Ry, constructed in Case 1 or Case 2 is isomorphic to the
caterpillar G = Ry \ {(00, ko), (01, k1) } U {(00, 01), (ko, k1)} by the isomorphism
¢ : Ry, —> G, such that (ko) = 01,0(01) = ko, and ¢(z,) = =z, for any
r € V(Rayx) — {ko,0:}, 7 € {0,1}. It means that we are adding two mixed
edges, (0o, 01), (ko, k1), of the missing mixed length £y; = 0 to the last &k factors
Gi,Gri1,- - -, Gop_1, while the pure edges (09, ko), (01, k1) of the maximum pure
length ¢yg = ¢1; = k are omitted. O
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Lemma 6.8 Let 4k = 29, where ¢ > 2. Then every (m,2k,2k — m + 1)-
caterpillar, for 2 < m <k, has a swapping blended labeling.
Proof.  Let Ry be an (m, 2k, 2k —m + 1)-caterpillar, where k£ = 2972 and ¢ > 2.
We again split constructions of the labelings into two cases.

Casel For2<m<k-—1.

To the vertices of the spine of Ry, we assign the labels:
A= (k — m)l, b= 00, and C' = (k)l

Hy — has the pure edges (0o, 1o), (0, 20), - - -, (0, ko) of the pure lengths £y =
1,2,... k.

H; — has the pure edges (k1, (k4 1)1), (k1, (kK +2)1), ..., (k1, (2k — m)1) of the
pure lengths £1; = 1,2,..., k—m, the pure edges ((k—m)1, (2k—1)1), ((k—
m)1, (2k—2)1),...,(k—m)1, (2k—m+1); of the pure lengths ¢;; = k—m+
1,k—m+2,...,k —1, and finally the pure edge (01, k1) of the remaining
length ¢y, = k.

Hy; —has the mixed edges (0g, 11), (0, 21), . - ., (09, k1) of the mixed lengths £y; =
1, 2, ey k and the mixed edges ((2]{?—1)0, kl), ((2]{?—2)0, kl), ey ((k+1)0, kl)
of the mixed lengths ¢py =k + 1,k +2,...,2k — 1. The edge of the mixed

length fy; = 0 is missing.

Case 2 Form =k.
The vertices of the spine of Ry have the labels:

A= (k - m)l, b= 00, and C' = (k)l

Hjy — has the pure edges (0o, (2k — 1)o), (09, 20), (00, 30), - - - , (0o, ko) of the pure
lengths 600 = 1, 2, 3, ceey k.

H, — has the pure edges (kla (k o 1)1): ((Qk - 1)1) 11)a ((2k - 1)1) 21)a SRR ((2k -
1)1, (k—2)1) of the lengths ¢1; = 1,2,3,...,k—1 and the pure edge (01, k1)
of the remaining length ¢;; = k.

Hy, — has the mixed edges (1o, k1), (0, k1), (0, (K + 1)1) ..., (0, (2k — 1)) of
the lengths foy = k — 1,k,k + 1,...,2k — 1 and the mixed edges ((k +
1)o, (2k — 1)1), (K +2)0, (2k — 1)1), ..., ((2k — 2)o, (2k — 1);) of the lengths
byy = k— 2,k —3,...,1. Again the edge of the mixed length £y; = 0 is

missing.
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Similarly to the proof of the previous lemma each caterpillar R4 constructed in
Case 1 or Case 2 is isomorphic to the caterpillar G = Ry \ {(0o, ko), (01, k1) } U
{(09,01), (ko,k1)} by the isomorphism ¢ : Ry — G, such that (k) =
01,0(01) = ko, and @(z,) = z, for any z, € V(Ra) — {ko,0:}, 7 € {0,1}.
m

As an example of the constructions given in the proofs of Lemmas 6.7 and
6.8 we show the swapping labelings of all caterpillars ¢ with diameter four for

which there exist factorizations of Ki5. An overview is given by Table 6.3.

R | Figure | Lemma | Case
(8,3,6) | 6.7 6.7 1
(8,4,5) | 6.7 6.7 1
(8,5,4) | 6.7 6.7 1
(8,6,3) | 6.7 6.7 2
(8,7,2) | 6.7 6.7 2
(2,8,7) | 6.8 6.8 1
(3,8,6) | 6.8 6.8 1
(4,8,5) | 6.8 6.8 2

Table 6.3: Caterpillars on 16 vertices with d = 4 that factorize Kig.
Previous two lemmas allow us to state the following theorem.

Theorem 6.9 Let Ry, where 4k = 29, ¢ > 2, be a caterpillar with diameter 4.
There is an Ryy-factorization of Ky if and only if Ryy, is an (2k, dy, d3)-caterpillar
with 3 < dy <2k —1, dy+ds =2k+1, or a (dy, 2k, d3)-caterpillar with 2 < d; <
2k — 1, dy +ds = 2k + 1.

Proof.  The sufficiency of the conditions for the existence of an Ry-factorization
of Ky, when 4k = 29, ¢ > 2 is a direct consequence of Theorem 4.3 and Lemmas
6.7 and 6.8 where swapping labelings for R4, are given. The necessity follows
from the results by Eldergil [4] and Froncek [6]. O
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(8, 3, 6)-caterpillar (8,4, 5)-caterpillar

Vo Vi

b
(8,5, 4)-caterpillar

Sl

(8,6, 3)-caterpillar (8,7,2)-caterpillar

Figure 6.7: Swapping labelings of caterpillars on 16 vertices with deg(A) = 8
and diameter d = 4.
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Vo Vi Vo Vi

b b
A
A
C
C
(2,8, 7)-caterpillar (3,8, 6)-caterpillar
Vo Vi
b

°C
(4,8, 5)-caterpillar

Figure 6.8: Swapping labelings of caterpillars on 16 vertices with deg(b) = 8
and diameter d = 4.

Finally we summarize the results on factorizations of Ks, into caterpillars
with diameter 4.

Theorem 6.10 Let Ry, be a caterpillar on 2n vertices with diameter 4, where
n is an integer, n > 2. There exists an Ry,-factorization of Ko, if and only if
A(Ry,) = n and Ry, is not a (di, 2, ds)-caterpillar or the (2,3, 2)-caterpillar.

Proof.  Follows from Theorems 6.1, 6.6, and 6.9, and the results obtained by
Eldergil [4] and Froncek [6] for Ry,-factorizations of Ko,. O



Chapter 7
Conclusion

The objective of this thesis was to obtain results on isomorphic factorizations
of K4, into spanning trees complementing the results known for spanning tree
factorizations of Ky, 5. Particularly, our goal was to decide if for any given d,
such that 3 < d < 4n — 1, there exist a factorization of Ky, into a spanning
tree with the diameter d and to complete the classification of caterpillars with
diameter 4 that factorize Kj4,. We have shown that to solve these problems, it
was necessary to find new methods for isomorphic decompositions of Ky,.

We have introduced two new methods, which together allowed us to solve
the problems mentioned above. The first method can be used to find G-
decompositions of a complete graph Ky,r, where n,k > 1 and k is odd, into
nk copies of a graph G with 2nk — 1 edges. The method is based on a new type
of vertex labeling which we call the fixing blended labeling. As a special case
of the fixing labeling we distinguish the 2n-cyclic blended labeling. The fixing
labeling is a further generalization of the blended p-labeling introduced by D.
Froncek as a tool for spanning tree factorizations of Ky, o. We have used 2n-
cyclic labelings to show that there are factorizations of Kj,, for 2n = 29, where
g > 1, into spanning trees with given diameter. Further we gave fixing labelings
of all caterpillars on 29k vertices with diameter 4, which were admissible for fac-
torization of Ky. By admissible we mean caterpillars that are not excluded by
the results of P. Eldergill [4] and D. Froncek [7].

The second method is suitable for a G-decomposition of Ky, into 2n copies
of a given graph G with 4n — 1 edges. Again the method is based on a vertex
labeling, which we call the swapping blended labeling. This method enabled us

to find the factorizations also when the number of vertices of a complete graph

64
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is a power of 2, which is the only case not covered by the method based on
the fixing labeling. We have answered the question about factorizations of Ky,
into spanning trees with a given diameter d completely by giving the swapping
labelings of trees on 4n vertices for d, where 3 < d < 4n — 1. We have completed
the classification of caterpillars with diameter 4 by giving swapping labelings of
all admissible caterpillars on 27 vertices, where ¢ > 2. Our results together with
the results due to P. Eldergill [4], D. Froné¢ek [7], and M. Kubesa [17] give the
complete answer about factorizations of K5, into caterpillars with diameter 4.

As was already mentioned D. Froné¢ek [7] and M. Kubesa [16] attempted to
give similar classification of caterpillars on 4n + 2 vertices with diameter 5, but
for certain subcases the problem remains unsolved. This naturally suggests the
direction of further investigations on spanning tree factorizations of Ky,. The
methods introduced in this thesis seem to be promising to obtain complete results
also for this problem, in fact we have already found fixing labelings of certain
subclass of caterpillars on 29k vertices with diameter 5.

In [8] we have shown that there are factorizations of Kj,; into trees which
belong to a special subclass of lobsters with diameter d = 4 by constructing 2n-
cyclic labelings of these graphs. With the fixing labeling available it is likely to
extend the result for a wider subclass of lobsters with d = 4. In [18] M. Kubesa
gave blended labelings of another special class of lobsters with d = 4. Any tree
with diameter 4 is either a lobster or a caterpillar or the path P,. Therefore,
if we decide the existence of the factorization of K5, into copies of any lobster
with d = 4, we obtain the complete classification of all trees with d = 4 for
factorization of Ky,. Unfortunately, it seems that solving such a problem even

for factorizations of Ky, is rather difficult.
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