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Chapter 1

Introduction

“Kondme-li poprvé vetsi vipocty, jaké se vyskytugi zvldsté v astronomii, vyssi geodesii,
mechanice téles nebeskijch 1 jinde, dochdzime zpravidla k chybngm vysledkim, ponévadz
nemdme cviku v numerickém pocitdini. Opakugjice takovy vijpocet dopoustime se casto
nejen tychz omyli, nybrz ¢ noviych, nebot dusevni deprese, kterd se dostavuje v disledku
ucinéngch omyli, stivd se zdrojem omyli novych. Omyly toho druhu mozZno omeziti
delsim cvikem v numerickém pocitdnt, jednak uZivdnim pocetnich tabulek a stroji, které
se staly v novéjsi dobé nezbytnou pomickou poctdrskou. Dalsi zdroje pocetnich omyli
jsou: neusporddanost vijpocti, nedbalé psani cislic, prilisnyg spéch a mald pozornost pri
provddeéni vypocti. Jest proto zapotrebi, abychom si navykli pocitati zvolna, pozorné,
psdti cislice vyrazné a ndlezité pod sebou. Dobry poctdr napiSe asi 40 cislic za min-
utu, ¢ili ndzornéji receno, ndsobeni obvyklym zpiisobem pétimistného cisla pétimistnym
¢islem trvd primeérné jednu minutu. Zndm3yj poctdar Dase potreboval k vypocitdni soucinu
dvou stomistnyjch cisel skorem 9 hodin. Pocitdni strojem jest pro rutinovaného poctdire
ovSem znacné rychlejsi a pohodinéjsi a primeérné nevyZaduje vice nez 1/5 aZ 1/4 ¢asu
potiebného k témuz vijpoctu obycejnym zptisobem.”

“If we perform large calculations occuring especially in astronomy, geonics, mechan-
1cs and elsewhere, we get as a rule bad results, because we are not appropriate practised
in numerical reckonning. Sources of arithmetical faults are: confusion of calculations,
negligent writing of figures, large haste and small heed during execution the calcula-
tions. That’s why it is necessary to get used to reckon steadily, carefully, to write
figures conspicously and one below another. A good reckonner writes about 40 figures
per minute, otherwise the multiplication of 5-figured number by 5-figured one takes him
about 1 minute in usually way. The famous reckonner Dase needed for multiplication
of two 100-figured numbers about 9 hours. The calculation by a machine is for skilled
reckonner faster and more comfortable and takes him about 1/4 or 1/5 of time needed
for the same calculation in common way.”

14



This is a part of Introduction of the charming Czech book Theory and Practice of
Numerical Reckonning [1] from 1927. Since then mathematics and computing made
enormous progress that would not be possible without our ancestors’ fundamentals.
This development is never-ending process, although each age has its charm, positives
and negatives. Mathematics and computer science stimulate each other and their in-
teraction produces synergistic effect.

For the numerical solution of partial differential equations (PDEs) that are encoun-
tered in science and engineering, it is necessary to discretize them - this is the first step.
The second one is to solve the resulting system of linear equations, that with an effort
to approximate the reality reaches the huge dimensions. These large scale problems can
be solved by means of powerful computers. Development of parallel computers started
boom of algorithms and set also new criteria for assesment of their performance. An
algoritm which is efficient on sequential computer can be inefficient in parallel case and
opposite. An effort to implement the solution of these equations on parallel computers
leads to the domain decomposition.

Domain decomposition methods are powerful iterative methods for solving systems
of algebraic equations arising from the discretization. The main idea is that the problem
is divided into smaller subproblems corresponding to subdomains arising from decompo-
sition of computational domain, each of processors then works with data corresponding
to local subdomains with the minimum of interprocessor communication. The speed
up due to parallel implementation is nearly proportional to the number of processors.
This nice feature - called parallel scalability - can be eliminated by decreasing of dis-
cretization parameter’s size resulting in increase of number of iterations. Thus we face a
new challenge to design and to develop algorithms computing problems independently
of this discretization parameter keeping the ratio of the subdomain and discretization
parameteres constant. This feature is called as numerical scalability, the cost of solu-
tion is proportional to the number of nodal parameters. Let us recall that an algorithm
is called scalable for a given class of problems if it has both, parallel and numerical
scalabilities.

The FETI (Finite Element Tearing and Interconnecting) method turned out to be
one of the most successful algorithms for parallel solution of problems described by
elliptic PDEs. FETI methods are based on the decomposition of the spatial domain
into non-overlapping subdomains glued by Lagrange multipliers. Theoretical results
and numerical experiments establish scalability of variants of FETI algorithm for linear
problems. This thesis concerns efficient implementations of the scalable FETI-based
methods for variational inequalities.

Ph.D. thesis is devided in two parts. Part I (Chapters 1 - 6) is devoted to an overview
of standard methods, discretization techniques, etc. and is organized as follows:

e Chapter 2 describes two model contact problems. I use them in my thesis to sim-
plify the explanation and to test the performance of our algorithms in numerical
experiments (coercive and semicoercive).

15



Chapter 3 presents continuous formulation of the model problem.

Chapter 4 explains discretization, domain decomposition, interface and boundary
condition techniques, and primal problem formulation.

Chapter 5 describes the algorithms used for the solution of constraint QP prob-
lems.

Chapter 6 contains an overview of FETI methods and recalls their principles.

Part II (Chapters 7 - 14) contains new author’s results and remarks, and the results
on which the author participated as a member of teams. These results including the
parallel implementation and many numerical experiments were published in 13 impact
papers and in 33 conference papers. Many of these results were obtained in cooperation
of our Department of Applied Mathematics with Prof. Charbel Farhat - the inventor
of FETI methods, Radek Tezaur (both Stanford University California), Prof. Michel
Lesoinne, Prof. Jan Mandel (Boulder University of Colorado, Department of aerospace
engineering), Prof. Dan Stefanica (City University of New York and MIT), Prof. Ul-
rich Langer (Johannes Kepler University Linz), Ediburgh Parallel Computing Centre
(EPCC), etc.

Following chapters summarize parallel implementations of algorithms, numerical
experiments and their importance for developping the theoretical results:

e Chapter 7 deals with optimality of the dual penalty method and its importance
for numerical scalability of algorithms. Numerical experiments gave an impulse
to start the research of the scalability of FETI based algorithms for variational
inequalities and to develop the theory.

e Chapter 10 describes the implementation of new TFETI-1 (Total FETI-1) method
designed by Prof. Dostdl. Its nice properties were confirmed in my numerical
experiments in 2D and in joint implementation in 3D elasticity with Vit Vondrak
and Prof. Farhat’s group during our stay at Stanford University.

e Chapter 12 describes the important parts of implementations of algorithms, es-
pecially the parallel implementation carried out during my stay in Edinburgh
Parallel Computing Centre.

e Chapter 13 presents many numerical experiments for all presented methods for

contact problems computed on parallel computers in Ostrava, Linz, Boulder, Stan-
ford and Edinburgh.

e Chapter 14 concludes all the work and gives ideas for the future work.

16



The most important theoretical results are in Chapters 8,9 and 11:

e Chapter 8 describes modification of FETI-DP for corners on the contact zone
for both coercive and semicoercive cases developed during my stay at Boulder
University, Department of Aerospace Engineering. As mentioned, Prof. Farhat,
father of FETT methods, avoided corners on the contact zone in his many papers
because of jumps and penetration in these corners. I have derived the additional
condition that preserves the nonpenetration in Lagrange multipliers and enables
the usage of corners on contact interface.

e Chapter 9 introduces my important observation, which is the key ingredient for
proof of numerical scalability of FETI-DP method for contact problems with
mortars. Norm of each row of mortar constraint matrix is of the order of the
corresponding mesh size, while every row of the nodal constraint matrix has norm
of order 1. It is important to use constrained matrices with normalized rows in
algorithms to get significantly smaller upper bound on the condition number of
the dual operator matrix. This is the joint work with Dan Stefanica from City
University of New York.

e Chapter 11 introduces new generation FETI method for linear and contact ex-
treme large scale problems - so called MFETI-DP (Multilevel FETI-DP) - pro-
posed by Prof. Farhat. The size of coarse problem increases due to increas-
ing number of subdomains, increasing degree of parrallelism, reducing memory
requirements, reducing CPU for factors and solution of coarse problem by for-
ward /backward substitution. The basic idea is a natural application of multigrid
methods, i.e. recursive application of FETI-DP to the coarse problem. The im-
plementation of FETI-DP algorithm for variational inequalities is complicated,
but much more complicated is that of MFETI-DP. The implementation of this
method was carried out during my stay in Boulder, including the numerical ex-
periments with comparison of finite and iterative solution of coarse problems and
inexact solution of coarse problems on the second level with CG method in simple
V-cycle for both, linear and contact problems.

17



Chapter 2

Model contact problems and domain
decomposition

In this chapter two variational inequality model problems are introduced, which shall
simplify the exposition and represent problems for numerical experiments (see Figure
2.1).

These problems arising from variational formulation of problem with inequality
boundary conditions read: find sufficiently smooth u(x,y) so that

~Au=f in Q=0'UQ? (2.1)
u'=0 on I, i=1,2 (2.2)
o’ .

8:; —0 on I i=12 (2.3)
w—u'>0 on I.=TI!=T? (2.4)
ou?
— >0 I, 2.
o, 20 on (2.5)
0 2

a—;;(uz —u')=0 on T. (2.6)
oul  ou?

— 4+ —=0 I, 2.7
o, om0 " 27)

here Q' = (0,1) x (0,1),9% = (1,2) x (0,1), denote open domains with boundaries
I'",T? and their parts I'}, I';, I'., formed by the sides of Q',i = 1,2, and n(z, y) denote
components of the outer unit normal at (z,y) € I'". For the semicoercive problem
r2 — .

The solution u(z, y) can be interpreted as a vertical displacement of two membranes
stretched by normalized horizontal forces and pressed together by vertical forces with
density f(x,y). Relation (2.1) is elliptic equation, (2.2) is boundary condition of Dirich-
let type, (2.3) is boundary condition of Neumann type, (2.4) describes the nonpene-
tration of the adjacent edges of the membranes, with the edge of the right membrane

18
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Semicoercive

3 f
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L]
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”””” 1L T 0.25
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-1 for (z,y) € (1,2) x[0,0.25)

Figure 2.1: Two model problems - coercive and semicoercive, solutions obtained by

conforming and nonconforming FE discretizations
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above the edge of the left membrane, (2.5) expresses, that right membrane can press
the left one down at the contact points, (2.6)-(2.7) define points, that are in contact -
if there is no contact at (z,y) € T, i.e. u?*(z,y) > u'(x,y), then the membranes are
stretched by the horizontal force in the same way as at (z,y) € I'}.

a b
Ql, 1 Ql,.. Qz, 1 Qz,..
Q' Q°
Ql, 2 Q1,pl Qz, 2 Qz,g

Figure 2.2: a) Model problem of two bodies, b) the decomposed problem into subdo-
mains

As mentioned, the most effective method for solution is based on an auxiliary de-
composition of these two domains into subdomains, i.e. decomposition of each domain
(¥ into p; subdomains Q%7,j = 1, ..., p;, looking for the vertical displacements of sub-
domains satisfying above described conditions including additional gluing conditions
on auxiliary interfaces, as illustrated in Figure 2.2. The decomposed solutions are in
Figure 2.3 and more details are described in following chapters. The efficiency lies on
the fact, that each processor of the parallel computer deals with data associated with
separated subdomains with minimum of interprocessor communication, more details
are discussed in Section 12.2.

Coercive Semicoercive

-0.005 —
-0.01
-0.015—
-0.02 —
-0.025 —
-0.03 —
-0.035 —
-0.04 —
-0.045 —
-0.05—
-0.055 —

Figure 2.3: The solutions of decomposed model problems using conforming FE
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Chapter 3

Continuous formulations

3.1 Continuous formulation of model problem

To derive the variational inequality, whose smooth solution satisfies (2.1)-(2.7), let
H'(€Y") denote Sobolev space of first order on the space L*(Q’) of the functions on 7,
whose squares are integrable in the Lebesgue sence. Then f € H'(Q) iff both f and
its first derivates belong to L?(£2").

Lets define following requisities: V' = {v € H' (") :v' =0 on I} C HY(QY), i =
1, 2 denotes the closed subspace of H'(Q), V = V1x 12 denotes the closed subspace and
K={("v?) eV :v?—v'>0 on TI.} closed convex subset of H = H'(Q') x H'(Q?).
On H lets define a symmetric bilinear form

out Ovt Ou' Ov'
a(u,v) Z/z<8x8x 8y8y)dQ

2
:Z/ it dQ.
=1 7

Let u denote a smooth solution of (2.1)-(2.7). After multiplication of (2.1) by v € V
and application of the Green theorem and using relations (2.2)-(2.3) we obtain

out | ot
a(u,v)—f(v)—/rc{a—nlv +0—ngv } ar

and forv=w —u, w € K

and a linear form

a(u,w—u) —bl(w —u) = /FC {g—i(wl —u') + g—:;(wQ - u2)} dar. (3.1)

At the points of T, with u! < u? there is , due to (2.6)-(2.7)

out _ ou?
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so that the integrand in (3.1) vanishes at such points. At the points of ', with u! = u?
there is , due to (2.5) and (2.7)

ou o, L, oul | Our ,  Ou?
The integral in (3.1) is nonnegative for any w € K and the solution u of problem defined
by relations (2.1)-(2.7) solves also problem defined in following way

find u € K so that a(u,w —u) —f(w—u) >0 ,Ywe K (3.4)

(w* —wh) > 0. (3.3)

and opposite [3].
The expression on the left of inequality in relation (3.4) is gradient of the energy
functional

J(v) = %a(v,v) .

at u, and that’s why the problem given by (3.4) is equivalent to the minimization
problem
min J(v) s.t. v € K. (3.5)

It can be proved, that functional J(v) is convex and coercive or semicoercive on
KC, and theorem for existence and uniqueness [4] of minimum for such functionals then
guarantees, that problems (3.4)-(3.5) have unique solution if f satisfies [,, fdQ <0,
what is assumed in all following expositions.

3.2 Continuos formulation of decomposed model prob-
lem

To derive the variational inequality now, we follow analogously previous approach,
where H'(Q%) denotes Sobolev space of first order on the space L?(2%7), T = 907,

Vil = {ve H'(QW):v'=0 on TiNT} C HYQW), i = 1,2, j = 1,....p;, VI =
Vilx.  xViri =12,V =VxV?and Kg = {(v},0v?) € V : v"* — 0% =0 on T**NTH},
Ki = {@v?) eV iv**—vh >0 on T.NI* AW 9 = f g, ub = u |gis,
i=1,2, 5,k =1,...p;, K= K;NKpg closed convex subset of H = H'(Q") x ... x
HY(QVP) x HY Q21 x ... x HY(Q%P2). On H lets define a symmetric bilinear form

2 p; . .. .. ..
8uz,j 8,02,] 8u27j 8’02’]
a<u,v>_;z/,,( O B ) an

and a linear form

() => Y FiIu Q.

i=1 j=1 Y
Following the same procedure as in previous section we get in the end the minimiza-
tion problem

min J(v) s.t. v € K, with J(v) = %a(v,v) —{(v).
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Chapter 4

Discretization, boundary and interface
conditions

4.1 Discretization

Br A By &

Figure 4.1: a) Discretized model problem of two bodies, b) the decomposed problem
into subdomains

4.1.1 Discretization of model problem

For the numerical processing of this problem it is necessary to execute the linearization
and finite element discretization. To this purpose let’s define (7, 7,) a partitioning of
(Y into triangles T} € 75, with suitable numbering of vertices at Ny € 7.

For i = 1,2 (see Figure 4.1a) let P} denote the piecewise linear finite element
subspaces of H'(Q), let V;' = PNV, and define V}, = V}! x V? and ), = KNV,. The
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problem (3.5) is then aproximated by the finite element problem
min J(’Uh) s.t. vy, € ]Ch. (41)

The functions p}, € P; are fully determined by values u}, = p, (N{) at nodes N} €
while Q7 denotes a closure of . Assuming the independent indexing of nodes of Q*\T',,
by indices 1,2,...,s; and denoting of standard basis functions of V;' by e., so that
¢;.(N}) = 0x; (Kronecker symbol), it is possible to write any vj, € V! in following form

vh = Zuiez (4.2)
k=1

Substituting (4.2) into expression for functional J(v) gives

1
J(vp) = iuTKu — fTu,

B Kl 0 B fl B ul
R R

K is symmetric positive semidefinite block-diagonal stiffness matrix of order n (sym-
metric means that a;; = aj; for 7,5 = 1,...,n, while positive semidefinite means that
uTKu > 0 for all vectors u), f vector of nodal forces of size n and u vector of nodal
unknowns of size n (note: in previous sections the symbols u, f denote continuous
functions, from this place on, because of simplicity, u, f represent the vectors), with

K' = [aly], ay = alel, e), £ = [f], fi = ((e}) and v’ = [u}].

where

4.1.2 Discretization of decomposed model problem

Above presented exposition takes into account just the decomposition in two subdo-
mains Q' and 2, but it is possible to decompose auxiliary each domain Q¢ i = 1,2
into p; subdomains Q7,5 = 1,...,p; (see Figure 4.1b) , so that each of these subdo-
mains is partitioned by a subset of (1, 7,). After using the finite element discretization
of problem (3.5) with the basis functions, that are zero extensions of Py/ C H'(£2)
forv = 1,2 and j = 1,...,p;, the functional has for all piecewise linear functions v,
continuous in subdomains Q% the form

1
J(vp) = éuTKu — fTu,

where
- KLU 0 A R
0 - 0 o 0 : :
0 0 Kb 0 ... 0 Lp1 ulPr
K= 0 0 K2l 0 = J}2,1 U= u!
o ... ... 0O . 0 : :
O . e e e O K2,p2 f2’p2 u27p2

have the same interpretation as above.
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4.2 Interface conditions

For completition of discretizaton it is necessary to prescribe conditions on uj. Let
full rank matrices B; and Bg describe the discretized inequality (nonpenetration) and
equality (gluing) conditions, respectively.

4.2.1 Conforming-nodal FE

1,1 1 2,1 2,..]

Q| Q| | Q| @

1,2 2,2 2,p,

ol o |l o

Figure 4.2: Nonpenetration conditions for a) couple of nodes b) four corner nodes

Nodal (conforming) nonpenetration conditions
uj —up <0 or u;+uj —up—u <0

can be substituted by exprression B;u < 0, with full rank matrix B; consisting of
orthogonal rows

[ 1 .- =1 } or [ 1 «-«« 1 v+ =1 -+ =1 }

Continuity conditions are enforced in similar way as inequality conditions replacing in-
equality with equality sign Bgu = 0. More details about construction of B-matrices
and mapping Lagrange multipliers on the subdomains (non-redundant, redundant, or-
thonormal) are presented in [12].

4.2.2 Nonconforming-mortar FE

Another approach of prescribtion of constraints is usage of mortar finite elements. Mor-
tar finite elements are non-conforming finite elements that allow geometrically noncon-
forming decomposition of domain into subdomains and their independent discretizations
and have advantages as flexible mesh generation, easy local refinement, good paralleliza-
tion properties. Mortars were first introduced by Bernardi, Maday and Patera in [32] for
low order and spectral finite elements, 3D version was developed by Ben Belgacem and
Maday [33]. Family of biorthogonal mortar elements was designed by Wohlmuth [34],
[35], [36]. The mortar wavelet method was introduced by Bertoluzza, Perrier [37]. Cai,
Dryja, and Sarkis [41, 39] extended mortars to overlapping decompositions. Achdou,
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Figure 4.3: a) Example of nonconforming DD b) Solution of semicoecive problem for
nonconforming meshes f(z,y) = —2, for (z,y) € (0,1) x [0.75,1)

Maday, Widlund [40] demonstrated similar behaviour of iterative substructuring meth-
ods with mortars as those with conforming finite elements, Dryja [41] and Le Tallec,
Sassi and Vidrascu [42] for Neumann-Neumann algorithms, and Stefanica, Klawonn
[43], [38] for FETI methods.

In 2D case let suppose decomposition in subdomains Q47,7 = 1,2, j = 1,....p;, [’
let denote interface among subdomains defined as the set of points that belong to the
boundaries of at least two subdomains. The mortar finite element space V} contains
mortar functions v that vanish at all nodes on I',, and restriction of v to Q%7 is a P,
or (), finite element function. It is neccessary to decompose the subdomain interface I"
into disjoint set of open edges called nonmortar sides (7,,, dashed line in Figure 4.3a).
The edges forming I' and not belonging to nonmortars, are called mortars (7,,). We
impose weak continuity and nonpenetration for v across each nonmortar side ~,, given
by the mortar conditions

.o

where U, (v,,) is Lagrange multiplier space of test functions having the same dimension
as the number of interior nodes on 7,,, it is subspace of V},(7,,), that is restriction of
Vi £0 Yim, U |4,,18 restriction of v to v, and v |+;, is restriction of v to ¢, = |Jm , the
union of parts of the mortars 7, that coincides geometrically with ,),.

Figure 4.4 shows two types of dual basis test functions ¢ € W, (v,,) - classical
(Bernardi, Maday, Patera - continuous, piecewise linear) and biorthogonal (Wohlmuth
- discountinuous, piecewise linear, based on observation V,(Q) ¢ HY(QY), v |, €
HY2(v,,), s0 ¥, (7,) may be embedded in the dual space of H'/?(v,,) with respect
to the L? inner product , and therefore W, (v,,) C H~/2(v,,), the advantage is nicer
matrix structure).

. U |U%) ds <0, veE Ve Vy(ym), (4.3)
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® ¢
1

“ﬁ%

Figure 4.4: 2D interface and test functions - classical mortars and new biorthogonal

mortars

Similarly to presented formulations, we obtain saddle point problem: find (u, \) €
Vi, x ¥}, so that

a(u,v) +b(v, ) =L(v) veV,,
b(uv ¢) <0 %Z) € \Ilha
with b(v, ) = M . (v | —v |y+m) ¥ ds being bilinear form for mortar formula-

tion, b(u, 1) < 0 guarantees weak continuity or nonpenetration of u. This problem is
equivalent to: find v € K, = {v € V}, : b(v, ) <0, ¢ € ¥} so that

a(u,v) = l(v),

where a(u,v) is symmetric bilinear form uniformly elliptic on I, x Kp. Algebraic
formulation of saddle point problem is:

Ku+ BT\ =
Bu <

f
0°
Discretized problem is the same as in conforming case, so the same algorithms can be
applied without changes. B; and Bg matrices consist of horizontal blocks,
B, =[.M,, ..—N,, .,
for each nonmortar -, enforcing the mortar conditions
M'Ym u'Ym N'YmuU% S 0

across v, instead of pointwise conditions in conforming case.
Using orthogonal mortars (classical, new biorthogonal), B; and Bg matrices consist
of horizontal blocks,
B, =[.1,..—P,..],
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for each nonmortar -, enforcing the mortar conditions
U”Ym - P’Ymuu’% S 0

with I, denoting the identity matrix and P,,, = M N, .

For the 3D case, the mortars and nonmortars are open faces forming disjoint parti-
tion of the interface I'. Figure 4.5 shows biorthogonal dual basis test functions developed
by Wohlmuth for 3D. Another system of test functions was designed by Kim, Lazarov,
Pasciak, Vasilevski [45].

® ®
® ® 4 4 ®
® ® 4 4 ®
L 4 L 4 L 4 L 4 L4
L 4 L 4 L 4 L 4 L4
L 4 L 4 4 L 4 @
® ®
1 21 1 1 2| -2 1 1 -2|-2 1
-2 412 2 -2 414 -2 -2 414 -2
@ L 4
2 211 1 -2 414 -2 -1 212 -1
-1 -1 |1 1 1 -2|-2 1 -1 212 -1

+ rotations of /2

Figure 4.5: 3D interface and piecewise bilinear dual basis test functions - new biorthog-
onal mortars
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4.3 Boundary conditions

The solution is given also by the imposed boundary conditions. There are two possi-
bilities how to prescribe Dirichlet boundary conditions.

a b
K.f Bp
/‘\/ /A\/
2 Ql 1 Q1 QZ 1 QZ’" Ql’l Ql _Q2 1 _Q2 .
ru; T, .2 “T,
%UIQI 2 Q1p1 sz Qz,p2 %UIQI 2 lel sz szz
A e e

Figure 4.6: Dirichlet boundary conditions for coercive problem incorporated in a) stiff-
ness matrix K and vector of forces f, b) matrix with equality constraints Bp

Dirichlet boundary conditions for nodes u; on I,

can be incorporated into the stiffness matrix K and the vector of nodal forces f in such
way, that we zero i-th row and column of K, set diagonal element K;; = 1 and i-th
component f; =0, i.e.

or can be substituted by expression Bpu = 0, with full rank matrix Bp consisting of
orthogonal rows

This matrix becomes a part of matrix By enforcing equality contraints. This approach
results in dual formulation in Total FETI methods described in Chapter 10, where each
row of Bp is associated with one component of Lagrange multipliers Ap.
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4.4 Primal QP problem

The discretized version of problem (3.5) then reads

us u u u u U3 U0 U3 u Uss u
$ ¥: & $
° ° ° o
u u u Upuos U u u u 4 u u u
¢ Je¢ ? ¢ Je ?
u u u u u u u u Us7ue U
) §
¢ ° ° ¢
. . . .
° °
u u u u u u s u u u u u u
¢ o 96 & 9 ¢ ¢ >
unuas u u us uss u u u u u u
° ° ° °
u u u s u u u 36 u u u u u u

Figure 4.7: Primal QP problem

Although (4.4) is a typical QP problem, it is not very suitable for numerical com-
putation especially because of ill conditioning, singularity of stiffness matrix K or com-
plicated feasible set of displacements K, = {u : Byu < 0 and Bgu = 0}. How to avoid
above introduced complications is to apply duality theory of convex programming.
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Chapter 5

Algorithms for QP with simple bounds
and equality constraints

This chapter focuses to the short description of three algorithms used for implementa-
tion and numerical experiments. Let us suppose the general QP problem with simple
bound and equality constraints

1 ~
min §xTAx — bz st. ;> —77 and Cz = 0.

These algorithms applied for dual problems are:

1. QPMPGP (Quadratic Programming with Modified Proportioning and Gradient
Projection) is an efficient algorithm for the solution of convex quadratic program-
ming problems with simple bounds, while equality constraints are enforced by
penalty. The basic version was proposed independently by Dostal and Friedlan-
der and Martinez and can be considered as a modification of the Polyak algorithm.
Dostal and Schoberl in [47] combine the proportioning algorithm [9] with the gra-
dient projections [44], they use the constant I' > 0, the test to decide about
leaving the face, and three types of steps to generate the sequence of iterates z*
that approximate the solution.

2. ALAPC (Augmented Lagrangian with Adaptive Precision Control) is a variant of
algorithm proposed by Conn, Gould and Toint [8] for identification of stacionary
points and supplied by the adaptive precision control of auxiliary problems in
Step 1, so that the algorithm approximates new Lagrange multipliers for equality
constraints in the outer loop, while quadratic programming problems with simple
bounds are solved in the inner loop, e.g. by QPMPGP. The algorithm treats each
type of constraints separately, so that efficient algorithm using projections and
adaptive precision control in the active set strategy [9] may be used for the bound
constrained quadratic programming problems.

3. SMALBE (Semi-Monotonic Augmented Lagrangian with Bound and Equality) is
a modification of previous ALAPC algorithm with different criterium for update
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of penalty based on value of augmented Lagrangian, with proved optimality. It
is based on the observation, that better penalty approximation leads to increase
of Lagrangian, so it increases penalty until increasing Lagrangian’s values are
generated. For more details see [52].

Main ideas of algorithms are in following schemes.

51 QPMPGP

Gradient splitting Modified proportioning Gradient projection

1

X

ﬁ(xk+l )=0

2(x)=¢(x)
777777 ----57--- W
g(y) 7
X
,,,,,,,,, oz 8@ W
V4 y o) Va
B(y)=0
B@ 8(2) HBGH 1> T 1ok

Figure 5.1: Main ideas of QPMPGP

Step 0 {Initialization of parameters}
e ae (0,47, T >0
Step 1 {Proportioning step - removes indices from A(z*)}
If 2% is not proportional then define z¥+! = 2* — aggB(2*) by proportio-
ning, acg = %minimizes O(2* — aB(2*)) with respect to «
Step 2 {CG step}
If z* is proportional then generate z**! = 2¥ — acqp® by trial cg step,
PHH = p(a*) —yph, v = Sl
Step 3 {Expansion step - expands A(z*)}
If 2% € Q then accept it else generate 25! = P, (2*—ap(2*)) = ¥ —ap(a*)
by projection to feasible set

Let ¢ = g(x) = Az — b be the gradient and projected gradient g = ¢”(z) of
() = 327 Az — 2Tb at x is given componentwise by

P_ g; for x;>—-x; or i¢l
Yi min(g;,0) for z;=—x; and i€l °

Let I and E denote the sets of indices corresponding to the entries of vectors x; and
xg and let A(z) and F(z) define the active set and free set of indices of x

Alx)={iel:x;=—x;} and  F(z)={i:z; >—x;0orie€ E},
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determining the chopped gradient g¢ = 3(x), the inner or free gradient g* = ¢(z) and
reduced-free gradient g* = $(x) of 6(z) in following way

g¢ =0 for i€ F(xr) and g =min(g;,0) for iec A(x),
gf =g, for i€ F(z) and g/ =0 for ie A(x),
gt =gf' for i€ F and ¢ =min(z;/a,gf) for iel.

The unique solution T = T(u, p) of auxiliary problems satisfies the Karush-Kuhn-
Tucker conditions expressed by the relation

9"() =0,
hence the solution of problem
minf(x) s.t. x; > —x;
satisfies the Karush-Kuhn-Tucker conditions if the following relation is valid
9" (a") = v(a*) = ¢"(a") + g9 (2¥) = p(a*) + B(").

The precision of the solution of auxiliary problems is controlled by norm of violation of
Karush-Kuhn-Tucker condition in each inner iterate z* by

2
D27 (") p(a*) > || 6(2")]|,

while I' > 0 and 2" satisfying this inequality is called as proportional. If z € €, i.e.

x; > —x7, we call x feasible and P, is the projection to set of feasible vectors defined

as
P (z); = max{z;, —z;} fori € I, P (x);=ux;foriec E.

The conjugate gradient steps are used to carry out the minimization in the face
W;={x:2;,=—-x; for i€ J}

with a given active set J = A(2*) efficiently, recurrence starts or restarts whenever
z¥ is generated by expansion or proportioning step. To touch up the performance
of conjugate gradient method it is possible through the preconditioning, consisting in
finding a suitable matrix that approximates in our case matrix A~!, so that modified
system is more easy to solve than the original one. More details about implementation

of the algorithm may be found in [47], [51].
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5.2 ALAPC

Step 0 {Initialization of parameters}
0<a<1(107Y), 8>1(10), M >0 (10,
po >0 (10), 1o > 0 (1072), 1 > 0 (0), k (0)
Step 1 Find z* so that ||g”(z*, p*, p)|| < M ||C2*]|...(QPMPGP)
Step 2 If ng(a:k, u*, pr) ‘ and M HC:C"C ‘ are suffic. small then 2* is the solution
Step 3 pftl = pk + pCa®
Step 4 If ||CaF| < my
then pri1 = pr, M1 = ang

else pry1 = Bpr,  Mrt1 = Mk
Step 5 Update k£ = k£ 4+ 1 and return to Step 1

Let g(z,u,p) = Ax — b+ CT(u + pCx) denote the gradient of the augmented
Lagrangian

1 1
L(w, . p) = 5" Ax = a'b+ p' Co+ Sp IC|*,

and projected gradient g© = g¥(x, 1, p) of L at x. The salient feature of this algorithm
is that it deals with each type of constraint completely separately and that it accepts
inexact solutions for the auxiliary box consrained problems in Step 1. The algorithm has
been proved to converge for any combination of parameters satisfying given conditions,
while only parameters py and M are problem dependent (py should be larger than M
- the algorithm is designed so that it warrants the adaption of p to all parameters
including M, typical values of parameters are in brackets). Step 1 can be realized by
the minimization of the augmented Lagrangian L subject to x; > —x; by QPMPGP -
for fixed p and p, we are allowed to write 0(z) = L(z, i, p).

5.3 SMALBE

Step 0  {Initialization of parameters}

B> 1 (10), M > 0 (10°), po > 0 (10, 10 > 0 (102, 12 > 0 (0), k (0)
Step 1 Find " so that ||¢" (2", u¥, py)|| < M ||C2*||...(QPMPGP)
Step 2 If ||g”(z*, ¥, pi)|| and M ||Ca*|| are suffic. small then z* is the solution
Step 3 pftt = pk + ppCa®
Step 4 If L(a*, 1%, py) < L(a*", pb=1, py) + Lp || Ca||?

then py1 = Bpy

else pry1 = pr
Step 5 Update k = k + 1 and return to Step 1
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5.4 Theory of numerical scalability

Presented algorithms solving QP problems with bound and equality constraints have
known rate of convergence given in terms of the spectral condition number of the
quadratic problem. Convergence bounds that guarantee the scalability of algorithms
and more details including lemmas and theorems for FETI-1, TFETI-1 and FETI-DP
with pointwise and mortars conditions can be found in [47], [14], [15], [13], the key
ingredient of scalability is optimality of dual penalty described in Chapter 7.
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Chapter 6

Overview of FETI methods

The FETI (Finite Element Tearing and Interconnecting) method proposed by Farhat
and Roux turned out to be one of the most successful algorithms for parallel solution
of problems described by elliptic PDEs. The FETI-1 method is based on the decom-
position of the spatial domain into non-overlapping subdomains that are "glued" by
Lagrange multipliers. Efficiency of the FETI-1 method was further improved by intro-
ducing special projectors and preconditioners.

By projecting the Lagrange multipliers in each iteration onto an auxiliary space to
enforce continuity of the primal solutions at the crosspoints, Farhat, Mandel and Tezaur
obtained a faster converging FETI method for plate and shell problems - FETI-2.

Similar effect was achieved by a variant called the Dual-Primal FETI method FETI-
DP, introduced by Farhat et al. The continuity of the primal solution at crosspoints is
implemented directly into the formulation of the primal problem so that one degree of
freedom is considered at each crosspoint shared by two and more adjacent subdomains.
The continuity of the primal variables across the rest of the subdomain interfaces is
once again enforced by Lagrange multipliers. After eliminating the primal variables,
the problem reduces to a small, relatively well conditioned strictly convex QP problem
that is again solved iteratively. In spite of the success of FETT for the solution of linear
problems, it was demonstrated that the method is even more successful for the solution
of variational inequalities. The reason is that duality transforms the general inequality
constraints into the nonnegativity constraints so that efficient algorithms that exploit
cheap projections and other tools may be exploited. Experimental scalability results
based on application of special solvers |9, 55] were documented by Dostal, Gomes and
Santos |2, 48] and Dostal and Horak [13, 69]. Scalability was later proved for an
algorithm that combined FETI with optimal dual penalty Dostal and Horak [16, 69].
The same is true for adaptation of FETI-DP to the solution of variational inequalities.

A new Lagrange multipliers FETI-DP algorithm, FETI-C, based on active set
strategies with additional planning steps, was introduced by Farhat et al. and its
scalability was established only experimentally. Numerical scalability for FETI-DP al-
gorithm for coercive problems was proven in [14]. Later, the result was extended to
include mortar disctretization [15] and for semicoercive problems.
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Implementation of the FETI-1 and FETI-2 method into general purpose packages
requires an effective method for automatic identification of the kernels of the stiffness
matrices of the subdomains as these kernels are used both in elimination of the primal
variables and in definition of the natural coarse grid projectors. An effective method
based on combination of the Cholesky factorization and the singular value decomposi-
tion was proposed by Farhat and Gérardin [26]. However, it turns out that it is still
quite difficult to determine the kernels reliably in the presence of rounding errors. This
was one of the motivations that led to development of the FETI-DP, where the stiffness
matrices of the subdomains are invertible. However, even though FETI-DP may be
efficiently preconditioned so that it scales better than the original FETI for plates and
shells, the coarse grid defined by the corners without additional preconditioning is less
efficient [14, 25| than that defined by the rigid body motions, which is important for
some applications [23, 14, 25|, and the FETI-DP method is more difficult to implement
as it requires special treatment of the corners.

The new variant of the FETI-1 method TFETI-1 (Total-FETI-1) was proposed
by Dostal. It is easier to implement and it preserves efficiency of the coarse grid of
the classical FETI-1. The basic idea is to simplify inversion of the stiffness matrices
of subdomains by using Lagrange multipliers not only for gluing of the subdomains
along the auxiliary interfaces, but also for implementation of the Dirichlet boundary
conditions. Heuristic arguments and results of numerical experiments indicate that the
new method may be not only easier to implement, but also more efficient then the
original FETI-1.

Another improvement lies in so called MFETI-DP (Multilevel-FETI-DP) applicable
for problems with large coarse problem dimension. The size of coarse problem increases
due to increasing number of subdomains increasing degree of parrallelism, reducing
memory requirements, reducing CPU for factors and solution of coarse problem by for-
ward /backward substitution. FETI-DP is applied recursively to the coarse problem.
Numerical experiments compare finite and iterative solution of coarse problems includ-
ing inexact solution with CG in simple V-cycle for both linear and contact problems.

The rate of convergence of QP algorithms can be bounded in terms of the bounds
on the spectrum of the regular part of the Hessian matrix, and therefore the scalability
of the resulting algorithm can be established. Such estimates are in terms of the decom-
position parameter H and the discretization parameter h. An easy consequence of this
result is a bound on the number of conjugate iterations required for finding the solution
of the discretized variational inequality to a given precision. This bound is indepen-
dent of both the decomposition of the computational domain and the discretization,
provided that we keep the ratio H/h fixed. Numerical results are in agreement with
the theory and confirm the numerical scalability of our algorithms.

The effort to develop scalable solvers for variational inequalities was not restricted
to FETI-type methods. Analogue ideas were used in BETI (Boundary Element Tearing
and Interconnecting) based method etc.
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6.1 FETI-1 for coercive and semicoercive contact prob-

lems
Conforming FE Nonconforming FE
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Figure 6.1: FETI-1 method with conforming and nonconforming FE

The FETI methods are characterized, that computational domain is partitioned
into non-overlapping subdomains, the equilibrium equations are written at subdomain
level and Lagrange multipliers are introduced at subdomain interfaces to enforce the
compatibility of displacement field. The main idea of dual formulation is that large
problem with primal variable u, representing displacement in subdomains’ nodes, is
transformed to the significantly smaller problem with dual variable \ representing the
“gluing” forces on interfaces.

The Lagrangian of problem (4.4) looks

1
L(u, A\r, A\p) = iuTKu — ffu + AT Bru + \LBpu, (6.1)

where \; and \g denote Lagrange multipliers associated with inequalities and equalities.

Using notation A\ = { A } and B = [ B

A\ ! ] the Lagrangian gets simplified form
E

Bg
1
L(u, \) = QuTKu — ffu+ \' Bu.

The problem (6.1) is then equivalent to the saddle point problem
find (@, \) sothat L(@,\) = sup inf L(u,\). (6.2)

Ar>0 ¢

For fixed )\, the Lagrange function is convex in the first variable and the minimizer «
satisfies equation
Ku=f— BT), (6.3)

which expresses, from a physical viewpoint, the subdomain equation of equilibrium with
Neumann boundary conditions. Equation (6.3) has solution iff

f—B")\ €ImK, (6.4)
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which can be expressed by means of a matrix R, whose columns span the null space of
K and represent rigid body or zero energy modes of subdomains

RY(f — BT)\) =o. (6.5)

Matrix R can be formed directly so that each floating subdomain is assigned to a row
of R with ones in positions of nodes that belong to the subdomain and zeros elsewhere.
The solution u of (6.3) with assumption that \ satisfies (6.4) can be evaluated by

formula
u=K'(f — B")\) + Ra. (6.6)

Here KT denotes matrix satisfying K KTK = K such as generalized inverse or Moore-
Penrose pseudoinverse.
Let’s establish following notation

F=BK'BT, G=R"B",d=BK'f, e=R"Y.

Substitution of (6.6) into problem (6.2) and some manipulations lead to minimization
problem

1 ~ ~
min §ATFA —M'd st. \y>0and GA=¢ (6.7)

whose Hessian is positive definite and conforms with one from FETI basic method by
Farhat and Roux [5], having relatively favorable distributed spectrum for application
of the conjugate gradient method.

Even though the problem (6.7) is much more suitable for computation than (4.4),
further improvement can be achieved by adapting observations and results of Farhat,
Mandel and Roux [6], consisting in formulation of equivalent problem with augmented
Lagrangian, that has spectral properties guaranting optimal convergence of conjugate
gradient method. Before incorporation of these observations let’s establish following
notation B

G=TG, e=Te
and let 7" denote a nonsingular matrix, that defines the orthonormalization of the rows
of G. The problem of minimization on the subset of the affine space is transformed to
the problem on subset of vector space by means of arbitrary X which satisfies GX = e
while the solution is looked for in the form A = A + \. Because of relation

1 S U U
§>\TF)\ —\Td = §>\TF)\ —M(d—F)\) + §>\TF)\ — 4,
using old notation and denoting d = d—F X, the problem (6.7) is equivalent to
1 -
min §ATFA —Md st. A\; > —)\; and GA=0. (6.8)

Further improvement is based on the observation, that the augmented Lagrangian
for problem (6.8) can be decomposed by orthogonal projectors

Q=G'G and P=1-Q
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on the kernel of G and on the image space of GT: ImQ = KerG and ImP =
ImG?.
The modified dual formulation of problem (6.8) has then the form

min %ATPFP)\ —ATPd st. A\; > —A; and GA = 0. (6.9)

Further o o B
a=—(R'B"BR)'RT'BT"BK'(f — B")\)
denotes vector of amplitudes that specifies the contribution of the null space R to the
solution u determined by relation BK'(f — BTX) + BRa = 0, with B = [ g" ]and
E
g formed by rows of B;, that correspond to active constraints latter characterized by
A # 0.
Let’s investigate for a comparison the distributions of the spectra of Hessians

Hy=F+pG'G, Hy=F+pG'G and H;=PFP+pQ

of the augmented Lagrangians corresponding to the problems (6.7), (6.8) and (6.9),
with the assumption that the eigenvalues of F' are in the interval [a, b], the eigenvalues
of GTG are in [, 6] and o(A) denotes a spectrum of square matrix A. Using the analysis
of [7] it is possible to obtain following estimates

o(Hy) Cla,b]Ula+ py,b+ pd], o(Hz) Cla,b]U[a+p,b+p] and
o(H3) C [ap, bp] U{p},

where [ap,bp| C [a,b] denotes the interval of non-zero eigenvalues of PF P (see Figure
6.2). If p is sufficiently large and v < p, then the spectrum of H; is distributed in two
intervals with the larger one on the right, while the rate of convergence of conjugate
gradients for minimization of quadratic function with H; depends on the penalization
parameter p. In the second case the situation is much more favorable for H,, because
the spectrum is always distributed in two intervals of the same length and the rate
of convergence is governed by the effective condition number %(Hs) = %b, so that the
number £y of conjugate gradient iterations for reducing the gradient of the augmented

Lagrangian Lo(X, i1, p) = AT (F + pQ)A — Ad + "G for (6.8) by € satisfies

ko < 1int (\/ 4—bln (g) + 1)
2 a €

and does not depend on the penalization parameter p. In the third case the Hessian
Hj of the augmented Lagrangian Ls(\, p,p) = A (PFP + pQ)A — M'Pd + p"GX
is decomposed by projectors P and () whose image spaces are invariant subspaces of
Hj; and the number k3 of conjugate gradient iterations for reducing the gradient of
Ls(\, p, p) for (6.9) by e satisfies

ks < 1int <@ / b—Pln (2) + 3) ,
2 ap €
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Figure 6.2: Example of spectrum distributions of Hessians (h = 1/8 H = 1/2, p = 10%)

while according to the analysis of the FETI method by Farhat, Mandel and Roux

following relation is valid
ar _ 1
bp = h
with i denoting the mesh and H subdomain diameter (see Figure 6.3).

The FETI-1 method was recently combined with the dual penalty method by Dostal,
Horak [23],[16] to obtain a theoretically supported scalable algorithm for solution of
coercive and semicoercive variational inequalities. Thus the rate of convergence does
not depend on penalization parameter p or discretization parameter h, but it is bounded
by the constant given by the ratio Z: x(PFP | ImP) < C4L.

H
1

]

Figure 6.3: Mesh and subdomain parameters
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6.2 FETI-DP for coercive contact problems

During the joint work with Dan Stefanica we developed an optimal scalable algorithm
for the numerical solution of coercive variational inequalities, by combining FETI al-
gorithms of dual-primal type with recent results for bound constrained QP problems,
that is described in this section.

A variant of the FETT method called the Dual-Primal FETI method (FETI-DP) was
introduced by Farhat et al. [27]. The continuity of the primal solution at crosspoints is
implemented directly into the formulation of the primal problem so that one degree of
freedom is considered at each crosspoint shared by two and more adjacent subdomains.
The continuity of the primal variables across the rest of the subdomain interfaces is
once again enforced by Lagrange multipliers. After eliminating the primal variables, the
problem reduces to a small, unconstrained, relatively well conditioned strictly convex
QP problem that is again solved iteratively. An attractive feature of FETI-DP is that
the local problems that are solved to eliminate the primal variables are non-singular.
Moreover, the resulting QP problem is unconstrained and its conditioning may be
further improved by preconditioning.

The FETI-DP methodology is first applied to the discretized elliptic variational in-
equality to obtain a strictly convex QP problem with nonnegativity constraints. We also
obtain a bound on the number of conjugate iterations required for finding the solution
of the discretized variational inequality to a given precision. This bound is indepen-
dent of both the decomposition of the computational domain and the discretization,
provided that we keep the ratio H/h fixed.

For each crosspoint, i.e. a corner that belongs to two and more subdomains, a single
global degree of freedom is considered, while two degrees of freedom at all the other
matching nodes across subdomain edges. None of the nodes on contact interface should
be defined as corner, see C. Farhat et al. in [46], page 2411.

We partition the nodal values of u into boundary corner nodal values, denoted by
Upe, and remainder nodal values, denoted by u,. Note that u, can be further split into
interior nodal values u; and remainder boundary nodal values uy,.

The continuity conditions at the subdomain corners are enforced by using a global
vector of degrees of freedom u. = [ ul, ..., ul" }T and a global to local map B, with one

cy

nonzero entry per line equal to 1, and by requiring that u,. = B.u,.

Therefore,
U;
Uy Uy Uy
u = = ubT = = .
Up Upe Bcuc
Upe
Problem can be written as a constrained minimization problem as follows:

1
min §uTKu - qu s.t. Byu<0,Bgu=0, and wuy = B.u,. (6.10)

Let fi. and f,. be the parts of the right hand side f corresponding to the boundary
corner and remainder nodes, respectively. The Lagrangian associated with problem
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(6.10) can be expressed using Lagrange multipliers A\g and A; to enforce equality and
inequality constraints as follows:

Lo e ) = 30 (B8 | g | =ity | g |

+u” BEAg +u” B Ap. (6.11)

Let B;, and Bjp. be the matrices made of the columns of B; corresponding to wu,
and up., respectively; define Bg, and Bpgy. similarly. Then B; = [Br, B and
Bg = [Bg,r Bgi. We can also group the parts of the Lagrange multiplier matrices By
and Bp together with respect to the boundary corner and reminder nodes as follows:

_ Bl,r _ Bl,bc
B, = { Bu, ] and By, = { Biose ] .

Then B,u, = tuy,. Let

Then
u" BEAp +u B A\ = u' B\ + ul B BL .

Let K., K,., and K . be the blocks of K corresponding to the decomposition of u
into u, and ., so that
-l ]
To minimize L(u,,u., Ag, A1) over u,., we rewrite (6.11) as
L(tpy U, Apy A1) = % (urTKrrur + 2u’' K, Beu, + uCTBCTKCCBCuC) —ul'f,
—u" BT f, + u B\ + v BT BLA
and obtain that w, is a solution of
K. u, + K,.Bou. — f, + B;F)\ =0.
Let S = K.. — KLK_ 'K, be a Schur complement type matrix. We end up with
the following Lagrangian to minimize over u.:

1
Le(te, Mg, Ap) = 5uCTBCTSCCBCuc —ulBr f. +ul B BI

1
_5 (fr - Kchcuc - BzA)T Kr_rl (fr - Kchcuc - B?}\) .
We use the following notations borrowed from [27]:

Fp,, = B.K.'Bl';
Fi. = B.K,'K,.B.
K:c = BZ(KCC - KZ;K;«IKTC)BQ
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The solution to the minimization of L.(u., Ag, A7) over u. must satisfy
Kiu.—FL X—fr=0,

where f* = BT f,.— BT KT K ! f,.. This problem is solvable since, for a coercive problem,

K, is a non-singular matrix. The corresponding minimal value of L.(u., Ag, A1) is

La(Ap A1) = —= (f2+ FEXN (KL (2 + FEX) = 5 (fo = BPA) K1 (f, — BIA).

1 1
2 2
Thus, maximizing Ly over A\; > 0 is equivalent to finding
1
min §ATF)\ —Md st. A\ >0, (6.12)

where
F = FIT'T' _I_ FIT'C (K:C)_lF}Cc; d = BTKg“lfT - FI'rc (K:C)_lfc* (613)

Having the solution of dual problem )\, primal solution can be reconstructed accord-
ing to formulae

Ue = (K:c)_l (}WI{‘CX + fc*) y Up = Kgﬂl (fT - B?X - Kchcuc) y Upe = Bcuc-

The convergence bounds guarantee the scalability of the algorithm, this is confirmed
by numerical experiments in section 13.2. The effect of different choices of nonmortar
sides on the numerical performance of our method is investigated.

6.3 FETI-DP for semicoercive contact problems

Continuing in joint work with Dan Stefanica, following similar approach as for coercive
FETI-DP, we used the FETT-DP method to develop a scalable algorithm for the nu-
merical solution of a semicoercive variational inequality. We recall that the variational
inequality describing the equilibrium of a system of bodies in contact is semicoercive if
floating bodies exist. In this case, the application of FETT-DP methodology results in a
convex QP problem with a positive semidefinite Hessian matrix and bound and equality
constraints. For contact problems, the kernel of the Hessian matrix is spanned by the
rigid body motions of the floating bodies. We solve this problem by using SMALBE.
The rate of convergence of this algorithm can be estimated in terms of the bounds on
the spectrum of the regular part of the Hessian of the quadratic cost function. We de-
rive such bounds in terms of the decomposition parameter H and of the discretization
parameter h, therefore establishing the scalability of our algorithm. We also obtain a
bound on the number of conjugate iterations required for finding the solution of the
discretized variational inequality to a given precision. This bound is independent of
both the decomposition of the computational domain and the discretization, provided
that the ratio H/h is kept fixed. Reported numerical results are in agreement with the
theory and confirm the numerical scalability of the algorithm.
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Several extensions of our method are possible and work on these problems is cur-
rently in progress. For example, a faster algorithm might be obtained by using a pre-
conditioner in the conjugate gradient step; see recent work by Dostél and Lesoinne [58|.
Another possibility is to use a mortar finite element discretization of the computational
domain |66]; see also, e.g., |38, 57|. To minimize the inherent extra computational ef-
fort required to compute the mortar conditions, every subdomain would be discretized
with continuous elements. The mesh would be unstructured only across the contact
interface, where mortar conditions will be required.

We note that the effort to develop scalable solvers for variational inequalities was
not restricted to FETI-type methods. For example, multigrid ideas were used early
on by Mandel [71]. Kornhuber, Krause and Wohlmuth [60, 61, 67] introduced an algo-
rithm based on monotone multigrid with scalable solution of auxiliary linear problems.
Combining multigrid ideas and approximate projections, Schoberl [44, 56| introduced
an algorithm for which linear complexity was established.

We follow the notation and relations introduced in previous section concerning
FETI-DP for coercive contact problems that was proven to be numerically scalable.
The discretized version of semicoercive problem has the form as coercive problem (6.10),
where K = diag(K*', K?) is the block diagonal positive semidefinite stiffness matrix.
The block K' corresponding to Q! is nonsingular, due to the Dirichlet boundary con-
ditions enforced on I':. The block K? corresponding to ? is singular and its kernel is
made of a vector v with all entries equal to 1. Therefore, the kernel of K is spanned by
the matrix R defined by

R = [0} (6.14)

(%

Even though R is a column vector for our model problem, we will regard R as a matrix
whose columns span the kernel of K. Moreover, we assume that the nodes in Q' and
(2 are numbered contiguously, so that K%, i = 1,2 are block diagonal matrices.

We reorder also the matrix R to comply with the above splitting of the nodal
values of u. The Lagrangian associated with problem can be expressed using the above
splitting of v and Lagrange multipliers Ag and \; to enforce the equality and inequality
constraints as in coercive case.

The solution @, to the minimization of L.(u., Ag, A;) over u,. must satisfy

K:u, — Ff X — fr = 0. (6.15)

Note that K, is singular so that problem (6.15) is solvable if and only if F/ X\ + f!

belongs to the range of K.. Since K, is symmetric, this is equivalent to requiring that
FEXN+ £ L KerK.

Let R. be the matrix whose columns span the kernel of the Schur complement matrix

See = Koo — KLK'K,.. Note that R. and R, the matrix spanning the kernel of the
stiffness matrix K, cf. (6.14), are connected by

~K 'K,
R - [ Ic :| Rc7
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where I, is an identity matrix. Then, the kernel of K. is spanned by
R.=(B!B.)"'B!R..
The condition for the solvability of (6.15) can be written as
RI(FEX + f1)=0. (6.16)
If (6.16) is satisfied, the solution %, of (6.15) has the form
ue = (KL)(FLA + )+ Rea,

where (K )" denotes a pseudoinverse of K}, i.e., a matrix satisfying K’ (K} ) K’ =

cc?

K., and « is an arbitrary vector. The corresponding minimal value of L.(., Ag, A;) is

cc?

L = BTN K (f, - BTN

1
s Ar) = =5 (JE+ Fp ) (L) (JE+ Fi o) =5

Maximizing L) over A\; > 0 is equivalent to finding
1 ~ ~
mini)\TFA— Nd o st. Ar>0 and RI(F/ X + f7) =0, (6.17)

where

Even though problem (6.17) is much more suitable for computations than (6.10)
and was used for solving discretized variational inequalities efficiently [54|, further im-
provement may be achieved by modifications as follows. Let G = RY F} , &= —RIf?
and denote by 7" a nonsingular matrix that defines the orthonormalization of the rows
of G such that the matrix G = T'G has orthonormal rows. Let e = T'e. Then, problem
(6.17) reads

1 ~
min 5)\TF)\ —Xd st. A\y>0 and Gh=e. (6.19)

Next, the problem of minimization is transformed on the subset of the affine space to
a minimization problem on the subset of a vector space. Let A be an arbitrary feasible
vector such that G\ = e. We look for the solution A of (6.17) in the form A\ = p + A.

Since ] ] ]
EATFA — \d = §MTF,u—,uT(d—F>\) + §ATFA — M4,

problem (6.19) is, after returning to the old notation by replacing p by A, equivalent to

min %ATF)\ —d™\ st. A >—XA; and GA=0, (6.20)

with d = d — FA. Our final step is based on the observation that the augmented
Lagrangian for problem (6.20) may be decomposed by the orthogonal projectors

Q=G'G and P=1-Q
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on the image space of GT and on the kernel of G, respectively. Since P\ = X for any
feasible A, problem (6.20) is equivalent to

1 ~
min §ATPFPA —MPd st. A >-)X and GA=0. (6.21)
The Hessian H,;, = PFP + pQ of the augmented Lagrangian
1
L\ p,p) = §AT(PFP + pQ)N = AT Pd 4+ \TGT (6.22)

is decomposed by the projectors P and () whose image spaces are invariant subspaces
of Hap. Let a,b > 0 such that the non-zero eigenvalues of F' restricted to ImP are
located in the interval [a, b]. Then,

o(Har) € [a, 0] U {p}.

By the analysis of Axelsson [7], the number k of conjugate gradient iterations necessary
to reduce the gradient of the augmented Lagrangian (6.22) by e satisfies

k< 1int (\/Eln (g) +3> )
2 a €

The proof of the numerical scalability of the SMALBE algorithm is based in part
on spectral bounds for the operator F’ restricted to ImP. The bounds on ¢ and b are in
terms of the decomposition and the discretization parameters H and h that guarantee
the optimality of our algorithm, see Chapter 9.

6.4 Augmented FETI methods: FETI-2, FETI-DP2
for coercive and semicoercive contact problems

Structural mechanics problems can be subdivided into second-order and fourth-order
problems. Second-order problems are typically modeled by bar, plane stress/strain,
and solid elements, and fourth-order problems by beam, plate, and shell elements.
The condition number of a generalized symmetric stiffness matrix K arising from FE
discretization of second-order problems grows aymptotically with the mesh size h as

1

H(K) S Cﬁ,

and that of a generalized symmetric stiffness matrix arising from the FE discretization
of a fourth-order problems grows aymptotically with the mesh size h as

1
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Material and discretization heterogeneities as well as bad element aspect ratios, all
of which are common in real-world FE models, worsen further the above condition
numbers.

The FETI-1 method incorporates a relatively small-size auxiliary problem which
is based on the rigid body modes of the floating subdomains. This coarse problem
accelerates convergence by propagating the error globally. For second-order elastic-
ity problems, the condition number of the interface problem associated with FETI-1
equipped with the Dirichlet preconditioner grows at most polylogarithmically with the
number of elements per subdomain as

k(Fy'PFP) < C (1 + 1g? %) : (6.23)
This improved estimate establishes the numerical scalability.

For fourth-order problems, preserving this quasi-optimal condition number estimate
requires enriching the coarse problem of FETI-1 by the subdomain corner modes. This
enrichment transforms the original FETI-1 method into algorithm known as the FETI-
2 method. With domain decomposition using local Neumann problems, the jumps
of local solution fields at interface crosspoints can be discontinuous. For high-order
problems the singularity entails dependence of the condition number upon the local
mesh size. So it is of great importance to get rid of these singularities. The solution
consists in constraining the Lagrange multiplier to generate local displacement fields
that are continuous at interface crosspoints. Enforcing this constraint induces another
level of preconditioning for the FETI method.

In FETI-2 method we solve

1 ~
min 5ATPCPFPA —~ M PoPd st. A\ > —A; and G\ =0, (6.24)

using standard FETI-1 notation, projector Po = I — PFPCT(CPFPCT)~'C playing
the role of preconditioner, and C' is chosen matrix, we can see that

Cr=CP(d—F)\)=CBu=0.

Notice that Bu is the jump of solution accross the subdomain interfaces. By C'P(d —
FX) = 0 we make this jump orthogonal to the rows of C. If we choose C such that each
row correspons to a subdomain corner mode, then the solution is always continuous at
these corners. The corner modes and the associated global operator C' are defined from
corner motions in the same way as rigid body modes and operator G are defined from
rigid body motions. So the enriched coarse grid matrix is [C' G| = [Bbc RT} BT with
By, R, B defined above.

Unfornately, enriching the coarse problem of FETI-1 by the subdomain corner modes
increases its computational complexity to a point, where the overall scalability is di-
minished on a very large number of processors, Np...s > 1000. For this reason, the
basic principles of FETI-2 were revisited to construct more efficient FETI-DP method
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having the same quasi-optimal condition number estimate (6.23) for both second- and
fourth-order problems, but employs more economical coarse problem than FETI-2.
As FETI-1 saddle point problem

Ku=f—-B"\, Bu<0, GBu<0
results after augmentation in FETI-2 saddle point problem
Ku=f—-B"\, Bu<0, GBu<0, CBu <0,

in similar way, supposing splitting of nodes into boundary remainder, boundary corner,
remainder and interior, FETI-DP saddle point problem

Ku=f—B'\, Bu<0
results after augmentation in FETI-DP2 saddle point problem
Ku=f—B'\, Bu<0, CBu<0.

How the FETI-DP coarse problem could be extended to improve convergence? This
can be accomplished again by forcing the residual to be orthogonal to a chosen set of
vectors at each iteration of FETI-DP algorithm. Let C' be a matrix of arbitrarily chosen
vectors, r the residual, then we enforce the following equation to enhance convergence

Cr =CBu = 0. (6.25)

We add these equations by introducing new Lagrange multipliers, to enforce constraints
associated with (6.25). The resulting FETI-DP operator has the same form. We obtain
augmented FETI-DP coarse grid, coined as FETI-DP2, that can be viewed as precon-
ditioned FETI-DP. These C' matrices can be chosen to be average x,y or z jump along
a subdomain edge resulting in an edge by edge sparsity pattern for the augmented set
of equations. The augmented version is more robust and scale better for more com-
plicated high-order problems. Numerical experiments comparing the performance of
FETI-1, FETI-2 and FETI-DP methods for coercive contact model problem are sum-
marized in Section 13.2.5.
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Chapter 7

Optimality of dual penalty and
numerical scalability

It is neccessary to mention so called optimality of dual penalty method - Dostéal, Horak
[16] - QPMPGP algorithm for FETI-1 problem with dual penalty to enforce equality
contraints. This is theoretically supported scalable algorithm for the solution of coercive
and semicoercive variational inequalities.

The penalty method is optimal in the sence that a given bound on the relative error
of violation of the equality contraints may be achieved with the value of the penalty
parameter independently of the discretization parameter

1+e

|GAll < © [P -

My numerical experiments presented in section 13.1 and illustrated in Figure 13.1c lead
to this important theoretical feature resulting in scalability of our algorithms. Primal
penalty method formulated in terms of displacements can experience various numerical

difficulties. For more details see Theorems 6.1, 6.2 and 6.4 and Lemma 6.3 of [16],
which are based on the estimate by Mandel and Tezaur, Lemma 3.11 of [20].
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Chapter 8

FETI-DP with corners on contact
interface

8.1 Corners on contact interface

As mentioned by C. Farhat et al. in [46], page 2411, he avoided the corners on the
contact zone: “As stated earlier, the FETI-DP strategy requires partitioning the perfect
interface into corner and remainder dofs. However, all dofs existing on the potential
contact interface must be included in the remainder partition, and none of them can be
defined as a corner dof. This is because by definition, the displacement field at a corner
node is defined only at the global level.” Usage of corners on the contact interface
without any modification results into jumps and penetration in these corners as shown
in Figure 8.1.

Coercive problem Semicoercive problem

R
NN 77
NS

N 477
77
\\\\\‘:9,"“‘"

SN

/ﬁ
““’" "’l’/ S
o S ssceass

,;/

L

Figure 8.1: Incorrect FETI-DP for coercive and semicoercive problem with corners on
the contact zone - zoomed jumps in solution

Three solutions appeared - two of them follow Farhat’s advise and the third one
consists in modification of method for corners on contact zone:

e corner node belongs to 4 subdomains as in Figure 8.2a
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e corner node belongs to 4 and 2 subdomains except the contact zone as in Figure

8.2b
e corner node belongs to 4 and 2 subdomains including contact zone as in Figure
8.2¢
h
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Figure 8.2: FETI-DP with changing meshes of corners and Lagrange multipliers

Special consideration earns my research result in this area - the third case - de-
veloped during my stay at Boulder University of Colorado, Department of Aerospace
Engineering.

The usage of corners on contact interface is possible through an additional condition
that preserves the nonpenetration in Lagrange multipliers. This condition comes from
the natural condition Bu < 0. According to C. Farhat, all dofs existing on the potential
contact interface must be included in the remainder partition, so we have to ensure then
only B,u, < 0. This is not true in case with corners on contact zone anymore and so
term

Brur + Bbcubc <0

is essential in our formulation, which proves finally in ﬁhc = F;_ — By.B. instead of
Fr...
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Let us start with algebraic formulation of the saddle point problem with no corners
on the contact zone

Krr Krc Up . fr BTT
|‘K7;I; KCC}[ubC]_[fbc}_{ 0 :|)\’ Byu, <0, A = 0.

The modified saddle point problem allowing the use of corners on the contact interface
reads

K, K, Uy 1. BT
= — T < >
e L= LR ][] mae <o vz

that is equivalent to

Krrur + Krcubc = f?” - B?A> (8]‘)
KZ;UT + chubc = fbc - BI?;)H (82)
B,u, + Bpeupe < 0. (83)

From (8.1) u, = K !'(f, — B'X\ — K,.u), we substitute u, into (8.2) and (8.3) and
multiply (8.2) by B from the left. Using standard FETI-DP notation introduced in
Section 6.2 and 6.3 we obtain

—FF A+ Kiu, fr = BTBIA

Fr,. A+ Fiuc ; B,,K(:;}fr + ByB.u, '’ Ar=>0
and after some manipulations problem
B, A + (Fr. = BieBoJue = BEL ey
(Fr,. — BeeBo)"A — K* u, - _p M2
that can be written in matrix form
FI fl}?g BI fe KBngBC ] { 2 ] - { b f(z;lf ’ ] LA >0 (84)

Thus we can state the following Proposition 8.1.

Proposition 8.1: Let us suppose standard FETI-DP notation. If the contact in-
terface contains corner nodes then Fj = F; , — By.B. has to be used instead of F,..

The modification is valid also for mortar FE used on the contact interface as in
Figure 8.3.
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Figure 8.3: Modification of FETI-DP with corners on contact zone for mortar FE

8.2 FETI-DP for coercive contact problems

Final FETI-DP problem having corners on the contact zone after the modification of
matrix F;_ and elimination u. from (8.4) reads

1
min 5)\TF)\ —Md st. A >0,

F = FI’I‘T + F\ITCK:C_:LF\}I;.J d = BTKT_TlfT - F\ITCK:C_I C*

This problem is then solved efficiently by QPMPGP. The rate of convergence of this
algorithm can be bounded in terms of the spectral condition number of Hessian of the
QP problem, and therefore the scalability of the resulting algorithm can be established,
see Dostal, Horak, Stefanica [14], [15]. Numerical experiments are presented in Section
13.2, including those with changing density of Lagrange multipliers and corners on the
contact zone for coercive contact problem.

8.3 FETI-DP for semicoercive contact problems

Following similar approach as for coercive FETI-DP, including the modification of
matrix Fy_, u. must satisfy K*u. — FIT)\ —fr=0e Fr A+ fi e ImK;,

ﬁgcA + f¥ L Ker K. with solvability condition R. (F}CC)\+ fc> = 0, Then u. =
K (ﬁlfcmt f:) + Rea.
FETI-DP problem then reads

1 —T /~
min JATFA = X'd st A 20 and R (FLA+f) =
~ ~Ta ~T ~ -
After modification: G = R, FIT, = e [5G = TG,e = Te (T defines or-

thonormalization of rows of G) and homogenlzatlon - choice of particular solution X
satisfying A7 >0 and G\ = e and denoting d = d— F)\ it results in

1 ~
min§)\TF>\ —Nd st. A\;>—=); and G\ =0.
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Orthogonal projectors Q = GT'G and P = I — (Q on ImAGT and Ker G improve
convergence, so that final problem with incorporated matrix Fj__ is

1 ~
min §ATPFP>\ —MN'Pd st. A\; > —=)\; and G\ =0.

Numerical experiments are presented in Section 13.2.
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Chapter 9

Normalization of mortar conditions
and bounds on spectra

In this chapter I would like to emphasize my important observation which is the key
ingredient of numerical scalability of FETI based methods with mortars. Norm of each
mortar row B, = [..M,, ..— N, ..| is of the order of the mesh size h., on 7,
while every row of nodal condition has norm of order 1. It is important to use in our
algorithms matrices with normalized rows to have unit norm.

Lemmas, theorems, proofs follow and more details may be found in [15], [14], [25].

Theorem 9.1: If F and P denote the matrices of the problem (6.9, 10.5) (generated
either by FETI-1 or TFETI-1), then the following spectral bounds hold:

C' < Apin(PFP[ImP) < A\pax(PFP|ImP) < ||F|| < C%; o(PFP|ImP) < C%

If F denotes the matriz of the problem (6.12) generated by FETI-DP for the coercive
problem, then the following spectral bounds hold:

0 <) < Aua(P) < 171 < (B oty <0 ()

If F and P denote the matrices of the problem (6.21) generated by FETI-DP for

the semicoercive problem, then the following spectral bounds hold:

2 2
C < Amin(PFP[ImP) < Apax(PFP|ImP) < ||F|| < C <%) .o(PFP[ImP) < C <%) .

Proof: See [28, 23, 14, 25]. O
We showed theoretically here in Theorem 9.3 and experimentally in Section 13.4 that

the FETI-DP algorithm using the nonnormalized matrix B}éé instead of normalized B;
results in a nonscalable algorithm.
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Let W be a discrete space constructed as follows: each domain 2, i = 1,2, is
partitioned on a rectangular grid into subdomains Q%! ... Q"Pi with p; > 1. Let H be
the diameter of the partitions. The subdomain grids do not necessarily match across the
potential contact interface I'.. The restrictions of W to Q' and Q2 are @, finite element
spaces corresponding to the rectangular grids in Q' and Q2. We assume that these two
(1 elements have comparable mesh sizes, on the order of h. We call a crosspoint either
a corner that belongs to four subdomains, or a corner that belongs to two subdomains.
Since the mortar conditions are only related to interior nodes on the nonmortar edges,
two extra conditions are necessary to enforce nonpenetration at the first and last nodes
on ..

We derive bounds on the spectrum of £’ that will be used for the convergence analysis
of the algorithm required to solve the bound constrained QP problem (6.12).

Let B = [B, 0] and let K be the stiffness matrix corresponding to the model problem
on a finite element discretization where continuity is required at the corners but no
other continuity is required across the subdomain edges. From inverse inequalities and
Poincaré’s inequality, it follows that

C — C
ol < ®ow) < lloliag, YweW. (9.1)
C' is a generic constant independent of h, H, and the number of subdomains in the
partitions of Q! and 2.
Note that ¥ = B K ' B’ and therefore we find as in Lemma 4.3 of [20] that
—=T
B\ N?
F1>\7 )\ = Sup —————. 92
(FAA) = sup o, w) (9.2)
Let ||w]||;z and ||A]|;2 be the Euclidean norms of the primal and dual variables w and
A, respectively. Since w is a finite element function,

w2y ~ R2[lwlf, (9-3)
and, in particular,
=T =T
1B" AMll72(0) = W*I[B Al (9-4)
From (9.1), (9.2), and (9.3), we find that
=T
B\ 2 . 2
(FA,\) < CH? sup % < CHY|B" |3 SUP%
weW ||wHL2(Q) wEW”wHLQ(Q)
H\* —
< C(E) 1B Al[. (9.5)
Let wy = B \. From (9.1) and (9.2), and using (9.4), it follows that
—T —T =T
B )\ w)? B\ 2 B |4
(FAN > Chtsup B AUT o g B AWy I8 Al
weW ||w||L2(Q) ||w0||L2(Q) || B )\||%2(Q)
~ C|[B" )% (9.6)
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Recall that

B = [B 0] = lB” O}.

Bg, 0
To analyze the importance of normalization for the performance of our algorithm, let
us denote by B” the matrix similar to B without normalizing the rows of By, i.e., using

B}#:
5 _ | Bl 0]
Bg, 0

Lemma 9.2: If the rows of Br are normalized, then
—T
1B" Al =~ [[Al[z (9.7)
If the rows of By are not normalized, then

ol
CR2|INIE < [I(BY)"ME < ClIAllE. (9-8)

Proof: Note that

ETA _ |:B;:TA[:| + |:Bg,r>‘E :|
0 0 )

Since the nonzero primal variables corresponding to B}F,,)\[ are all on I'., while those
corresponding to Bf Ap are all on the interface of the partitions of Q' and 92, we
obtain that .

=Ty 2 T 2 T 2

1B Al = [IBr Al + [|Be,Aplle- (9.9)

The entries in each row of B, are 0, except for two entries which are either 1 or —1.
Therefore, || BE , Agl|i = || Ag||% and

T
1B A ~ 1Bl + A5l (9.10)

Let N, be the number of nonmortar sides, and let v(j), 7 = 1, ..., Nym, be the
nonmortar sides on I'.. Let B, be the normalized mortar conditions matrix corre-
sponding to v(j), and let A;; be the Lagrange multipliers corresponding to v(j). We
denote by B,(;, the part of B,;) corresponding to the remainder nodes. Then

By),r No
B, = . and Bf A = Y Bl A
B’Y(NnM)vT’ j=1

For every node on I',., there are at most two vectors with nonzero entries at that nodes

out of the vectors {B] ) . Ar;}j=1,. n,,  Therefore,

Nnm

1B, Ml < 2 1By, Arglli (9.11)

j=1
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Recall that B,j), is the normalized version of BY T =0 Moy 0 — Ny;)] corre-
sponding to the remainder nodes. For orthogonal mortars,

Bwj)ﬂ“ = [0 Ir; 0 _Pv(j)]v

where I ; is the identity matrix of size equal to the number of Lagrange multipliers
corresponding to (j), i.e. the length of A; ;, and P, ;) is the mortar projection matrix
corresponding to 7y(j). Thus,

0
Al
B NS )\17.7 0]
’Y(] )‘IJ
and therefore
1By Al = 1Al + 1P Al (9.12)
Also, note that
N’!L’UL
1B, Al > Z||AI,]-||?2 = [Arl[R. (9.13)

To estimate the norm of P )\ 1.j, we use the L*-stability of the mortar projection.
It is easy to see that

(P Ay, ) (Arg, Py ¥)?
1P Al = sup —22— = sup —L 1Y
V) w20 Yl T ]
< A% ” il w||l2. (9.14)
117

Let ((j) be the union of mortar sides from I'? opposite v(j). Then 1) corresponds to
a vector of nodal values on ((j) and P,;)% is the vector of nodal values of the mortar
projection of ¢ on (7). From the stability of the mortar projection we find that

1Py Ulzey < CllYILa oy

Let h,(;) and h¢(j) be the mesh sizes on v(j) and on ((j), respectively. We recall that
the meshes across any nonmortar side were assumed to be of order h, i.e. he(y/hq)
is uniformly bounded. Using the fact that ¢) and P, ;) ¢ are traces of first order finite
element functions, we obtain

he )
|1Pyy ¥l < o (],) el < ClIAlle,
Y

and therefore, from (9.14), it follows that

1P) ) Al < ClidllR
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Using (9.12), we find that
Al < 1P Al < Ol
A bound for the norm of B}, A; can now be established using (9.11) and (9.13):
Al < 11B7 Ml < ClIAR (9.15)
and, using (9.10), we establish (9.7):
IAE = [l + el ~ (B AR

For the case when nonno_rmalized mortar conditions are used across the contact
interface, i.e. when Bf and B" are used instead of B and B, the only difference is in
the scaling of the rows of Bf by h. In other words, we obtain, instead of (9.15), that

CR?|MlE < II(BE)T Ml < CR[d] [
Since (9.10) also holds for this case, i.e.
BH#
BT A~ (B Ml + (1Al

we conclude that (9.8) is established. [J

Theorem 9.3: Let F# = B" K ' (E#)T, the operator corresponding to F' gen-
erated by FETI-DP for the coercive problem, if the nonnormalized mortar inequality
matrix Bf is used in our algorithm instead of B;. Then the condition number of F7*

deteriorates as follows:

2 2
Ch2 < Mpin(F#) < A (F#) < ||F#|| < C (%)  R(F#) < % (%) . (9.16)

Proof: From (9.6) and (9.5) we find that

=T 2 1557
B )2 H B )%
CH I < Anin(F) < Apae(F) < C(—) I Ii (9.17)

A~ h) AR

Then corresponding part of Theorem 9.1 follows from (9.7) of Lemma 9.2. A similar
inequality to (9.17) also holds for F#, and (9.16) follows as before from (9.8) of Lemma
9.2. 0
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Chapter 10

TFETI-1 - an easier implementable
variant of the FETI-1 method

Implementation of the FETI-1 method into general purpose packages requires an ef-
fective method for automatic identification of the kernels of the stiffness matrices of
the subdomains as these kernels are used both in elimination of the primal variables
and in definition of the natural coarse grid projectors. An effective method based on
combination of the Cholesky factorization and the singular value decomposition was
proposed by Farhat and Gérardin [26]. However, it turns out that it is still quite diffi-
cult to determine the kernels reliably in the presence of rounding errors. This was one
of the motivations that led to development of the FETI-DP method, which enforces the
continuity of displacements at the corners on primal level so that the stiffness matri-
ces of the subdomains of the FETI-DP method are invertible. However, even though
FETI-DP may be efficiently preconditioned so that it scales better than the original
FETI-1 for plates and shells, the coarse grid defined by the corners without additional
preconditioning is less efficient [14, 25| than that defined by the rigid body motions,
which is important for some applications |23, 14, 25|, and the FETI-DP method is more
difficult to implement as it requires special treatment of the corners. More discussions
concerning the FETI-1 and FETI-DP methods may be found e.g. in [31].

TFETI-1 - a new variant of the FETI method for numerical solution of elliptic
PDE is presented in joint work [21]. The basic idea is to simplify inversion of the
stiffness matrices of subdomains by using Lagrange multipliers not only for gluing the
subdomains along the auxiliary interfaces, but also for implementation of the Dirichlet
boundary conditions. Results of numerical experiments are presented and indicate that
the new method may be even more efficient than the original FETI-1.

10.1 TFETI-1 and model linear problem in 2D

Let us consider linear 2D model boundary value problem of membrane pressed down
by force with density -1 as shown in Figure 10.1. It is assumed that the boundary I is
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decomposed into two disjoint parts I', and I'y, I' = fuuff and that there are prescribed
Dirichlet boundary conditions on I', and Neumann boundary conditions on I'f as in
Figure 10.1a. The Dirichlet boundary conditions represent the prescribed displacements
and the Neumann conditions represent the surface tractions.

a b

Figure 10.1: a) 2D model problem b) solution of this problem

To apply the FETI-1 based domain decomposition let us partition €2 into N sub-
domains €2° as in Figure 10.2 and we denote by K*, f° «° and B®, respectively the
subdomain stiffness matrix, the subdomain force and displacement vectors and the
signed matrix with entries -1, 0, 1 describing the subdomain interconnectivity. We
shall get the discretized problem

1
min §uTKu —ulf s.t. Bu=0 (10.1)

with the bock-diagonal stiffness matrix

, f=| + |,u=| |, B=[B'...,B™]. (10.2)
KNS fNS uNs

K =

The original FETI-1 method assumes that the boundary subdomains inherit the
Dirichlet conditions from the original problem as in Figure 10.3a, so that the defect of
the stiffness matrices K* may vary from zero corresponding to the boundary subdomains
with sufficient Dirichlet data to the maximum corresponding to the interior floating
subdomains.

The basic idea of TFETI-1 (Total-FETI-1) is to keep all the subdomain stiffness
matrices K* as if there were no prescribed displacements and to enhance the prescribed
displacements into the matrix of constraints B. To enhance the boundary conditions
like u; = 0, just append the row b with all the entries equal to zero except b; = 1. The
prescribed displacements will be enforced by the Lagrange multipliers which may be
interpreted as forces as in Figure 10.3b. An immediate result of this procedure is that
all the subdomain stiffness matrices will have known and typically the same defect. For
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example, the defect of each K* for 2D and 3D elasticity will be equal to three and six,
respectively. The remaining procedure is exactly the same as described for FETI-1, the
key point is that the kernels R° of the locall stiffness matrices K* are known and can
be formed directly. For example , if the subdomain Q° of a 2D elasticity problem is

discretized by means of n, nodes with the coordinates (x;,;), i = 1,...,ns, then
R = (R, (R™)T)", R = { LY ] i1, m. (10.3)
01 ux
Using R®, we can easily assemble the block-diagonal basis R of the kernel of K as
R!
R = : (10.4)

RN

The critical point of evaluation of KTz, the determination of the ranks of the sub-
domain stiffness matrices K*, is trivial when the TFETI-1 procedure is applied. The
final problem reads

1
min §ATPFP>\ —M'Pd st GAx=0, (10.5)

with the same notation as in FETI-1 and may be solved effectively by the conjugate
gradient method as the proof of the classical estimate by Farhat, Mandel and Roux
(28], Theorem 3.2)

w(PFP|ImP) < c% (10.6)

of the spectral condition number « of the restriction of PF P to the range of P by the
ratio of the decomposition parameter H and the discretization parameter h remains
valid for TFETI-1.

Closer inspection of the proof [28] of (10.6) reveals that the constants in the bound
(10.6) may be in many cases more favorable for TFETI-1 than for classical FETI-1.
The reason is that the proof of (10.6) is based on estimates of bounds of the eigenvalues
of the regular parts of the subdomain matrices K* that will be in many cases more
favorable than those generated by FETI-1. For example, if €2 is decomposed into iden-
tical subdomains, introduction of the Dirichlet boundary conditions into the boundary
subdomains can only increase these local estimates. From a different point of view,
the slightly faster rate of convergence of TFETI-1 than that of FETI-1 should not be
surprising as TFETI-1 generates larger kernel of the global stiffness matrix K that have
similar role as the coarse grid in multigrid methods. A certain drawback of the proce-
dure is that the dimension of the coarse problem is larger, so that it may happen that
the number of the iterations may be slightly larger than that required by the classical
FETI-1.

Similarly to the classical FETI-1 method, the performance of the method may be
improved by standard FETT preconditioners [30, 31]. The results are useful also for
solving contact problems by FETI based methods [23].
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Figure 10.2: Decomposition and discretization of the 2D model problem
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Figure 10.3: a) The idea of original FETI-1 b) the idea of TFETI-1

10.2 TFETI-1 and model contact problem in 2D

The above described procedure for linear problem adapted to contact problems results
in

1 ~
min 5ATPFPA —MN'Pd st. A\; > —=); and G\ =0.

In this section and next one 2D and 3D model contact problems are introduced,
that demonstrate cooperation of our department with Stanford University in Califor-
nia, USA and Boulder University in Colorado, USA. The described TFETI-1 method
and algorithms were incorporated during my and Vit Vondrak’s stay in Stanford into
software developed by group of Prof. Farhat and used for computation of more realistic
problems.

The 2D problem involves 6 rectangles in mutual contact as it is depicted on the
Figure 10.4. The left rectangles are fixed on the left side (blue arrows) while the right
ones are free and they are loaded (red arrows) such a way that the problem has unique
solution. Numerical experiments are depicted in Section 13.3.2.

10.3 TFETI-1 and model contact problem in 3D

The 3D model problem consists of 2 bricks in mutual contact, see Figure 10.5. The
bottom brick is fixed in all degrees of freedom while the upper one is fixed only in such a
way, that only vertical rigid body movement is allowed. We have analyzed 2 cases. The
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first one, with matching grid on the contact interface prescribes node-to-node contact
conditions. The second one allows nonmatching grids and the mortar elements were
used for assembling of contact conditions. Numerical experiments are in Section 13.3.2.

Conforming decomp., nodal discret. 2D problem: stress distribution

Figure 10.4: 2D model contact problem of 6 rectangles - conforming decompositions
and nodal discretization, its solution
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Conforming decomp., nodal discret. Nonconforming decomp., mortar discret.
% WIaoy) e © IRaov: SO0

ilalix) ilalix)

Figure 10.5: 3D model problem of 2 bricks - conforming and nonconforming decompo-
sitions, nodal and mortar discretizations, and solutions
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Chapter 11

MFETI-DP - multilevel variant of the
FETI-DP method

During my stay at the Department of aerospace engineering in Boulder in Colorado
I carried out implementation of Prof. Farhat’s exciting idea called MFETI-DP -
Multilevel-FETI-DP of new generation. The general FETI-DP coarse problem

K'y==z ie BI(K.— K.K.'K,)By=z, (11.1)

which is significantly smaller in comparison to the size of dual problem, can be for
very complicated huge problems very large. The factorization and subsequent for-
ward /backward substitutions of this coarse problem becomes the dominant factor in
solving the global problem as the number of subdomains becomes large (Vs > 1000).
Increasing number of subdomains increases degree of parallelism, reduces memory re-
quirements for K* and factors, reduces CPU for factors and solution of coarse problem
by forward /backward substitution, but it increases size of coarse problem.

So an effort to use iterative method instead of direct one arised. Iterative method
can be attractive in theory because it reduces the storage requirements, but increases
the robustness issue as it introduces an additional convergence criterion at subdomain
level, furthermore local solver is embedded in iterative loop in Lagrange multipliers
- therefore computational efficiency requires optimizing an iterative local solver for
succesive right hand sides.

Why not use the FETI-DP recursively? All assumptions for application of FETT-DP
for coarse problem are satisfied. The FETI-DP coarse problem appears in the solution
of coercive model linear and contact problem by QPMPGP at three places:

e in the computation of dual right hand side d = B, K'f, — F;, K 7' [,

e in each matrix-vector multiplication F'v in QPMPGP, where the dual operator
F=Fy,, +F, K 'FF

c

e in the reconstruction formula u. = K '(f¥ + F{ X).
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For next explanation let us consider the last case having also nice graphic interpretation,
see Figures 11.1, 11.3, 11.4, i.e.

Kiu. = ff+ FL

The corner is the node belonging to four subdomains. It is possible to define corner as
the node shared by two and more subdomains, for both linear and contact problems.
In case of contact problems we have to use Fj _ instead of Fj__, see Chapter 8.

11.1 MFETI-DP for coercive linear problems

The coercive linear model problem is similar to coercive contact model problem. We
impose continuity conditions instead of nonpenetration on I'.. Let

1
min QAZTFZAI — M,

*—1 T _ -1 *—1 px
E = E,Ir'r _'_ EylrcK ’F’l,lr.ﬂ dl - Blerl7TTfl7T - EvlTCK fl,C

l,cc l,cc

denote the FETI-DP problem on the [-th level and
K;:ccul,c = flfc + F}J,}TC)\l

its coarse problem of the third type on the [-th level, | = 1,...,Njpe. For [ =
1, ..., Njewer — 1, we process this coarse problem in the same way as Ku = f, i.e. by
application of FETI-DP method, but we have to decompose it first. The coarse problem
on the last level | = Ny, is solved by the factorization.

The decomposition is defined by mapping of u; . to u;+;. We split the decomposed
nodes on the [ 4+ 1-th level, according to given decomposition, into boundary corner
nodes, denoted by bc, remainder nodes, denoted by r, these can be further split into
interior nodes, denoted by i, and boundary remainder nodes, denoted by br. The
continuity conditions at the new subdomains’ corners are enforced by using a global
vector of degrees of freedom u;4; . in primal variable, and at new boundary remainders
by using vector of Lagrange mulripliers A\;y; in dual variable. We define B, 1,541,
Ki'\1 oo Jii1.0o €tc., and we apply this procedure recursively.

Special consideration is required to the decomposition of the problem and assembling
following objects

- *,1,1 7 B 1,1 A
Kl’cc 0 0 u,
0 . 0 . 0 :
*ylvpl,l 1ypl 1
K = 0 0 Kl’cc 02 1L 0 U1 = l’§ 1
- *,2, ) - s )
0 0 K 0 0 u?!
0 0 . 0 :
*yzvpl,2 2ypl,2
| 0 0 Kl’cc i [ w.
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- w11 L1,T\1,1
e RN

*ylvpl,l 1ypl,17T 17pl,l
+E A

fiy1 = be 21 o9, 2l1
- *7 b b b b Y
e+ EG A

*,2,p1.2 2,p1,2,T \ 2,p1,2
L . +FN _

rC

Il =1,..., Njeyet — 1 for the decomposed coarse problem
in LT K I t. B =0 and B =
min §ul+1 +1Up+1 — fl+1ul+1 S.U. Di41,pUi41 = U an 1+1,cW+1,c = Wi41,bey

playing the role of primal problem and being prepared to the application of FETI-DP
resulting in dual problem

1
min 5A1T+1Fz+1)\1+1 — Ay diga.

Let K1 = K, fi = f, w1 = u, By g = Bg, Bi. = B. and assemble following objects
according to formulae:

7‘7k ‘7 )T ‘7 '7 7T ‘7 )_1 '7 '7
Kp2F =" BT (KL - KK K] B

l,cc l,cc l,re Lrr ch) l,e?
seSlj’k

fl*vjvk — Z Bi?csvT( l]’é)sc _ KjvsvTKjvsv_l jvs)’

,C l,re Lrr lr
sESlj’k
j’k R j,S j,S,—l j7S)T
FlJm- - 2 : Bl,rKl,rr Bl,r )
sESlj'lC
j?k R j,S j787_1 j,S j,S >
FlJrc - E : Bl,rKl,rr Kl,chl,ca J= 1727
sESlj’k

where S/* contains indices s of subdomains Q) of j-th domain €/ on I—th level, which
contribute to matrices and vectors of new subdomain fol on [ 4+ 1—th level.

Once the problem is solved, we map the solution u;;1t0 ;.. As in multigrid methods
we can perform various courses through the levels - V,W cycles and their combinations
- as illustrated in Figure 11.2. These mappings can be viewed as operators working on
the hierarchy of spaces W, of P1 or Q1 finite element functions with characteristic mesh
size h; and subdomain size H;.

I implemented MFETI-DP and run numerical experiments comparing finite and
iterative solution of coarse problems of the third type including inexact solution with
specified number of CG iterations in simple V-cycle on two levels, see Section 13.4.1.
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Figure 11.1: Illustration of MFETI-DP method - subdomains, solutions on three levels

level 1
level 2
level 3

Figure 11.2: Example of course through three levels
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11.2 MFETI-DP for coercive contact problems

For coercive contact problems is the situation practically the same. The dual problem
on the first level is only bound constrained

min %)ff Fid — Mdy st Mg >0,
problems on all other levels [ = 2, ...., N, are linear, i.e. unconstrained
N T
min 5)\[ EN — N\ dp,
and are solved as described in previous section.

I implemented MFETI-DP for coercive contact problems and run numerical exper-
iments on two levels, see Section 13.4.2.

1
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0 05 1 15 2 0 o5 1 15 0

Figure 11.3: Ilustration of MFETI-DP for contact coercive model problem - subdo-
mains, solutions on both levels, Hy = 1/4,hy = 1/8 Hy =1/2,hy = 1/2
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Chapter 12

Implementations of algorithms

Presented methods were implemented for model problems in Matlab 7. To demonstrate
parallel scalability and to run huge numerical experiments it was necessary to implement
the code in parallel using PETSc 2.1.22, that was realized during my stays in EPCC
(Edinburgh Parallel Computing Centre) in 2001 (TRACS programme) and 2005 (HPC-
Europa programme) and at Johannes Kepler University in Linz in 2001 (group of Prof.
Ulrich Langer). Following chapter gives a simplified overview of the most relevant
phases of the FETI-1 and TFETI-1 algorithm and the description of their parallel
implementations. To solve more realistic problems in industry I have participated in
cooperation with Colorado University in Boulder in 2004 and Stanford University in
California in 2006 (both in groups of father of FETI methods, Prof. Charbel Farhat).

12.1 Matlab’s implementation of algorithms

Here is Matlab’s code SMALBE algorithm, that is very similar to ALAPC and uses
QPMPGP in Step 1:

% SMALBE

% Step O

epsr = 1.e-6*norm(b);

Gama = 1;

ncg = 0; ne = 0; nout = 0; ncg_max = 100;

u = max(B*xf/2,c); % Initial lambda

c(niq) = -Inf*ones(length(niq),1);

1A1 = rho; % 1A1 is the norm of the matrix

alfa=1/1A1; % alpha_bar...can be computed more precis.by Reigh.quot.
J=(u>c);

M=1; betarho=10; ny=norm(P*d); mi=zeros(size(G,1),1);
Lag=0.5%u’*A*u-b’*u;
gp=ones (length(u));
Gu=G*u;
% Step 1,2
while norm(gp)>epsr
1A1 = rho;
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alfa=1/rho;

% Gradient splitting of g=-r, gf=gradient free(fi), gr=gradient free

% reduced (fired), gc=gradient chopped or cut (beta), gp=gf+gc=projected grad.

g = Axu-b; gf = J.*g; gc = min((7J).*g,0); gr = min(1A1*J.*(u-c), gf); gp = gf + gc;
p=gf;

while norm(gp)>min(M*norm(Gu) ,ny)
if gc’*gc <= Gamaxgr’*gf
% Proportional iteration. Trial conjugate gradient step.
Ap=A*p; rtp=g’*p; pAp=p’*Ap; acg=rtp/pAp; yy=u-acg*p; ncg=ncgtl;
if all(yy>=c)
#Conjugate gradient step
u=yy; g=g-acg*Ap;
gf = J.*xg; gc = min((7J).*g,0); gr = min(1A1l*J.*(u-c), gf); gp = gf + gc;
beta=gf’*Ap/pAp;
p=gf-betaxp;
else
%partial conjugate gradient step
a=1/min((J.*p) ./ (J.*(u-c)+("J1)));
u=max (u-axp,c); J=(u>c); g=g-a*Ap;
gf = J.*g; gr = min(1A1*J.*(u-c), gf);
%expansion step
u=max (u-1.01xalfa*gr,c); J=(u>c); g=A*u-b;
gf = J.*xg; gc = min((7J).*g,0); gr = min(1A1*J.*(u-c), gf); gp = gf + gc;
p=gf; ne=ne+l;
end
else
%Proportioning step
Ap=Axgc; acg=(gc’*g)/(gc’*Ap);
u=u-acg*gc; J=(u>c); g=g-acg*Ap;
gf = J.*xg; gc = min(("J).*g,0); gr = min(1A1*J.*(u-c), gf); gp = gf + gc;
p=gf; ncg=ncg+1;
end
if ncg >= ncg_max  break; end
end
% Step 3
Gu=G*u;
mi=mi+rho*Gu;
% Step 4
Lag_old=Lag;
Lag=0.5%u’*A*u-b’*u;
if (Lag < Lag_old + 0.5*rho*(Gu’*Gu))
rho = betarho * rho;
end;
% Step 5
A=P*FxP+rho*(Q;
b=b0-G?*mi;
nout = nout + 1;
if ncg >= ncg_max break; end
end
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12.2 Parallel implementation
12.2.1 PETSc - tool for parallel implementation

PETSc

Application Codes
(My Domain Decomposition

Level of
Abstraction

VN

(Index Sets)

‘ BLAS H LAPACK H MPI ‘

Figure 12.1: Organization of the PETSc library

Before the description of the parallel implementation I would like to introduce first
a tool, that was instrumental in all the realization - its name is PETSc. What does the
word “PETSc” mean? The name PETSc is the abbreviation formed by the initial letters
of the Portable Extensible Toolkit for Scientific Computation, developed by Argonne
National Laboratory by group formed by Balay, Gropp, McInnes and Smith [10].

PETSc is a suite of data structures and routines that provide the building blocks for
the implementation of large-scale application codes on parallel and sequential comput-
ers especially used for the numerical solution of PDEs and related problems on high-
performance computers. A number of parallel linear and nonlinear equation solvers
and unconstrained minimization modules using modern programming paradigms en-
ables development of large scientific codes written in C, C++ or Fortran. PETSc uses
the MPI standard for all message-passing communication and routines from BLAS,
LAPACK, MINPACK, SPARSPAK and BlockSolve95. Technique of object oriented
programming provides enormous flexibility and code reuse. The library is hierarchi-
cally organized according to level of abstraction (see Figure 12.1). PETSc consists of a
variety of components, which manipulate a particular family of objects. These compo-
nents are index sets, vectors, matrices (sparse and dense), distributed arrays (useful for
parallelizing regular grid-based problems), Krylov subspace methods, preconditioners,
nonlinear solvers, unconstrained minimization, timesteppers for solving time dependent
PDEs, graphics devices, etc.

Each of these components consists of an abstract interface and one or more imple-
mentations using particular data structures. Thus PETSc provides clean and effective
codes for various phases of solving PDEs, with a uniform approach for each class of
problems, as well as a rich environment for modeling scientific applications and for
algorithm design and prototyping.
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12.2.2 Data structure for FETI-1 and TFETI-1

processor{0]

processor[3]

G' A

Figure 12.2: Example of data distribution over 4 processors

The program consists of two parts namely generator of input objects and the solver
of model problem given by these input objects.

Each processor works with local part associated with its subdomains. For simplifica-
tion let X ["*"* denote this local part or the restriction of object X on current processor
specified by rank (rank =0, ..., size—1, with size denoting number of processors being
at disposal in communicator for our computation).

Most of computations appearing in this program are purely local and therefore
parallelizable, but some operations require data transfers. I distinguish two kinds of

these data transfers in my program, namely:

e data transfer that picks up the contributions from all processors and then dis-
tributes the complete result to each processor (see Figure 12.3, transfered data
are indicated by black color) - such transfer is denoted in description of parallel
scheme by [-] (e.g. computation of dot products of parallel distributed vectors,
computation of the norm of parallel vector, matrix by vector multiplication G\

etc.)

processor[0] |

processor[1] |

processor|2] | processor|3] |

Figure 12.3: Interprocessor communication with data transfer of type [-]

e data transfer that picks up the contributions from all processors and then dis-
tributes the corresponding parts of result to processors (see Figure 12.4, trans-
fered data are indicated by black color) - such transfer is denoted in description of

7



parallel scheme by |-| (e.g. assembling of sequential vector on one of processors
from particular results located on other processors and conversion of this sequen-
tial vector by means of scatter functions into parallel vector - matrix by vector
multiplication Bf etc.)

|processor[0] | |processor[l] | |processor[2] | |pr0cessor[3] |

Figure 12.4: Interprocessor communication with data transfer of type |- |

12.2.3 Objects defining model problem

I would like first to describe a part generating input objects i.e. stiffness matrix K,
matrix B describing the interconnectivity of subdomains, vector of forces f and matrix
R representing the null space of K. These objects are distributed over the processors,
so that their locally stored portions of the same size correspond to relevant subdomains.
The data distribution of various types of objects over the processors showing the local
portions is then presented in Figure 12.2. Matrices and vectors are simply divided
into segments of equal size. Let N denote the primal dimension (number of primal
variables) and Ny, denote the dual dimension (number of dual variables, size of vector
of Lagrange multipliers).

The allocation of memory needed for storage of these matrices including distribution
is realized by PETSc function

MatCreateMPIAIJ(PETSC_COMM_WORLD, int m,int n,int M,int N,
int dnz,int *dnz,int onz,int *onz,Mat *mat),

where PETSC_COMM_WORLD is a communicator comprising all processors being at disposal
for computation, then follows numbers of local rows m, local columns n, global rows M
and global columns N, parameters dnz, *dnz,onz, *onz deal with a control of dynamic
allocation of matrix memory space. Specification MPI reminds the fact, that mat is
parallel matrix, and AIJ indicates its sparse format (all the matrices used in program
are of this format). If the communicator consists only of one processor then following
function is used

MatCreateSeqAIJ(PETSC_COMM_SELF,int M,int N,
int nz,int *nz,Mat *mat)
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only with indications of global dimensions and other parameters of the same meaning
as above.

For vectors the situation is analogous - it is possible to use two functions according
to size of communicator, namely

VecCreateMPI (PETSC_COMM_WORLD,int n,int N,Vec *vec),
VecCreateSeq(PETSC_COMM_SELF,int N,Vec *vec).

So the components defining the model problem include:

e stiffness matrix K - global number of rows N, local number of rows stored on
processor N/size, global number of columns N, local number of columns stored
on processor N,

e matrix B? for interconnectivity of subdomains - global number of rows N, local
number of rows stored on processor N/size, global number of columns Ny, local
number of columns stored on processor Ngy,ai,

e matrix R of null space of K - global number of rows N, local number of rows stored
on processor N/size, global number of columns N, local number of columns
stored on processor N., with N, denoting the number of floating subdomains,

e vector of forces f - global number of elements N, local number of elements stored
on processor N/size.

12.2.4 Implementation of dual formulation and modifications

Objects presented in previous section are input parameters for domain decomposition
solver. Before the start of algorithm it is necessary to execute preparatory phase con-
sisting of dual formulation and modifications. The descriptions and comments of the
realizations follow:

e Computation of matrix

F = BK'BT

- the principle of efficient programming is to avoid time-consuming operations
including the matrix by matrix multiplication. Fortunately, only matrix by vec-
tor multiplication appears in this algorithm and it is performed as Fvec; =
B(KT(BTvecy)). The action of KT can be evaluated by means of Cholesky de-
composition of 2 stiffness submatrices on each processor (factorization of 2 blocks
is sufficient in our case, because there are only 2 types of subdomains - fixed and
floating), or 1 stiffness matrix in TFETI-1 case, respectively, and the storage re-
quirements of these matrices are also acceptable. These two submatrices can be
obtained on each processor by means of PETSc function
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MatGetSubMatrices(Mat mat,int n,IS *irow,IS *icol,
MatGetSubMatrixCall scall,Mat *submat),

which exploits arrays of index sets (IS is data type containing indices) to extract
n submatrices from a matrix mat, submat then points to an array of current ma-
trices. In this case two IS are created on each processor - IS[0] defines global
indices of rows and columns of stiffness submatrix of fixed subdomain, and IS[1]
defines global indices of rows and columns of stiffness submatrix of floating sub-
domain (last row and last column of this submatrix are cut off). For purpose of
factorization PETSc provides functions

MatCholeskyFactor(Mat mat,IS perm,double fill),

performing in-place Cholesky factorization of a symmetric matrix, while index
sets define permutations of possible orderings and £ill1>1 is the predicted fill
in expected in factored matrix, as a ratio to the original fill in. Having fac-
tored matrices L[k] (such that K*=L[k]L[k]", where k=0 if i indicates fixed
subdomain and k=1 if i indicates floating subdomain), one can then solve system
Kx[k]=b[k] by means of the function

MatSolve (Mat L[k],Vec blk],Vec x[k]).

If it is necessary to compute product vec; = K'vec; (where vec; = Blwecy
denotes vector of the same type as vector f, and vecy vector of the same type
as vector d), the procedure is following: on each processor an array is of index
sets IS is created (for one subdomain one index set of global indices of vecf of
the same size as corresponding L[k]), is[i] defines the part from vector vect
for scatter into vector b[k] at positions defined by index set isb[k] (k=0 if i
indicates fixed subdomain and k=1 if i indicates floating subdomain), while the
following functions are used

VecScatterCreate(Vec vecf,Vec b[k],IS is[i],IS isb[k],
VecScatter *ctx),
VecScatterBegin(Vec vecf,Vec b[k],INSERT_VALUES,
SCATTER_FORWARD,VecScatter ctx),
VecScatterEnd(Vec vecf,Vec bl[k],INSERT_VALUES,
SCATTER_FORWARD,VecScatter ctx),

followed by solution of system MatSolve (Mat L[k],Vec b[k],Vec x[k]). Ac-
quired solution x[k] is then put back into vecf at positions defined by index set
is[i] using calls of scatter functions with changed arguments

VecScatterBegin(Vec x[k],Vec vecf,INSERT_VALUES,
SCATTER_REVERSE,VecScatter ctx),
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VecScatterEnd(Vec x[k],Vec vecf,INSERT_VALUES,
SCATTER_REVERSE,VecScatter ctx),
VecScatterDestroy(VecScatter ctx),

while the last function destroys a scatter context created by VecScatterCreate().
In the case of floating subdomain, we have to set the position in vector vecf
corresponding to cut off row and column to value 0.0. All these operations con-
cerning KT are performed on each processor with own local portions without any
communication. The communication is then required for matrix by vector mul-

Ef‘mk] = PBTlrank] {vecgankr‘ and vecga"M = {B[mnk]vecya"kw. The
product Fvecy is computed at least once per CG-iteration. Although it is effi-

ciently performed in parallel way, it dominates the overall time because of large
primal dimension.

tiplications vec

e Computation of matrix N
G =R"B"

- since the size of the dual problem can be still considerable large, I have decided
to parallelize the vector of Lagrange multipliers A (and of course vectors of the
same type denoted as vecy) and matrix GT in such way that each of processors
owns nearly the same local portion éT[’"‘mk], namely for vector A - global number
of elements Ng,q, local number of elements stored on processor Ng,q/size, for
matrix G7- global number of rows Ny, local number of rows stored on processor
Naua/size, global number of columns N, local number of columns stored on
processor N.. Although a matrix by matrix multiplication, as was mentioned
above, does not belong to efficient operations, there is no way how to avoid it.
Also PETSc provides no function for this multiplication and so nothing else is
left, as tranform matrix by matrix multiplication G7 = BR to matrix by vector
multiplication Bvecy, while vecy is vector created by i-th column of matrix R and
obtained by function

MatGetColumnVector (Mat R,Vec vecf,int i),

the result then forms i-th column of matrix G7. Fortunately number of columns
of matrix R is small and equal to number of floating subdomains N.. All the
computation is done in parallel, the communication is required only during the
distribution of these N, result vectors over the processors in communicator. For
more details see the function ComputeMatG().

Parallel scheme:

éT[rank] _ \‘B[rank}R[rank]J .

icol icol

e Computation of vector B
d=BK'f
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- matrix by vector multiplication is realized according to scheme KTvec; intro-
duced in item concerning matrix F'. Matrix by vector multiplication Bvecy is
performed in parallel but the communication is necessary to convert the result
into the parallel vector d - for more details see function BLLvec().

Parallel scheme:
C’l\[rank} _ LB[rank] (Kﬂrank]f[rank])J )

e Computation of vector
e=RTf

- in line with the formats of R and f, this matrix by vector multiplication is also
parallelized and vector ¢ is distributed to each processor.
Parallel scheme:

e = I'RT[rank]f[rank]" )

All presented operations have to be done in case of basic, projected and projected-
preconditioned version. However, for last two named versions it is necessary to execute
following modifications:

e Computation of matrix B
G=TG

with T' denoting a nonsingular matrix that defines the orthonormalization of the
rows of G. Further acceleration of computation reached via projectors built thanks
to matrix G is paid by orthonormalization of columns of matrix G7. For this
purpose the classical Gram-Schmidt algorithm was chosen, that appears more
suitable for parallelization of this problem than modified or iterated classical
Gram-Schmidt [11] (classical Gram-Schmidt requires half the number of floating-
point operations, on parallel computers it can be much faster than modified
Gram-Schmidt, and its parallel efficiency equals that of iterated classical Gram-
Schmidt). The columns of matrix GT are copied into the array g[] of vectors of
type vecy (local size Ny, /size, global size Ng,q) and process of orthonormaliza-
tion is performed according to

gliDglil, glil = 9Tl i=0,...,N,—1.

The obtained vectors form columns of required matrix G*. For more details see
the function OrthogMatG().
Parallel scheme:

> [ran s ran Z_l o ran S llran, S llran,
gli]iramkl = g[i]trankl — 5770 [g[a] TTrank g [f]lrenkT] g[]irank],

j(rank] — gl _
gli] H|g[i}[mnm’|w 0,..., Ne — 1.
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e Computation of vector
e=Te

- problem of finding vector e transforms after some manipulations to problem
to solve the small system of equations GGTe = €, while the product GGT is
computed in similar way as product BR - see the function ComputeMatGGort ().

e Computation of vector P\ that satisfies relation G\ = e, but being aware of features
of matrix GG, the vector A can be easy obtained as

A= GTe.

Parallel scheme:
X[T’ank] — GT[rank]e‘

e Computation of vector B B
d=d—-F\
- vector d is given by difference of vector d and vector acquired as the above

explained product F'A.
Parallel scheme:

d[rank] — &Trunk] . LB[rank} (KT[rank] (BT[rcmk] [X[rankﬂ))J )

e Creation of active set A(\) and free set F(\) - vector J is used for this purpose
having ones at positions i belonging to F(\), where \; > ¢;, with ¢; = —Xi for
i € I and ¢; = —oco for i € E, and zeros at positions belonging to A(\).
Parallel scheme:

i 1 for Agrank] > cgrank}

J[rank] B { 0 for )\Erank} S Cl[rank]

The course of computation is appreciably influenced by initial approximation of vector
XY (comparison of various aproximations is shown in Table 13.6). In my program I use
following initial approximations :

1. )\?’I = max (O, —);),

2. MU= %,

3. AP = max (—);,ﬁ) .
We can consider —)A\} as an obstacle. I have observed that

1
A=-B
A=3Bf
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computed according to parallel scheme

A[rcmk] — LB[rank]f[rcmk}J

N —

is optimal estimate of resulting vector ), taking into consideration distribution of forces
f on interfaces, relation BT\ = f, and orthogonality BBT = 21z with Iz denoting
square identity matrix. This third initial approximation leads to significant decrease of
CG iterations in comparison to other initial vectors for all problems.

12.3 Implementation to FEM

As was mentioned, with cooperation with Prof. Farhat’s group during our stays in Boul-
der and Stanford arised C++ implementation of algorithms QPMPGP and SMALBE
into their software

GenFetiDPSolver<double>: :solveQP(GenDistrVector<double> &f,
GenDistrVector<double> &u),
GenFetiDPSolver<double>: :solveOSTRAVA (GenDistrVector<double> &f,
GenDistrVector<double> &u).

These class methods allow to solve 2D and 3D contact FETI-1, FETI-DP and TFETI-1
multibodies problems. Each body performs subdomain for FETI-1 or TFETI-1 method
and at the same time it performs domain being decomposed in subdomains by FETI-DP
method. So it combines both FETI-1 or TFETI-1 with FETI-DP.

The algorithms had to be modified for the solution of dual problems corresponding
to the primal problem

1
min 5uTKu — fTu st. Bju>0 and Bpu =0

differing from that described in this thesis in opposite inequality sign, recall our condi-
tion B[U < 0.

FETI-1, TFETI-1 and FETI-DP methods result in maximization problem of oppo-
site dual functional with opposite bound

1
max — <§xTAx — bTx) s.t. oy < —x7 and Cz =0

with A, C| b, x being defined according to FETI type method. This problem is equivalent
to problem introduced in Chapter 5.

Let us briefly mention another differences - there is no G' matrix arising by orthonor-
malization of rows of G, because of its less sparsity. Then A\ = GTe can be reached as

Aoqr (ééT)_l ‘.
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Dual linear problem is solved by projected conjugate gradient method (PCG) with
the initial approximation \° = A. Then G)\O =—eand A — )\ € KerG; G\ = e is
satisfied if all increments A\¥ — \¥=1 € Ker G. In contrast to the classical CG method, in
each iteration of PCG algorithm, the residual and the search directions are projected
onto Ker G. This projection step plays role of coarse problem which is solved in each
iteration.

Futhermore for contact problems FETI-DPC was proposed by C. Farhat et al. This
algorithm is based on FETI-DP domain decomposition method and uses the Newton-
like method which solves the equilibrium equation in Lagrange multipliers in the inner
loop, while feasibility of each step is ensured in the outer loop by the primal and
dual planning steps. Primal planning step reconstruct primal solution to correct the
penetration of bodies, although in our algorithm this is authomatically satisfied by
simple bound in dual variable. Dual planning step looks for the search direction to
the obstacle of dual variable. The algorithm exploits standard FETI preconditoners,
namely the Schur and lumped ones. The additional speedup of convergence is achieved
by application Krylov type acceleration scheme. The algorithm exploits a globalization
strategy in order to achieve monotonic global convergence.

The efficiency was tested on realistic 2D and 3D contact problems including those
with mortars, see Section 13.3.2.
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Chapter 13

Numerical experiments

13.1 FETI-1

13.1.1 Semicoercive problem + conforming FE + QPMPGP:
Numerical, parallel scalability and optimality of dual
penalty

To illustrate the performance of the algorithms, in particular their numerical and par-
allel scalabilities and optimality of dual penalty, I have implemented algorithms in C
exploiting the package PETSc [10]. The experiments were run on SGI Origin 38000
computer courtesy of Johannes Kepler University of Linz: shared memory (MIMD),
128 processors R12000, 400 MHz, 48128 MB RAM, 500 GB disk space, DLT 7000
stacker 70 GB, net: 3x ATM 155 Mb/s, FDDI 1Gb/2, ethetnet 10 Mb/s, and Lomond
52-processor Sun Ultra SPARC-III based system with 900 MHz, 52 GB of shared mem-
ory, nominal peak performance 93.6 GFlops, 64 kB level 1 and 8 MB level 2 cache in
EPCC Edinburgh. Each processor works with local portion of data associated with its
subdomains.

Each domain was first decomposed into identical rectangles Q¥ with the sides H
that were discretized by regular grids defined by the stepsize h. Stopping criteria:
|97 (A, 11, p)|| < 107 ||d|| and parameters M = 1,T = 1,A° = 1 Bf were used for all
calculations.

The selected results are summarized in Tables 13.1-13.3 and figures 13.1a-13.1c.

Table 13.1: Parallel scalability for semicoer. problem with prim. dim 540800, dual
dim.14975, 2 out. iters, 53 cg iters, 128 subdomains using Lomond, p = 10?

processors | 1 2 4 8 |16 | 32
time [sec| | 879 | 290 | 138 | 50 | 27 | 15
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Table 13.2: Numerical scalability QPMPGP - upper row gives prim. dim./dual dim.,

p = 103, number in lower row gives CG iters. for given H/h

T @7 [ 1 [ 12 [ i | 18]
H/h =128 | 33282/129 | 133128/1287 | 532512/6687 | 2130048 /29823
41 99 51 60
H/h =64 | 8450/65 | 33800/647 | 135200/3359 | 540800/14975
25 64 42 53
H/h =32 2178/33 8712/327 34848 /1695 139392/7551
18 42 34 43
H/h =16 | 578/17 2312/167 9248 /863 36992/3839
12 32 28 35
H/h =38 162/9 648 /87 2592 /447 10365,/1983
9 20 25 31
H/h =4 50/5 200,47 800,239 3200,/1055
6 19 24 24
Table 13.3: Optimality of dual penalty
prim.dim. /dual.dim. 1152/591 | 10368/1983 | 139392/7551 | 2130048/29823
p =1.0e+01 | 0.489e-01 | 0.455e-01 0.430e-01 0.422e-01
IGA||/|Pd|| | p =1.0e+03 | 0.508¢-03 | 0.470e-03 | 0.445¢-03 0.437e-03
p =1.0e+05 | 0.508e-05 | 0.470e-05 0.445e-05 0.438e-05
a b ¢
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13.1.2 Semicoercive problem + conforming FE + ALAPC: Nu-

merical scalability and highlights

Stopping criteria ||g” (X, 1, p)|| < 107 ||d|| and [|GA|| < 107 [le|| were used.

Table 13.5: Numerical scalability for ALAPC- upper row gives prim. dim./dual dim.,

Table 13.4: Large problems using SGI Origin by ALAPC

h H prim. dual. | num. of | procs | cg. | time
dim. dim. | subdom. iter. | [sec|

1/1024 | 1/8 | 2130048 | 29823 128 32 47 | 167
1/2048 | 1/8 | 8454272 | 59519 128 64 65 | 1281

po = 10, number in lower row gives CG iters.

—® [ 1 [ iz [ i [ iE ]
H/h =128 | 33282/129 | 133128/1287 | 532512/6687 | 2130048,/29823
28 59 36 47
H/h =64 8450/65 33800/647 | 135200/3359 | 540800/14975
22 47 33 43
H/h =32 2178/33 8712/327 34848/1695 139392/7551
17 33 30 37
H/h =16 578/17 2312/167 9248/863 36992/3839
13 29 26 32
H/h=8 | 162/9 648/87 2592/447 | 103651983
10 20 23 27
H/h=4 50/5 200/47 800/239 3200/1055
7 19 22 25
g~ |
T

Figure 13.2: Numerical scalability
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13.1.3 Semicoercive problem -+ conforming FE + ALAPC: Com-

parison of initial approximations A%, A0 )01

Table 13.6: Comparison of A>T, A0\ and impact of pg and M; h = 1/128, H = 1/4,
prim. dim. 34848, dual dim. 1695

M 00 )\O,I /\O,H /\O,IH
out.iter. ‘ cg iter. | out.iter. | cg iter. | out.iter. ‘ cg iter.
109 | 100 4 22 5 41 5 35
10! 2 24 2 45 2 30
102 1 27 1 56 1 30
10 | 10! 5 61 3 59 3 30
102 2 27 2 59 2 30
10° 1 32 1 69 1 34
102 | 102 5 116 3 71 3 34
10° 1 32 2 69 2 34
10* 1 35 1 155 1 38
103 | 103 7 185 3 155 3 114
10* 2 35 2 94 2 70
10° 1 38 1 247 1 40

13.1.4 Semicoercive problem + conforming FE + ALAPC: The
use of lumped preconditioner F~!' = PBKBTP + ()

Table 13.7: Comparison of projected, projected-preconditioned version for regular de-
composition H = H, = H, with parameters M = 10, py = 103, =1

h H | primar | dual proj. proj.-prec.
dim. | dim. | out.i. cg.li. | out.i. cg.i.
1/64 | 1 8450 65 2 45 2 36

1/2 | 8712 | 327 2 89 2 74
1/4 | 9248 | 863 2 122 2 75
1/128 | 1 33282 | 129 2 64 2 47
1/2 | 33800 | 647 2 131 2 104
1/4 | 34848 | 1695 2 151 2 128
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13.2 FETI-DP

13.2.1 Coercive problem + conforming FE + QPMPGP: Chang-
ing density of meshes of corner nodes and Lagrange mul-

tipliers

An upper row gives primal/dual/corner dimension, po

102, number in lower row

gives CG iterations - it decreases with growing density of corner nodes because of
better propagation of error through global corners.

Table 13.8: Numerical scalability: Discretization corresponding to Figure 7a

| H [ 12 [ 14 ] 1/8 |
H/h =16 | 2312/161/2 | 9248/809/18 | 36992/3545/98
45 61 72
H/h =8 | 648/81/2 | 2592/393/18 | 10365/1689/98
31 49 55
H/h=4 | 200/41/2 | 800/185/18 | 3200/761/98
26 36 40

Table 13.9: Numerical scalability: Discretization corresponding to Figure 7b

| H | 1/2 | 1/4 | 1/8 |
H/h =16 | 2312/155/8 | 9248/791/36 | 36992/3503/140
33 54 59
H/h =8 | 648/75/8 | 2592/375/36 | 10365/1647/140
28 41 49
H/h =4 | 200/35/8 | 800/167/36 | 3200/719/140
20 31 27
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Table 13.10: Numerical scalability: Discretization corresponding to Figure 7c, coercive
problem + conforming FE

@ [ 12 [ 14 | i
H/h =16 | 2312/153/10 | 9248,/785,/42 | 36992/3489/154
27 48 51
H/h =8 | 648/73/10 | 2592/369/42 | 10365/1633/154
22 36 38
H/h =4 | 200/33/10 | 800/161/42 | 3200,/705/154
17 21 27

13.2.2 Coercive, semicoercive problem -+ conforming, mortar
FE + QPMPGP: Numerical scalability

This section reports some results for the numerical solution of the model coercive and
semicoercive contact problem to illustrate the performance of FETI-DP algorithm,
mainly its numerical scalability. The computations were performed using parameter
values pg = 100,&@ = p~!, I' = 1, and \° = 0. The stopping criterion in the CG
iteration was ||g”(\¥)|| < 107%||d||. All experiments were performed in MATLAB.
Selected results of the computations for varying values of H and H/h are given
in Tables 13.10-13.13. The primal dimension/dual dimension/number of corners are
recorded in the upper row in each field of the tables, while the number of the CG it-
erations required for the convergence of the solution to the given precision is recorded
in the lower row. The dependence of the number of iterations on the number of subdo-
mains is shown in Figures 13.3, 13.4, where each line corresponds to a fixed value for
H/h, i.e. to one row of table. The key point is that the number of the CG iterations for
a fixed ratio H/h varies very moderately with the increasing number of subdomains.

Table 13.11: Numerical scalability: semicoercive problem + conforming FE

[ a [ 12 [ 14 iR
H/h =16 | 2312/153/10 | 9248/785/42 | 36992/3489/154
41 57 63
H/h =38 | 648/73/10 | 2592/369/42 | 10365,/1633,/154
27 39 46
H/h =4 | 200/33/10 | 800/161/42 | 3200,/705/154
24 24 31
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Table 13.12: Numerical scalability: coercive problem + mortar FE

| M N, | 1x2 1x3 | 2x4 2x6 | 4x8 4x11 |
Hy/hy =16 | 2606/95/6 | 9072/524/25 | 38992/2654/97
Hy/hy = 25 33 57 78
Hy/hy =8 | 750/47/6 | 2608/256/25 | 11216/1298/97
Hy/hy =13 29 49 59
Hy/hy =4 | 242/23/6 | 840/122/25 | 3616/620/97
Hy/hy =7 15 34 49

Table 13.13: Numerical scalability: semicoercive problem + mortar FE, nonmortars on

Fl

| M N, | 1x2 1x3 | 2x4 2x5b | 4x8 4x11 |
Hy/hy =16 | 2606/95/6 | 9072/524/25 | 38992/2654/97
Hy/hy = 25 39 65 84
Hy/hy =8 | 750/47/6 | 2608/256/25 | 11216/1298/97
Hy/hy =13 36 56 70
Hy/hy =4 | 242/23/6 | 840/122/25 | 3616/620/97
Hy/hy =7 20 37 52

Coer. conf. FE

Semicoer. conf. FE

2
log2(1/H)

Figure 13.3: Numerical scalability for FETI-DP - conforming FE
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Coer. mortar FE Semicoer. mortar FE
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Figure 13.4: Numerical scalability for FETI-DP - mortar FE

13.2.3 Coercive problem + mortar FE + QPMPGP: Nonnor-
malized vs. normalized B;

This section presents that the performance of our FETI-DP method deteriorates un-
less the rows have norms of similar order, see Theorem 9.3 for an explanation of this
phenomenon.

Since the mortar conditions are only related to interior nodes on the nonmortar
edges, two extra conditions are necessary to enforce nonpenetration at the first and last
nodes on I'.. All these inequality constraints can be written in matrix formulation as

B[u S 0,

where B; has one normalized horizontal block 5., for each nonmortar side ~,,, and two
more rows for the nonpenetration conditions at the endpoints of I'.. Also, let Bf be the
matrix having one nonnormalized block ijn for each nonmortar ~,,, together with the
two extra rows as before. We showed theoretically in Chapter 9 and experimentally in
in this section that the FETI-DP algorithm using the matrix B}éé instead of B; results
in a nonscalable algorithm, what is presented in table, where the convergence results
for the case of matching subdomains across I', for the case when B; is not normalized,
for the case when the nonmortar sides were chosen to be on '}, and the convergence
results for the algorithm with normalized B;. These results are consistent with the
condition number estimate from Theorems 9.1 and 9.3.

An explanation of this rather surprising result is that there is no direct scaling of
multiplications by the matrix B in our algorithm, as it was the case for other FETI
algorithms, where a factor of the form (BBT)~! appeared in the definition of the pre-
conditioners.

An upper row of following table gives primal/dual/corner dimension, number in
lower row gives CG iterations for normalized vs. nonnormalized B;
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Table 13.14: Numerical scalability for coercive mortar FE - normalized vs. nonnormal-
ized B I

| N No [ 1xl Ix1| 2x2 2x2 | 4x4 4x4 |
Hi/hy =16 | 965/17/0 | 3860/188/10 | 15440/998 /42
Hy/hy =25 | 16 x 25 31 x 268 60 x 743
Hi/hy =8 | 277/9/0 | 1108/92/10 | 4432/486/42
Hy/hy =13 | 11x14 26 x 118 46 x 263
Hy/hy=4 | 89/5/0 | 356/44/10 | 1424/230/42
Hg/h2:7 6x8 20 x 48 28 x 106

13.2.4 Coercive, semicoercive problem + mortar FE + QPMPGP:
Nonmortars on I'! vs. I

In this section, we report results for the numerical solution of the model coercive and
semicoercive contact problem to illustrate the performance of our FETI-DP algorithm.
The goals of our experiments were as follows:

e to establish numerical evidence for the scalability of the algorithm,;

e to compare the performance of the method for the cases when the subdomain
partitions of Q! and Q2 match, or do not match, across I';, the potential contact
interface;

e to investigate the dependence of the convergence on the choice of nonmortar sides
either on I'! or on T2

For the case when the subdomain partitions across I'. match, we partitioned both
QY and Q% into 1 x 1, 2 x 2, and 4 x 4 squares, respectively, corresponding to H, =
H, € {1,1/2,1/4}. To avoid perfectly matching meshes, the number of nodes on each
side of the square subdomains was chosen to be H,/h; € {4,8,16}, in Q' correspond-
ing to Hy/hy € {7,13,25}, in Q2. In Table 13.15, we report the iteration counts for
coercive and semicoercive problem, i.e. the number of the CG iterations required for
the convergence of the solution of the problem to the given precision, as well as the size
of the primal problem, of the dual problem, and the number of global corner degrees
of freedom, i.e. the size of the coarse problem corresponding to solving a linear system
for K., for each partition described above.

The algorithm converged after a reasonably small number of iterations, for all par-
titions considered. For fixed number of nodes per subdomain edge, i.e. for H;/h; and
H,/hy simultaneously fixed, the number of iterations increased moderately when the
number of subdomains quadrupled. Thus, numerical scalability of our method was ob-
served for practical applications, and we may infer that the unspecified constants in
theorems were not very large.
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Table 13.15: Convergence results: matching subdomain partitions across I'., coer-
cive/semicoercive problem

Nonmortars on T'! Nonmortars on I'?
Ny Ny IZ—; IZ—; Iter prim. dual cor. Iter prim. dual cor.
1x1 1x1| 4 7 6/- 89 5 13/- 89 8

0
8 13| 11/- 277 9 0 19/- 277 14
16 25| 16/- 965 17 0 25/- 965 26
9
9
9

2x2 2x2| 4 7/20/24 356 44 30/41 356 a0
8 13|26/32 1108 92 36/54 1108 102
16 25]31/44 3860 188 51/54 3860 206
4x4 4x4| 4 T7[28/39 1424 230 39 |42/45 1424 242 39
8 13|46/43 4432 486 39 | 63/62 4432 506 39
16 25 |60/59 15440 998 39 | 74/85 15440 1034 39

The scalability of the method was observed for both when the nonmortars were
chosen on I'!, and on I'>. The difference between the two methods is given by the
number of mortar conditions, and therefore of Lagrange multipliers A; and the size of
the dual problem. All these numbers are larger when the nonmortars are chosen on the
edges with finer local mesh, i.e. on I'2. The number of iterations in this case was larger
by about 50% than in the case when the nonmortars were chosen on the coarser local
mesh, i.e. on I'}. This was due in part to the fact that the nonpenetration conditions
had more of a local nature in the case of a finer local mesh, and therefore little was
gained by having more such conditions. This holds true with, possibly, the exception
of a too coarse mesh on the nonmortar sides, i.e. H;=1 with Hy/h; =2 or Hy/h; = 3.
I this case, penetration may even occur due to the lack of nonpenetration conditions.
We choose discontinuous test functions corresponding to the biorthogonal mortars.

For the case when the partitions across I'. do not match, we partitioned Q' into 1x 2,
2 x 4, and 4 x 8 rectangles, corresponding to partitions of Q2 into 1 x 3, 2x 5, and 4 x 11
rectangles, respectively. The number of nodes on each side of the square subdomains
was chosen to be, alternatively, in the set {4,8,16} x {7,13,25}; see Table 13.16 for
more details for coercive and semicoercive problem. As before, the iteration count, and
the sizes of the primal and dual problems, and of the coarse problem are reported.

For fixed number of nodes per subdomain edge, i.e. for H;/h; and Hs/hs simul-
taneously fixed, the number of iterations increased moderately when the number of
subdomains roughly quadrupled. Thus, numerical scalability of our method was once
again observed, independent of whether the nonmortar sides were chosen on I'!, and on
['2. The number of iterations was once again larger when more nonpenetration condi-
tions were required, i.e. when the number of nodes on the nonmortars was larger. This
was due to the fact that, for a mesh that is fine enough, some of the nonpenetration
conditions become less relevant. In the experiments presented above, the rows of the
matrix B; were normalized as discussed in Chapter 9.
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Table 13.16: Convergence results: nonmatching subdomain partitions across I, coer-
cive/semicoercive problem

Nonmortars on T'! Nonmortars on I'?
N, Ny HH Iter prim. dual cor. Iter prim. dual cor.

hi _ho
1x2 1x3 4 7 15/20 242 23 41/45 242 35
23/28 203 23

3
7T 41]28/29 203 26 )
8 131]29/36 750 47 48 /54 750 69 5
36/38 635 49 5

)

)

13 8| 37/44 635 92
16 25| 33/39 2606 95 60/82 2606 137

25 16 | 41/47 2219 104 41/48 2219 101
2x4 2x5 4 7 |34/37 840 122 22 52/60 840 140 22
7 41]43/56 762 125 22 52/44 762 116 22
8 13]49/56 2608 256 22 68/76 2608 288 22
13 8 |58/68 2378 261 22 51/56 2378 248 22
16 25 |57/65 9072 524 22 | 57/100 9072 584 22
25 16 | 67/91 8298 533 22 63/68 8298 512 22
4x8 4x11| 4 7149/52 3616 620 90 65/80 3616 662 90
7 4]56/60 3148 581 90 50/53 3148 566 90
8 13|59/70 11216 1298 90 |88/112 11216 1374 90
13 8| 71/8 9836 1233 90 65/71 9836 1214 90
16 25| 78/- 38992 2654 90 125/- 38992 2798 90
25 16| 94/- 34348 2537 90 90/- 34348 2510 90

13.2.5 Coercive problem + conforming FE + QPMPGP: Com-
parison of FETI-1, FETI-2 and FETI-DP

Table 13.17: Number of CG iters. of QPMPGP for FETI-1, FETI-2, FETI-DP for
fixed 1/H = 6 and decreasing h

1/H 6 6 6 6
1/h 4 8 12 16
P/D/C 1800/575/0 | 5832/1079/0 | 12168/1583/0 | 20808/2087/0

FETI-1: CG 38 50 63 67
P/D/C 1800/575,/190 | 5832/1079/190 | 12168,/1583/190 | 20808/2087/190

FETI-2: CG 24 45 60 67
P/D/C 1800/385/90 | 5832/889/90 | 12168/1393/90 | 20808/1897/90

FETI-DP: CG 23 37 43 51
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13.3 TFETI-1

13.3.1 Model linear problem in 2D

I have implemented FETI-1 and TFETI-1 in Matlab 7 and applied both methods to
the solution of simple 2D model problem described by square Q = (0,1) x (0,1) and
its solution is illustrated in Figure 10.1 a), b), its decomposition and discretization is
drawn near in Figure 10.2 and Figure 10.3 demonstrates two approaches of prescribtion
of Dirichlet boundary conditions - a) the classical one (original FETI-1), b) the new
one by Lagrange multipliers (TFETI-1).

To this end, we have implemented algorithm to solve the basic dual problem (10.5)
so that we could plug in the projectors to the natural coarse space.

Table 13.18: Numerical scalability for the linear 2D model problem, QPMPGP

H/h| H | h | prim. | dual FETI-1 | dual TFETI-1 | CG FETI-1 | CG TFETI-1
2 | 1/2 | 1/4 | 36 11 17 7 4
2 | 1/4 | 1/8 | 144 63 75 12 5
2 | 1/8 | 1/16 | 576 287 311 13 7
2 [1/16| 1/32 | 2304 1215 1263 15 11
4 [ 1/2 [ 1/8 | 100 19 29 9 9
4 | 1/4 | 1/16 | 400 111 131 16 12
4 | 1/8 | 1/32 | 1600 511 551 18 16
4 1/16 | 1/64 | 6400 2175 2255 20 21
8 | 1/2 | 1/16 | 324 35 53 14 9
8 | 1/4 | 1/32 | 1296 207 243 22 14
8 | 1/8 | 1/64 | 5184 959 1031 24 20
8 |1/16|1/128 | 20736 4095 4239 23 23
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13.3.2 Model contact problem in 2D and 3D: Comparison of
FETI-DPC solved by Newton-like method and TFETI-1
by SMALBE

As mentioned, I participated in implementation of TFETI-1 and FETI-DP for 2D and
3D contact problems as in Figure 10.4 and 10.5. We implemented two FETI based
algorithms for the solution of contact problems, using the research software which is
being developed in Stanford.

The first one, FETI-DPC, is based on FETI-DP domain decomposition method.
The algorithm uses the Newton-like method which solves the equilibrium equation in
Lagrange multipliers in the inner loop, while feasibility of each step is ensured in the
outer loop by the primal and dual planning steps. The algorithm exploits standard
FETI preconditoners, namely the Schur and lumped ones. The additional speedup of
convergence is achieved by application Krylov type acceleration scheme. The algorithm
exploits a globalization strategy in order to achieve monotonic global convergence.

The second algorithm is based on the TFETI-1 domain decomposition, a variant
of the FETI-1, which treats all the boundary conditions by Lagrange multipliers, so
that all the subdomains are floating, and their kernels are known a priori and can be
used in construction of the natural coarse grid. It exploits recently proposed SMALBE
algorithm.

The 2D problem involves 6 rectangles in mutual contact as it is depicted on the
Figure 13.6a. The left rectangles are fixed on the left side (blue arrows) while the
right ones are free and they are loaded (red arrows) such a way that the problem has
unique solution. Each rectangle were further decomposed to the 4 subrectangles and
therefore the original problem were decomposed to 24 subdomains, see Figure 13.6b).
The performance of the algorithms FETI-DPC by Newton and TFETI-1 by SMALBE is
compared in Table 13.19. Outer iterations are used only in the case of SMALBE method
while the number of subiterations is used only in methods FETI-DP. The number of
dual plannings and primal plannings of FETI-DPC methods corresponds to the number
of expansion and proportioning steps in the case of SMALBE method. Therefore they
share the same column for each methods. The numbers on the left side of the slashes
represent number of iteration for the problem with 6 subdomains and the numbers on
the right sides represent the number of iterations for 24 subdomains problem. The
resulting deformation with distribution of the stresses are depicted in the Figure 10.4.

Table 13.19: Algorithms performance for 2D semicoercive problem with 6 and 24 sub-
domains.

Outer iter. | Main iter. | subiter. | Primal plan. | Dual plan.
(Exp. step) | (Proport.)
FETI-DPC - 17/32 0/0 2/2 0/0
TFETI-1 1/21 9/68 - 0/18 1/3
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a) 2D problem with 6 subdomains b) 2D problem with 24 subdomains

Figure 13.6: 2D model contact problem - conforming decompositions and nodal dis-
cretizations

a) 3D problem with matching grids b) 3D problem with nonmatching grids

4

t

Figure 13.7: 3D model contact problem - conforming decompositions and nodal dis-
cretizations

99



The second 3D model problem consists of 2 bricks in mutual contact. The bottom
brick is fixed in all degrees of freedom while the upper one is fixed only in such a
way, that only vertical rigid body movement is allowed. The situation is depicted
in the Figure 13.7. We have analyzed 2 cases. The first one, with matching grid
on the contact interface prescribes node-to-node contact conditions. The second one
allows nonmatching grids and the mortar elements were used for assembling of contact
conditions. The resulting performance of algorithms is collected in the Table 13.20.
Columns in this table have the same meaning as in 2D case.

Table 13.20: Algorithms performance for 3D problem with matching and nonmatching
grid on contact interface.

Outer iter. | Main iter. | subiter. | Primal plan. | Dual plan.
(Exp. step) | (Proport.)
FETI-DPC - 24/26 11/10 7/8 0/0
TFETI-1 13/10 29/29 - 20/20 0/0

13.4 MFETI-DP

13.4.1 Model linear problem

Here I present preliminary numerical experiments for coercive linear model problem
comparing finite and iterative solution of coarse problems of the third type including
inexact solution with CG in simple V-cycle - following tables give overview of CG
iterations for 2-level method generated by parameters Hy, hy on the first level and H, ho
on the second level. Other rows give primal/dual/corner (P/D/C) dimensions, number
of CG iters. for clasical FETI-DP (finite) and then numbers of CG iters on first/second
level solved iteratively to given precision or by given number of iterations on second
level, when we perform always one CG iteration on the first level by QPMPGP. This
coarse problem of the third type plays also the role in monitoring the primal error.
Following tables with preliminary results illustrate behaviour of MFETI-DP. Table
13.21 shows the dependence of number of CG iterations for QPMPGP to decreasing
discretization parameter hq, i.e. increasing 1/h;, keeping decomposition parameter H;
fixed. Table 13.22 depicts numbers of CG iterations for QPMPGP for problems with
nearly same primal dimension, for all decompositions: Hi . h— ~ 100, these numbers
varies moderately. Tables 13.23 and 13.24 present number of CG for fixed 1/h; =4 or
1/hy = 8 and decreasing H;, i.e. increasing 1/H;, in both cases is the ratio IZl close
to 1, so that the numerical scalability of MFETI-DP is demonstrated. The results are
drawn in Figures 13.8 and 13.9 - each line corresponds to one row of CG iterations,
excluding rows when the problem was solved to the precision 107,
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Table 13.21: Increasing number of CG for fixed 1/H; = 6 and decreasing h,

1/H, 6 6 6 6
1/hy 4 8 12 16
1/H, 4 4 4 4
1/hs 4 4 4 4
P/D/C 1800/430/50 | 5832/934/50 | 12168/1438/50 | 20808,/1942/50
clasical: le-6 44 70 89 107
1:1e-6/2:1e-6 51/769 79/1187 100/1512 123/1867
1:1e-6/2:5¢cg 74/370 121/605 174/870 210/1050
1:1e-10/2:5¢cg 124/620 199/995 282/1410 343/1715
Table 13.22: Number of CG for H% . hil ~ 100
1/H, 4 5 6 7 8
1/hy 25 20 17 13 12
1/H, 2 3 4 5 6
1/hy 2 3 4 5) 6
P/D/C 21632/1280/18 | 22050/1657/32 | 23328/2068/50 | 19208/2162/72 | 21632/2624/98
clasical: le-6 115 117 114 98 100
1:1e-6/2:1e-6 134/1577 134/1847 128/1925 110/1707 109/1730
1:1e-6/2:5cg 208/1040 238/1190 212/1060 194/970 155/775
1:1e-10/2:5¢cg 333/1665 403/2015 343/1715 326/1630 252/1260

Table 13.23: Number of CG for fixed 1/h; = 4 and decreasing Hq, I}f—ll € [%, 1]

1/H, 4 5 6 7

1/hy 4 4 4 4

1/Hy 2 3 4 5

1/hy 2 3 4 )

P/D/C 800/188/18 | 1250/297/32 | 1800/430/50 | 2450/587/72

clasical: le-6 38 43 44 47
1:1e-6/2:1e-6 43/511 49/661 51/769 53/824
1:1e-6/2:5cg 60/300 76/380 74/370 79/395
1:1e-10/2:5¢cg 97/485 128/640 124/620 132/660
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Table 13.24: Number of CG for fixed 1/h; = 8 and decreasing Hi, % € [%, 1]

1/H, 8 9 10 11

1/hy 8 8 8 8

1/H, 6 7 8 9

1/hs 6 7 8 9

P/D/C 10368/1696,/98 | 13122/2161/128 | 16200/2682/162 | 19602/3259/200

clasical: le-6 76 81 82 83
1:1e-6/2:1e-6 85/1357 87/1404 89/1457 91/1484
1:1e-6/2:5cg 139/695 125/625 137/685 142/710
1:16—10/2:5cg 223/1115 213/1065 225/1125 230/1150
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Figure 13.9: Numerical scalability of MFETI-DP corresponding to Tables 13.23, 13.24
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13.4.2 Model contact problem

Numerical experiments for coercive contact model problem are presented in this section.
I used FETI-DP recursively for coarse problem arising at recontruction of u.. Table
13.25 gives overview of CG iterations for 2-level method generated by parameters Hy, hy
on the first level and Hj, he on the second level. Other rows give primal /dual/corner
(P/D/C) dimensions, number of CG iterations on the 1st/number of CG iterations on
the 2nd levels, both solved once to the relative precision 1076, for QPMPGP with fixed

ratio f—ll = %, these numbers varies moderately, this indicates numerical scalability.

Table 13.25: Number of CG for fixed f—ll =1

1/H, 1 8 12
1/hy 2 4 6
1/H, 2 6 10
1/hs 2 6 10

1:P/D/C | 288/84/18 | 3200/768/98 | 14112/2801/242
2:P/D/C 32/8/2 | 288/40/50 800,/63,/162
1:1e-6/2:1e-6 | 25/4 36,13 56,/14
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Chapter 14

Conclusion

This dissertation develops new author’s results and remarks, and the results on which
the author participated as a member of teams in the branch of the FETI-based do-
main decomposition methods for the solution of coercive and semicoercive variational
inequalities. These results including the parallel implementation and many numerical
experiments (concerning FETI-1, FETI-2, FETI-DP, TFETI-1, MFETI-DP, optimality
of dual penalty, etc.) were published in 13 impact papers and in 33 conference papers
and they contributed to developing many theoretical results.
Special consideration belongs to the most important theoretical results:

e modification of FETI-DP for corners on the contact zone for both coercive and
semicoercive cases, I have derived the additional condition that preserves the non-
penetration in Lagrange multipliers and enables the usage of corners on contact
interface,

e normalization of rows of mortar constraint matrix leads to significantly smaller
upper bound on the condition number of the dual operator matrix, this my obser-
vation is the key ingredient for proof of numerical scalability of FETI-DP method
for contact problems with mortars,

e Multilevel FETI-DP method for linear and contact extreme large scale problems
- the basic idea is a natural application of multigrid methods, i.e. recursive
application of FETI-DP to the coarse problem, I carried out the complicated
implementation of this method during my stay in Boulder, including the numerical
experiments with comparison of finite and iterative solution of coarse problems
and inexact solution of coarse problems on the second level with CG method for
both, linear and contact problems.

Presented results of solutions of model variational inequalities indicate both - high
numerical and parallel scalability of these algorithms. Numerical experiments with
the model variational inequality discretized by up to more than eight million of nodal
variables indicate that the algorithm may be very efficient and they are in agreement
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with the theory of its optimality. All the reasoning may be exploited also to solution
of contact problems of elasticity with the Coulomb friction, but this is a theme of next
work.

I have just received an email - the parallel computer HPCx in EPCC I have acces to
has been upgrated to masively parallel computer having 2560 processors and the peak
performance 12 TFlops. I will start running new larger experiments. 80 years have
passed since 1927, the year book I started this work was printed. The progress and
improvement made in numerical mathematics and computer science is amazing. What
development in these branches can we look forward to in future 80 years? We will see...
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