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Abstract

In this thesis we consider preconditioning strategies of algorithms for the solution of
linear elasticity contact problems. We are interested especially in the preconditioning
strategies which result in improved bounds on the rate of convergence. Let us point
out that this goal cannot be achieved by a variant of preconditioning in face, since
such preconditioning affects only the linear steps of the algorithm, but not the
nonlinear steps.

We consider two strategies exploiting the edge averages for FETI-DP (Dual-
Primal Finite Element Tearing and Interconnecting) methods. The first is precon-
ditioning by conjugate projector. In the case, when it is combined with FETI-DP
method, the Lagrange multipliers corresponding to the variables of the coinciding
edges are aggregated.

The second one an explicit transformation of basis uses certain edge averages,
which are introduced as new, additional primal variables.

For a special case, it is shown that both methods iterate in the same space and
thus have the same rate of convergence. This theoretical result is confirmed by the
solution of a model boundary variational inequality. At the end of the thesis we
show some results of the numerical experiments from 2D linear elasticity, where the
improvement of the rate of convergence is illustrated.

Keywords

Transformation of basis, edge averaging, conjugate projector, preconditioning, con-
tact problems, variational inequalities, FETI-DP.
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1Introduction

The field of our interest is the solution of contact problems. Such problems arise
whenever deformable bodies interact by touching each other. Contact problems are
relevant to numerous applications such as sheet metal forming or computation of
elastic deformation of a tire which interacts with an asphalt surface of the street. It
is not surprising that contact problems have always occupied a position of special
importance in the mechanics of solids.

In contact problems, the deformation of a system of bodies does not only depend
on applied forces which are known a priori, but also on induced contact stresses on
the a priori unknown region of contact. Description of the conditions of equilibrium
of a system of elastic bodies in mutual contact includes inequality constraints, i.e.,
non-penetration conditions, which make the solution of the corresponding contact
problem strongly nonlinear.

This thesis is motivated by an effort to improve the recently proposed scalable
algorithms for the solution of contact problems. Let us recall that an algorithm is
numerically scalable if the cost of the solution is nearly proportional to the number of
unknowns, and it enjoys parallel scalability if the time required for the solution can
be reduced nearly proportionally to the number of available processors or processor
cores. Such fully scalable algorithms for a numerical solution of linear problems can
be constructed using domain decomposition techniques.

The first scalable domain decomposition method with Lagrange multipliers for
linear problems, the FETI-1 method, was introduced in the 90s [18]. It was quite
challenging to obtain similar results for variational inequalities. Since the cost of
the solution of a linear problem is proportional to the number of variables, a scal-
able algorithm must identify the active constraints in a sense without additional
computational cost.

In this thesis we combine the results on quadratic programming [6, 14], in par-
ticular development of the algorithms for the solution of bound and/or equality
constrained quadratic programming problems with the rate of convergence in the
bounds on the spectrum of the Hessian matrix, with the duality-based methods that
can be even more successful for the solution of variational inequalities than for linear
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problems. Duality turns the general inequality constraints into bound constraints
for free; this is an aspect which is not exploited in the solution of linear problems.

We will rely on results on FETI (Finite Element Tearing and Interconnecting) or
a special analysis of FETI-DP (dual-primal FETI) [13, 12]. These methods are based
on a decomposition of the original domain into non-overlapping subdomains and
the application of the duality. The continuity of the solution across the subdomain
interfaces is then enforced by Lagrange multipliers and the primal problem is reduced
to a small, better conditioned, bound constrained quadratic programming problem.
An important feature of this approach is that the solution of the system of such
subproblems may be efficiently parallelized. In general, the main idea behind the
non-overlapping domain decomposition methods is the decomposition of the spatial
domain into smaller subdomains overlapping only on their interfaces, and then,
instead of the large problem formulated on the original domain, we solve many
smaller problems formulated on the subdomains. These subproblems are linked
together by suitable transmission conditions. The idea of domain decomposition is
also quite natural, for instance, when different physical models are needed to be
used in different parts of the domain.

We are concerned especially with the FETI-DP method, where, in the simplest
version for two dimensional elliptic problems, continuity of the solution along the
subdomain interfaces is enforced by Lagrange multipliers except for the subdomain
corners, which remain primal variables. We can think of this as a result of incisions in
the mesh along the interface leaving only the subdomain corner nodes attached. The
FETI-DP method was first introduced by Farhat, Lesoinne, Le Tallec, Pierson, and
Rixen [15] and was analyzed for scalar two dimensional problems by Mandel and
Tezaur [32]; see also Klawonn, Rheinbach, and Widlund [27], where the analysis
is also extended to subdomains with very irregular boundaries. It is sometimes
important to replace or enhance the coarse problem of the dual-primal FETI method,
especially in three space dimensions. A possibility is to introduce certain edge or face
averages or edge first order moments, either additionally or instead of the assembly
in a selected number of primal variables; see, e.g., Farhat, Lesoinne, Pierson [16],
Klawonn and Widlund [23, 28, 29], Klawonn, Widlund, and Dryja [30], and Klawonn
and Rheinbach [25, 26]. Since the elimination of the primal variables is carried out
by the Gaussian elimination method, the dual-primal FETI method is also denoted
as exact FETI-DP method. For a large number of subdomains and processors, the
exact elimination of the primal variables can lead to a deterioration of the parallel
scalability. A remedy is given by the inexact FETI-DP methods; see Klawonn and
Rheinbach [26], which have been shown to be scalable to more than 65 000 processor
cores [22, 39].

A natural way how to improve the rate of convergence of the algorithms is to use
preconditioning. This is a challenging task as the standard preconditioners typically
transform variables, so that they also transform the bound constraints into more
general inequality constraints; recall that there are no algorithms with a rate of
convergence expressed in matrix-vector multiplications for the solution of quadratic
programming problems with general inequality constraints. Though it is rather
straightforward to precondition linear steps, the application of this idea goes back at
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least to O’Leary [37], such preconditioning technique (also called preconditioning in
face) does not affect the nonlinear steps, and thus does not result in an improvement
of the rate of convergence.

The only successful result so far in this direction is the preconditioning by a
conjugate projector, proposed for linear systems independently by Marchuk and
Kuznetzov [33], Nicolaides [34], and Dostál [10] and later extended for bound con-
strained problems by Domorádová and Dostál [4]. It was shown that this approach,
using projectors which do not affect the constrained variables, does result in im-
proved bounds on the rate of convergence [4].

An unpleasant drawback of the preconditioning by a projector is the cost of the
conjugate projector. To improve the efficiency of this approach, Dostál proposed to
examine the relation between averaging and the conjugate projector. There relations
were found and presented by Jarošová, Klawonn, and Rheinbach [21]. In [21], the
FETI-DP method using edge constraints implemented by using a transformation
of basis is compared with a FETI-DP method that was combined with a related
projector preconditioning approach. It is shown that both methods iterate in the
same finite element subspace and have the same rate of convergence. This is an
important result, since the explicit construction of the dual matrix in the projector
can be replaced by the transformation of basis which works locally and can easily
be parallelized.

The thesis is arranged into three parts. The first part deals with linear problems. In
Chapter 2 we introduce a linear model problem on which we are able to explain easily
the ideas and methods relevant for our research. Chapter 3 is devoted to basic direct
methods and the conjugate gradient method (CG), Chapter 4 describes the main
idea of preconditioning, preconditioned conjugate gradient method (PCG), some
basic preconditioners, and preconditioning by conjugate projectors. In Chapter 5
the Dual-Primal Finite Element Tearing and Interconnecting (FETI-DP) method
and special preconditioning strategies - preconditioning by a projector for FETI-DP
and the Dirichlet preconditioner are introduced. Chapter 6 describes transformation
of basis as a preconditioning strategy introducing edge averages as new, additional
primal variables into the FETI-DP system.

The second part deals with nonlinear problems. In Chapter 7 we introduce a
model contact problem serving for an easy description of the ideas and the methods
relevant for our research. Chapter 8 is devoted to the active set based algorithm
MPRGP (modified proportioning with reduced gradient projections) for the solution
of bound constrained quadratic programing problems with the rate of convergence
in terms of the spectral condition number of the Hessian matrix. Chapter 9 deals
with the FETI-DP method for the solution of nonlinear problems. Chapter 10 de-
scribes the preconditioning of the nonlinear problems, the preconditioning in face,
and variants of preconditioning by a conjugate projector. Chapter 11, transforma-
tion of basis for contact problems, contains the proof that the preconditioning by a
conjugate projector and the transformation of basis assembling the averages as new
primal variables iterate in the same finite element subspace and thus have the same
rate of convergence.
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The third part shows the results of numerical experiments, Chapter 12 shows
the improved bounds on the rate of convergence, when the projector precondition-
ing is applied to the finite element discretization problem. Chapter 13 shows the
same iteration counts for the projector preconditioning and transformation of basis,
Chapter 14 illustrates on 2D Hertz problem, implemented in MatSol library, some
possibilities of the choice of coarse problem nodes for the transformation of basis,
and Chapter 15 shows, only for comparison, the results of the same problem solved
by Total FETI (T-FETI) method. The conclusions of the thesis are summed up in
Chapter 16.
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Notation

Ω open domain (0, 1)× (0, 1) with the boundary ∂Ω

ΓD boundary of Ω, where the Dirichlet boundary condition is
prescribed

ΓN boundary of Ω, where the Neumann boundary condition is
prescribed

Γc contact boundary of Ω

Υ feasible set

K stiffness matrix

u displacement variables

f load vector (righthand side)

φ quadratic functional

L2(Ω) space of square integrable functions on Ω

H1(Ω) space of functions which are square integrable on Ω as well as
their first derivatives in the sense of distributions

ImA image of A

KerA kernel of A

O zero matrix

I identity matrix

g gradient vector

p search direction, conjugate direction

λmin, λmax extremal eigenvalues

κ(A) condition number of A

P, Q = I− P conjugate projectors

U matrix of “aggregations”

Ωi subdomain

Γ subdomains interface

uI interior displacement variables

u∆ dual displacement variables

uΠ primal displacement variables
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uB interior and dual displacement variables, uB = [uI ,u∆]

λ Lagrange multipliers

L extending map

B matrix enforcing the continuity on subdomain interfaces and/or
inequality constraints on contact boundary

L0 Lagrangian function

F dual matrix

d dual righthand side

T transformation matrix

uE edge variables for which the change of variables is considered,
uE = [uA,u∆]

uA averages (assembled to uΠ)

uV vertex constrained (assembled to uΠ)

R
n n-dimensional real space



I
Linear problems
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2Model problem

In this section we introduce the model problem, on which we are able to explain
easily the ideas and methods relevant for our research. This model problem is used
throughout the first part of this thesis.

Let Ω = (0, 1)× (0, 1) be an open domain with the boundary ∂Ω, and by ν we
denote the outward normal to ∂Ω. Let us consider a two-dimensional mixed problem
depicted in Figure 2.1 with a Dirichlet boundary condition on ΓD and a Neumann
boundary condition elsewhere (on ΓN), such that





−∆u = f in Ω
u = 0 on ΓD

∂u

∂ν
= 0 on ΓN ,

(2.1)

where ΓD = {0} × [0, 1] and ΓN = ∂Ω \ ΓD are disjoint subsets of ∂Ω.

ΓD

ΓN

Figure 2.1: Two-dimensional problem with the Dirichlet boundary condition on
ΓD and the homogeneous Neumann boundary condition elsewhere (on ΓN ).

The solution to this problem is shown in Figure 2.2. It can be interpreted as
the displacement of the membrane under the traction defined by the density f . The
membrane is fixed on ΓD.
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Figure 2.2: The solution to the model problem.

2.1 Weak Formulation

By multiplying the first row in (2.1) by a test function v, integrating by parts over
Ω, and discarding the boundary terms, we obtain

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx.

Let L2(Ω) be the space of square integrable functions. It is a Hilbert space with the
scalar product

(u, v)L2(Ω) =

∫

Ω

uv dx. (2.2)

Let H1(Ω) be the space of functions which are square integrable as well as their first
derivatives in the sense of distributions. Let us now introduce the Hilbert space

V = {v ∈ H1(Ω) : v = 0 on ΓD}. (2.3)

The weak formulation of (2.1) then reads as follows: for a given f ∈ L2(Ω),

find u ∈ V : a(u, v) = (f, v), ∀v ∈ V, (2.4)

where (·, ·) is the scalar product in L2(Ω) (2.2) and a(u, v) denotes the bilinear form

a(u, v) =

∫

Ω

∇u · ∇v dx.

The Lax-Milgram lemma guarantees that the problem (2.4) has a unique solution if
a(·, ·) is symmetric, continuous, and elliptic and f(·) is continuous [44].
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When using the finite element method, a solution of the weak problem (2.4) can be
approximated by a solution of the finite dimensional problem obtained by replacing
the infinite dimensional function space V , introduced in (2.3), by a finite dimensional
subspace Vh. This leads to a following approximate problem:

find uh ∈ Vh : a(uh, vh) = (f, vh), ∀vh ∈ Vh. (2.5)

The space Vh is defined as the space of all functions that are piecewise linear and
continuous on Ωh and that vanish on the boundary ΓD [40], where h denotes the
discretization parameter.

Writing the solution uh in the basis {ϕi} as uh =
∑

i uh,iϕi leads to the system
of linear equations

Ku = f , (2.6)

where [K]ij = a(ϕi, ϕj) and [f ]i = (f, ϕi). For more details about finite element
method we refer to Zienkiewicz et al. [45].

The problem to find the solution of (2.6) is equivalent to the minimization
problem

minφ(u), (2.7)

where

φ(u) =
1

2
uTKu− uT f (2.8)

is a quadratic functional with a symmetric positive definite matrix K.
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3Numerical solution

In this chapter we briefly recall the basic direct methods and describe the conjugate
gradient method (CG), the iterative method used throught this thesis for solving an
(auxiliary) linear systems with symmetric positive definite coefficient matrix.

3.1 Existence of a solution

We want to solve the system of linear equations

Ku = f . (3.1)

We distinguish three situations [40] from the point of view of existence of a
solution.

(i) The matrix K is nonsingular. There is a unique solution given by u = K−1f .

(ii) The matrix K is singular and f ∈ ImK. Since f ∈ ImK, there is an u0 such
that Ku0 = f . Moreover, u0 + ν is also a solution for any ν ∈ KerK. Since
KerK is at least one-dimensional, there are infinitely many solutions.

(iii) The matrix K is singular and f 6∈ ImK. There are no solutions.

3.2 Direct methods

When using direct methods for solving the system of linear equations, the problem
to find the solution of the original linear system is transformed into the problem
finding the solution of easily solvable linear system(s) with a triangular matrix.

Matrix factorization

The symmetric square matrix K can be decomposed as

K = LU,
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This decomposition is called LU factorization. The solution u to the system (3.1)
then can be evaluated from

Lz = f and Uu = z.

The symmetric positive definite matrix K can be decomposed into the product LLT .
This decomposition is called a Cholesky factorization.

When solving the system Lz = f with the lower triangular matrix L, we can
find the first unknown easily from the first equation, since there is only one. Then
we can substitute it to other equations. By repeating this process, we can find all
unknowns.

L

O

O

U

Figure 3.1: The process for solving linear systems with triangular matrices.

The same process can be used also in the case when solving the system Uu =
z with the upper triangular matrix U. We have to start with the last equation.
The process for solving the systems with the triangular matrices is illustrated in
Figure 3.1.

Gaussian elimination

The main idea of a Gaussian elimination method is to transform an augmented
matrix [K|f ] to [U|f̄ ],

[K|f ] → [K(1)|f (1)] → [K(2)|f (2)] → · · · → [U|f̄ ],

using elementary operations. The matrix [K(i)|f (i)] is transformed to [K(i+1)|f (i+1)]
in such a way that the elements of the i-th column below the diagonal of the matrix
[K(i+1)|f (i+1)] are set to zero. This part, called a forward elimination, is depicted in
Figure 3.2. The solution is then obtained from the system Uu = f̄ in at most n
steps in the process called a backward substitution. The algorithm requires O(n3)
operations.

O O

U

i-th
Figure 3.2: Gaussian elimination method: forward elimination.
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Gauss-Jordan elimination

There is another way to do the second part: to transform the augmented matrix
[U|f̄ ] to [D |ū], where D is some diagonal matrix. The matrix [U(i)|f̄ (i)] is transformed
to [U(i+1)|f̄ (i+1)] in such a way that the elements of the j-th row (j = n− i) on the
righthand side of the diagonal of the matrix U(i+1) are set to zero. The solution u

is obtained from [D |ū] by dividing rows by the corresponding diagonal element, so
we obtain [ I |u], where I denotes identity matrix. The process described here, called
a Gauss-Jordan elimination, is depicted in Figure 3.3.

O OOO

O

O

O

I

U

i-th

j-th

Figure 3.3: Gauss-Jordan elimination.

3.3 Conjugate gradient method

To solve an (auxiliary) linear systems throught this thesis we use the conjugate gra-
dient method. It is an iterative method for solving linear systems with a symmetric
positive definite coefficient matrix. The method was introduced in 1952 by Hestenes
and Stiefel [19], but came into wide use in the mid-70’s.

As was mentioned in Section 2.2, solving the linear system Ku = f is equivalent
to the minimization problem

minφ(u), (3.2)

where φ is the quadratic functional defined by (2.8).
The gradient of φ equals to the residual of the linear system and has the form

∇φ(u) = Ku− f = g.

Let us express the vector ui+1 as

ui+1 = ui − αpi

with the steplength α and the search direction pi, i. e. the direction in which the
minimization is sought. The coefficient α, the value for which φ(ui+1) is minimal,
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min
α

φ(ui+1).

Since

φ(ui+1) = φ(ui − αpi) =
1

2

〈
K(ui − αpi), (ui − αpi)

〉
−
〈
f , (ui − αpi)

〉

=
1

2
〈Kui,ui〉 − α〈Kui,pi〉+

1

2
α2〈Kpi,pi〉 (3.3)

− 〈f ,ui〉+ α〈f ,pi〉

and
∂φ(ui+1)

∂α
= −〈Kui,pi〉+ α〈Kpi,pi〉+ 〈f ,pi〉 = 0,

we can write

α =
〈Kui − f ,pi〉
〈Kpi,pi〉

=
〈gi,pi〉
〈Kpi,pi〉

.

The search directions pi are chosen so that they are mutually conjugate with respect
to the scalar product defined by

〈Kpi,pi+1〉 = 0,

where the vector pi+1 can be written as

pi+1 = gi+1 − βpi.

Using the last two formulas, we can write

〈Kpi, gi+1 − βpi〉 = 〈Kpi, gi+1〉 − β〈Kpi,pi〉 = 0

and

β =
〈gi+1,Kpi〉
〈Kpi,pi〉

.

The vector gi+1 can be written in the form

gi+1 = gi − αKpi,

since

gi+1 = Kui+1 − f = K
(
ui − αpi

)
− f =

(
Kui − f

)
− αKpi = gi − αKpi.

Lemma 1. Let u0 ∈ R
n and let {pi} be an arbitrary set of the conjugate directions.

Then
〈gi,pj〉 = 0, j = 0, . . . , i− 1,

and ui is the minimizer of φ(u) over the space

u0 + span{p0,p1, . . . ,pi−1}.

Consequently, the sequence {ui} converges to the solution u∗ of (3.2) in at most n
steps.
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Algorithm 2. Conjugate gradient method

Given an spd matrix K ∈ R
n×n, n-vectors f and u0.

Step 0. {Initialization.}
Compute g0 = Ku0 − f and set p1 = g0 and i = 0.

Step 1. {Conjugate gradient loop.}
while ‖gi‖ is not small
α = 〈gi,pi〉/〈Kpi,pi〉 = 〈gi, gi〉/〈Kpi,pi〉
ui+1 = ui − αpi

gi+1 = gi − αKpi

β = 〈gi,Kpi〉/〈Kpi,pi〉 = −〈gi+1, gi+1〉/〈gi, gi〉
pi+1 = gi − βpi

i = i+ 1
end while

Step 2. {Return the solution.}
û = ui

Let us sum up the properties of the conjugate gradient method. First, the
gradients gj are mutually orthogonal

〈gi, gj〉 = 0, j = 0, . . . , i− 1,

and the conjugate directions pj are K-conjugate

〈pi,Kpj〉 = 0, j = 0, . . . , i− 1.

Second, each conjugate direction pi and gradient gi is contained in the Krylov
subspace of degree i for g0, defined as

K(g0; i) = span{g0,Kg0, . . . ,K
ig0} = span{p0,p1, . . . ,pi}.

For the conjugate gradient method, shown in Algorithm 2, we obtain the fol-
lowing convergence result.

Lemma 3. Let K be symmetric positive definite and let u∗ denotes the solution of
(3.2). Then the conjugate gradient method satisfies the error bound

‖ui+1 − u∗‖2K ≤ η2K‖ui − u∗‖2K, (3.4)

where the convergence factor is bounded by

ηK =

√
κ(K)− 1√
κ(K) + 1

,

where κ(K) = λmax/λmin is a condition number of the matrix K.

More details about the conjugate gradient method can be found, e.g., in Nocedal
and Wright [35, Chapter 5] or in Templates by Dongarra et al. [2].
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4Preconditioning for linear problems

Preconditioning is a key tool that we shall use to improve the convergence of iterative
methods such as the conjugate gradients. In this chapter we describe the Precondi-
tioned conjugate gradients, some basic preconditioners, and the preconditioning by
conjugate projectors.

The main idea of the preconditioning is to transform the original linear system

Ku = f (4.1)

into the preconditioned system

MKu = Mf , (4.2)

where the nonsingular matrix M is a preconditioner.
When solving (4.2) by Conjugate gradient (CG) algorithm, the convergence de-

pends on the properties of MK instead on those of K. To ensure better properties
of MK, M should be in some sense close to K, for example M ∼ K−1. If the precon-
ditioner M is well chosen, i. e., if the condition number of MK is close to one, (4.2)
may be solved much more rapidly then (4.1).

4.1 Basic preconditioners

Here we show some basic preconditioning techniques. Let us assume the splitting

K = D+ E+ ET ,

where D is diagonal of K and E is its strict lower triangular part. This splitting is
depicted in Figure 4.1.

The easiest preconditioner is of the form

MJ = D−1
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E

D ET

Figure 4.1: The splitting K = D+ E+ ET .

and is called a Jacobi preconditioner. Another preconditioner derived from this
splitting is the SSOR preconditioner [2]

MSSOR(ω) =
1

2− ω

( 1

ω
D+ E

)−T( 1

ω
D

)( 1

ω
D+ E

)−1

.

Taking ω = 1 leads to the Symmetric Gauss-Seidel preconditioner

MSGS = (D+ E)−TD(D+ E)−1.

We can use a lot of another preconditioning techniques, e.g., ILU, multigrid based
preconditioner, and many others. More details can be found, e.g., in Saad [40].

4.2 Preconditioned conjugate gradient method

The preconditioned CG algorithm can be derived from the CG algorithm by using
M inner product, see, e.g., Saad [40, Section 9.2]. The Preconditioned CG method
is shown in Algorithm 4.

Algorithm 4. Preconditioned conjugate gradient method

Given an spd matrix K ∈ R
n×n, spd preconditioner M ∈ R

n×n, n-vectors f and
u0.

Step 0. {Initialization.}
Compute z0 = Mg0 and set p0 = z0, i = 0.

Step 1. {PCG loop.}
while ‖gi‖ is not small
α = 〈zi, gi〉/〈pi,Kpi〉
ui+1 = ui + αpi

gi+1 = gi − αKpi

zi+1 = Mgi+1

β = 〈zi+1, gi+1〉/〈zi, gi〉
pi+1 = zi+1 + βpi

i = i+ 1
end while

Step 2. {Return solution.}
û = ui
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The main goal of the investigation is to modify the classical conjugate gradient
method in such a way that in dependence an the initial approximation the number
of iterations becomes as small as possible. To this end the classical method is
reformulated in such a way that the approximations belong to a predetermined
affine subspace. The preconditioning by the conjugate projector considered here,
was proposed for linear systems independently by Marchuk and Kuznetsov [33],
Nicolaides [34], and Dostál [10]. First, we give an overview of the properties of the
projectors, see, e.g., [11].

Let us describe two important subspaces associated with each mapping. Each
matrix A ∈ R

m×n defines the mapping, which assigns to each v ∈ R
n the vector

Av ∈ R
m. A range or image space of A is defined as

ImA = {Av : v ∈ R
n}

and a kernel or null space as

KerA = {v ∈ R
n : Av = o}.

A projector is a square matrix P that satisfies

P2 = P.

If P is projector, then Q = I− P and PT are also projectors as

(I− P)2 = I− 2P+ P2 = I− P and (PT )2 = (P2)T = PT .

A vector v ∈ ImP, i.e. v = Pv, iff there is x ∈ R
n such that v = Px, so that

Pv = P(Px) = Px = v.

Since for any v ∈ R
n

v = Pv + (I− P)v,

it simply follows that ImQ = KerP and ImP = KerQ,

R
n = ImP⊕KerP, and KerP ∩ ImP = {0}.

We say that P is a projector onto U = ImP along V = KerP and Q is a com-
plementary projector onto V along U . It is also easy to see that PQ = QP = O,
since

PQ = P(I− P) = P− P2 = O and QP = (I− P)P = P− P2 = O.

Let K ∈ R
n×n be a symmetric positive definite matrix. A projector P is an K-

conjugate projector or briefly a conjugate projector if ImP is K-conjugate to KerP,
or equivalently

PTK(I− P) = PTK− PTKP = O.
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It follows that Q = I− P is also a conjugate projector,

PTK = KP = PTKP, and QTK = KQ = QTKQ. (4.3)

If u ∈ KV, then
QTKQu = KQu,

which implies

QTKQ(KV) ⊆ KV. (4.4)

Thus KV is an invariant subspace of QTKQ.
The following lemma shows that the mapping which assigns to each u ∈ KV the

vector Qu ∈ V is expansive.

Q

P

U

VKV

x

Figure 4.2: Geometric illustration of the conjugate projectors: V = ImQ and
U = ImP.

Lemma 5. Let Q denote a conjugate projector on V. Then for any u ∈ KV

‖Qu‖ ≥ ‖u‖ (4.5)

and

V = Q(KV). (4.6)

Proof. Let us assume that u ∈ KV, so there is an y ∈ R
n such that u = KQy. It

follows that

QTu = QTKQy = KQy = u

and uTQu = uTQTu = ‖u‖2, which implies

‖Qu‖2 = uTQTQu = uT
(
(QT − I) + I

)
((Q− I) + I)u = ‖(Q− I)u‖2 + ‖u‖2.

This proves (4.5). To prove (4.6) observe that V = ImQ, such that V = Q(Rn) ⊇
Q(KV). Since K is nonsingular and the mapping which assigns to each u ∈ KV
the vector Qu is injective, it is enough to use a dimension argument to finish the
proof.
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R
n×p, then

P = U(UTKU)−1UTK (4.7)

is a conjugate projector onto U .
Using the projector P it is possible to solve the auxiliary problem

min
u∈U

φ(u) = min
y∈Rp

φ(Uy) = min
y∈Rp

1

2
yTUTKUy − fTUy.

By the gradient argument, we get that the minimizer u0 = Uy0 of φ over U is defined
by

UTKUy = UT f , (4.8)

hence
u0 = U(UT

KU)−1
U
T f = PK

−1f . (4.9)

Thus we can find the minimum of φ over U effectively whenever we are able to solve
(4.8).

We shall use the conjugate projectors P and Q = I − P to decompose our
minimization problem (3.2) into the minimization on U and the minimization on
V = ImQ. In particular, we shall use three observations. First, using Lemma 5,
we get that the mapping which assigns to each u ∈ KV a vector Qu ∈ V is an
isomorphism. Second, using (4.9), we get

g0 = Ku0 − f = KPK
−1f − f = PT f − f = −QT f . (4.10)

Since
ImQ

T = Im(QT
K) = Im(KQ) = KV (4.11)

and g0 ∈ ImQT by (4.10), we get that g0 ∈ KV. Finally, observe that if o 6= u ∈ KV,
then by Lemma 5 Qu 6= o, such that uTQTKQu > 0. Thus the restriction QTKQ|KV
is positive definite.

We write

minφ(u) = min
x∈U ,y∈V

φ(x+ y) = min
x∈U

φ(x) + min
y∈V

φ(y)

= φ(u0) + min
y∈V

φ(y) = φ(u0) + min
y∈KV

1

2
yT

Q
T
KQy − fTQy

= φ(u0) + min
y∈KV

1

2
yTQTKQy + yTg0,

where u0 is defined by (4.9) and g0 by (4.10). Then the solution û can be expressed
as

û = u0 + Qŷ,

where ŷ is the solution on KV.
The Conjugate gradient method with projector preconditioning is shown in Al-

gorithm 6. For a convergence results we refer the interested reader to Dostál [10].
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Algorithm 6. Conjugate gradients with projector preconditioning

Given an spd matrix K ∈ R
n×n, a full column rank matrix U ∈ R

n×p, n-vector
f , projectors P defined by (10.12) and Q = I− P.

Step 0. {Initialization.}
Compute u0 = PK

−1f = U(UTKU)−1Uf ,
g0 = Ku0 − f , z0 = Qg0, p0 = z0 and set i = 0.

Step 1. {Conjugate gradient loop. }
while ‖gi‖ is not small
α = 〈zi, gi〉/〈pi,Kpi〉
ui+1 = ui + αpi

gi+1 = gi − αKpi

zi+1 = Qgi+1

β = 〈gi+1, zi+1〉/〈gi, zi〉
pi+1 = zi+1 + βpi

i = i+ 1
end while

Step 2. {Return solution.}
û = ui

Projector defined by aggregations

The matrix U, used in projector P (4.7), can be defined, e.g. by the elements of
the aggregation bases such as those depicted in Figure 4.3. Each element of such
basis can be represented by the column uk ∈ R

n, k = 1, . . . , p, with all the entries
equal to zero except the entries which correspond to the aggregated variables and
are equal to one. For example, if uk corresponds to the element of the aggregation
basis depicted in Figure 4.3, then uik = 1 and ujk = 0, thus the matrix U is of the
form

U =




1
0




i− th
j − th

.

k − th

(4.12)

Projector defined by the traces of linear functions

Another possibility is to define matrix U by the traces of linear functions on the
coarse grid such as that depicted in Figure 4.4. Each element of such basis can be
represented by the column um ∈ R

n, m = 1, . . . , p, with all the entries equal to zero
except the entries which correspond to the support. For example, if um corresponds
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j

0

0.5

1

i
j
k

Figure 4.3: Aggregation basis
function.

Figure 4.4: Coarse linear basis
function.

to the coarse space basis function depicted in Figure 4.4, then uim = 1, ujm = 0.5,
and ukm = 0, thus the matrix U is of the form

U =




1
1/2
0




i− th
j − th
k − th

.

m− th

(4.13)
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5Dual-Primal FETI Method

In this chapter we consider the Dual-Primal Finite Element Tearing and Intercon-
necting (FETI-DP) method, originally introduced by Farhat, Lesoinne, Le Tallec,
Pierson, and Rixen [15], followed by Mandel and Tezaur [32] with theory for two
dimensional second and fourth order problems, and later extended to three dimen-
sional problems by Farhat, Lesoinne, and Pierson [16].

In this method the original domain Ω is decomposed into several nonoverlapping
subdomains Ωi. The continuity of the primal solution is implemented directly into
the formulation of the primal problem, so the subdomains leaving connected in the
nodes called vertices or corners, see Figure 5.1. The continuity of the variables across
the rest of the subdomains interface is enforced by the Lagrange multipliers.

=

Figure 5.1: Domain Ω is decomposed into four subdomains, which are connected
in the vertices (black nodes). To illustrate the Lagrange multipliers (red arrows)
curved edges of the subdomains are used.

5.1 Notation

Let us start with a detailed description of the variables used in the FETI-DP method
depicted in Figure 5.2. We use the notation as in [25, 29, 24]. Primal displacement
variables or coarse problem nodes are those nodes, where the subdomains are con-
nected. Since the FETI-DP method was introduced with the primal displacement
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vertices. In this work we prefer to use the notation primal displacement variables or
coarse problem nodes, since we assumed also situations in which the primal displace-
ment variables are not situated in the corners of the subdomains. Dual displacement
variables are the nodes situated on the subdomains interface, where the continuity
is enforced by Lagrange multipliers also called dual variables. Interior displacement
variables are the nodes inside the subdomains.

uI . . . interior displacement variables

u∆ . . . dual displacement variables

uΠ . . . primal displacement variables

λ . . . Lagrange multipliers

uB = [uI ,u∆]

Figure 5.2: Types of variables used in FETI-DP method.

Using this notation we obtain the stiffness matrix K in the form

K =




K
(1)
II K

(1)T
∆I K̃

(1)T
ΠI

K
(1)
∆I K

(1)
∆∆ K̃

(1)T
Π∆

. . .
...

K
(s)
II K

(s)T
∆I K̃

(s)T
ΠI

K
(s)
∆I K

(s)
∆∆ K̃

(s)T
Π∆

K̃
(1)
ΠI K̃

(1)
Π∆ . . . K̃

(s)
ΠI K̃

(s)
Π∆ K̃ΠΠ




=




KII KT
∆I K̃T

ΠI

K∆I K∆∆ K̃T
Π∆

K̃ΠI K̃Π∆ K̃ΠΠ


 , (5.1)

where s denotes the number of subdomains. Using the notation

K
(i)
BB =

[
K

(i)
II K

(i)T
∆I

K
(i)
∆I K

(i)
∆∆

]
and K̃

(i)
ΠB =

[
K̃

(i)
ΠI K̃

(i)
Π∆

]
,

we rewrite (5.1) as

K =




K
(i)
BB K̃

(1)T
ΠB

. . .

K
(s)
BB K̃

(s)T
ΠB

K̃
(1)
ΠB . . . K̃

(s)
ΠB K̃ΠΠ


 =

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
.

The load vector f and the solution vector u of the nodal values can be written in a
similar way

f =




fI
f∆
fΠ


 =

[
fB
fΠ

]
and u =




uI

u∆

uΠ


 =

[
uB

uΠ

]
=

[
uB

LũΠ

]
. (5.2)
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To simplify the implementation we introduce a global vector of degrees of free-
dom ũΠ and an extending map L with one nonzero entry per line equal to 1, and we
require that uΠ = LũΠ.

L

ũ2

ũ3ũ1 ũ5

ũ4

u1 u7

u3 u8

u5 u10

u6 u12

u11

u9

u4

u2

Figure 5.3: The extending map L is introduced to guarantee continuity at the
primal displacement variables.

The matrix L for the problem depicted in Figure 5.3 has the form

L =




0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0




. (5.3)

Now it is easy to see that

L




ũ1

ũ2

ũ3

ũ4

ũ5



=




ũ2

ũ1

ũ3

ũ1

ũ3

ũ4

ũ2

ũ3

ũ5

ũ3

ũ5

ũ4




=




u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12




. (5.4)
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K̃ =

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
=

[
IB O

O LT

] [
KBB KT

ΠB

KΠB KΠΠ

] [
IB O

O L

]
(5.5)

where IB is the identity matrix. K̃ is coupled in the primal variables but it still has a
block structure in the KBB block. The corresponding partially assembled righthand
side is

f̃ =

[
fB

f̃Π

]
=

[
IB O

O LT

] [
fB
fΠ

]
. (5.6)

Now, we can consider the primal problem, equivalent to (2.7),

min
u∈ΥE

φ(u), ΥE = {u ∈ R
n : BEu = o}, (5.7)

where BEu = o are “gluing” conditions arising from the domain decomposition.

5.2 Lagrangian function

Let us now explain the derivation of the dual problem. The Lagrangian function
associated with (5.7) if of the form

L0(u, λ) =
1

2
uT K̃u− uT f̃ + uTBT

E λ, (5.8)

where λ is a vector of the Lagrange multipliers. The corresponding saddle point
system then can be written as

[
K̃ BT

E

BE O

] [
u

λ

]
=

[
f̃

o

]
. (5.9)

Using the notation

BE =
[
BB O

] (
=

[
BB BΠ

] )
, (5.10)

we rewrite the saddle point problem (5.9) as




KBB KT
ΠBL BT

B

LTKΠB LTKΠΠL O

BB O O






uB

ũΠ

λ


 =




fB
LT fΠ
o


 , (5.11)

where BB is the so called jump operator enforcing the continuity at the dual displace-
ment variables, which is constructed using values {−1, 0, 1} in such a way, that the
values of the solution uB associated with more than one subdomain coincide when
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BBuB = 0; the interior variables uI remain unchanged and thus the corresponding
entries in BB are zero [25]. We can rewrite also (5.8) as

L0(uB, ũΠ, λ) =
1

2
uT
BKBBuB + uT

BK
T
ΠBLũΠ +

1

2
ũT
ΠL

TKΠΠLũΠ − fTBuB

− fTΠLũΠ + uT
BB

T
Bλ

=
1

2
uT
BKBBuB − uT

B(fB − KT
ΠBLũΠ − BT

Bλ)

+
1

2
ũT
ΠL

T
KΠΠLũΠ − fTΠLũΠ. (5.12)

To minimize L0(uB, ũΠ, λ) over uB, we consider

∂L0

∂uB

= KBBuB −
(
fB − KT

ΠBLũΠ − BT
Bλ

)
= 0

which implies

uB = K−1
BB

(
fB − KT

ΠBLũΠ − BT
Bλ

)
.

By substituting this result into (5.12), we obtain

L0(ũΠ, λ) =
1

2
ũT
ΠL

T
(
KΠΠ − KΠBK

−1
BBK

T
ΠB

)
LũΠ

− ũT
ΠL

T
(
fΠ − KΠBK

−1
BBfB + KΠBK

−1
BBB

T
Bλ

)

− 1

2
(fB − B

T
Bλ)

T
K

−1
BB(fB − B

T
Bλ)

=
1

2
ũT
ΠS̃ΠΠũΠ − ũT

Π(f̂Π − K̂ΠBλ)

− 1

2
(fB − BT

Bλ)
TK−1

BB(fB − BT
Bλ), (5.13)

where

S̃ΠΠ = L
T
(
KΠΠ − KΠBK

−1
BBK

T
ΠB

)
L,

f̂Π = LT
(
fΠ − KΠBK

−1
BBfB

)
,

K̂T
ΠB = −BBK

−1
BBK

T
ΠBL. (5.14)

In order to minimize (5.13) over ũΠ, we consider

∂L0

∂ũΠ
= S̃ΠΠũΠ −

(
f̂Π − K̂ΠBλ

)
= 0

and obtain
ũΠ = S̃−1

ΠΠ

(
f̂Π − K̂ΠBλ

)
, uΠ = LũΠ.

Using this result, we rewrite (5.13) in the form

L0(λ) =
1

2
λT

(
K̂BB − K̂T

ΠBS̃
−1
ΠΠK̂ΠB

)
λ− λT

(
f̂B − K̂T

ΠBS̃
−1
ΠΠf̂Π

)

− 1

2
fTBK

−1
BBfB − 1

2
f̂TΠ S̃

−1
ΠΠ f̂Π, (5.15)
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−1
BBB

T
B and f̂B = −BBK

−1
BBfB.

Finnally, using the notation of theory of duality, we can rewrite (5.15) as the
dual problem

minΘ(λ), Θ(λ) =
1

2
λTFλ− λTd, (5.16)

where F = K̂BB − K̂T
ΠBS̃

−1
ΠΠK̂ΠB and d = f̂B − K̂T

ΠBS̃
−1
ΠΠf̂Π. Minimizing Θ(λ) is equiv-

alent to solving problem (2.7).

Remarks

• Note that the set of primal variables Π can be formed by some “optional”
nodes from the interface, not necessarily by vertices as was assumed in this
section. The effort is to ensure a small size of the dual problem, on the other
hand we have to choose enough primal variables in order to control the rigid
body motions.

5.3 Projector preconditioning for FETI-DP

method

The combination of the projector preconditioning with the FETI-DP method was
introduced by Jarošová, Klawonn, Rheinbach [21].

Let F ∈ R
m×m be a symmetric positive definite matrix. A projector P is an

F-conjugate projector or briefly a conjugate projector if ImP is F-conjugate to KerP,
or equivalently

PTF(I− P) = PTF− PTFP = O.

If U is the subspace spanned by the columns of a full column rank matrix U ∈ R
m×p,

then

P = U(UTFU)−1UTF (5.17)

is a conjugate projector onto U . We use the conjugate projectors P and Q = I−P to
decompose our dual minimization problem (5.16) into the minimization on U and
the minimization on V = ImQ, we can write

minΘ(λ) = min
η∈U ,µ∈V

Θ(η + µ) = min
η∈U

Θ(η) + min
µ∈V

Θ(µ)

= Θ(λ0) + min
µ∈V

Θ(µ) = Θ(λ0) + min
µ∈FV

1

2
µTQTFQµ− dTQµ

= Θ(λ0) + min
µ∈FV

1

2
µT

Q
T
FQµ + µTg0,

where λ0 = PF
−1d and g0 = −QTd. The solution λ̂ of the dual problem (5.16) can

then be expressed by λ̂ = λ0 + Qµ̂, where µ̂ is the solution on FV .
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1

2

3

4

Figure 5.4: Aggregated Lagrange multipliers.

In this approach the matrix U is defined by the elements of the aggregation
bases such as those depicted in Figure 5.4. The aggregated variables are the La-
grange multipliers that enforce the continuity conditions of the primal displacement
variables of two adjoining subdomains. The matrix U for the problem depicted in
Figure 5.4 is of the form

U =




1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1




. (5.18)

5.4 Dirichlet preconditioner

In the standard CG accelerated FETI-DP methods we often use the theoretically
almost optimal Dirichlet preconditioner MD is often used [15, 17]. Let us first define
the multiplicity of a node as the number of subdomains it belongs to. Now we can
define the scaled operator BB,D. The matrix BB,D is a scaled variant of the operator
BB, where the contribution from and to each interface node is scaled by the inverse
of the multiplicity of the node. This scaling is therefore refered to in the literature
as multiplicity scaling. In the simplest 2D case where all vertex unknows are primal,
we have BB,D = DBB with D = 1

2
I.

To define the preconditioner we also need a restriction matrix [O I∆] which
restricts the nonprimal variables uB to the dual part u∆, i.e., it is zero on uI and
the identity on u∆. Then the Dirichlet preconditioner is the Schur complement

M−1
D = BB,D[O I∆]

T (K∆∆ − K∆I(KII)
−1KT

∆I)[O I∆]B
T
B,D.
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comparison of different scalings for ragged subdomain interfaces has been considered
by Klawonn, Rheinbach, and Widlund in [27].
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6Transformation of basis

In this chapter we describe the method exploiting the transformation of basis to
replace or enhance the coarse problem of the dual-primal FETI method.

This method uses certain edge or face averages which are introduced either in
addition to or instead of the assembly in a selected number of primal variables; see,
e.g., Farhat, Lesoinne, Pierson [16], Klawonn and Widlund [29], Klawonn, Widlund,
and Dryja [30], and Klawonn and Rheinbach [25].

Let us consider the transformation of basis described by Klawonn and Widlund
[29], Klawonn and Rheinbach [25], and Li and Widlund [31]. In this approach, the
averages are introduced as new primal variables into the FETI-DP system and then
subassembled in these degrees of freedom as shown in Figure 6.1. Our approach uses
an explicitly the change of basis. As a result, the finite element functions associated
with dual displacement vectors will have zero edge averages over the coinciding
edges.

6.1 Change of variables

Let us now describe the main idea of the transformation of basis on the situation
depicted in Figure 6.1 (left). Obviously, in the solution the equality conditions

u1 = u4

u2 = u5 (6.1)

u3 = u6

have to be satisfied. Let us now replace an arbitrary equation, for example, the last
one, in the form of “average” as

u1 + u2 + u3 = u4 + u5 + u6. (6.2)



35

L
IN

E
A
R

P
R
O
B
L
E
M
SWe consider the equality conditions in the form

u1 = u4

u2 = u5 (6.3)

u1 + u2 + u3 = u4 + u5 + u6.

u1

u2

u3

u4

u5

u6

û1

û2

û3

û4

û5

û6

û1

û2

û4

û5

Figure 6.1: Vertex constraint, transformation of basis, and assembly of averages.

It is easy to see that also the conditions (6.3) have to be satisfied in the solution
and are equivalent to (6.1). Now, we introduce new variables û, see Figure 6.1
(middle), and let us rewrite (6.3) as

û1 = û4

û2 = û5 (6.4)

û3 = û6.

The change of the edge variables from u to û and back can be described for the first
subdomain in the form




û1

û2

û3


 =




1 0 0
0 1 0
1 1 1




︸ ︷︷ ︸
T−1




u1

u2

u3


 and




u1

u2

u3


 =




1 0 0
0 1 0

−1 −1 1




︸ ︷︷ ︸
T




û1

û2

û3


 , (6.5)

where the transformation matrix T describes the change of variables from the new
basis to the original one. To extend the information from the whole edge efficiently
over the interface, we replace the Lagrangian multiplier between the averages by
the new primal variable. This situation is depicted in Figure 6.1 (right). Below, we
introduce a different form of the transformation matrix T, which turns out to be
more suitable for our research, see Remarks in Chapter 11.

6.2 Two subdomains

Let us consider the model problem introduced in Chapter 2. Let us decompose the
domain Ω into two subdomains, Ω1 and Ω2, and denote by Γ their interface, as shown
in Figure 6.2. In this the case of two subdomains, no vertices are introduced instead
of vertex constraints, the interface average is selected as the sole primal variable.
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Figure 6.2: Partition into two subdomains in the absence of a vertex constraint.

First let us show, as Li and Widlund [31], how to change the variables to make
the edge average degree of freedom explicit. For each subdomain Ωi, we denote the
variables corresponding to the nodes on the interface Γ by (u

(i)
1 , . . . , u

(i)
m , . . . , u

(i)
l ) ,

where the node m can be any node on the edge. The rest of the unknowns will be
denoted by u

(i)
I .

A linear system for subdomain Ωi can be written as

K(i)u(i) =




K
(i)
II K

(i)T
1I · · · K

(i)T
mI · · · K

(i)T
lI

K
(i)
1I k

(i)
11 · · · k

(i)
1m · · · k

(i)
1l

...
...

. . .
...

...

K
(i)
mI k

(i)
m1 · · · k

(i)
mm · · · k

(i)
ml

...
...

...
. . .

...

K
(i)
lI k

(i)
l1 · · · k

(i)
lm · · · k

(i)
ll







u
(i)
I

u
(i)
1
...

u
(i)
m

...

u
(i)
l




=




f
(i)
I

f
(i)
1
...

f
(i)
m

...

f
(i)
l




.

Let us now consider l × l matrix TE in the form

TE =




1 1
. . .

...
−1 · · · 1 · · · −1

...
. . .

1 1




with nonzero elements on the main diagonal, in the m-th row, and in the m-th
column. The matrix TE is the transformation matrix with columns representing the
new basis of the space of edge variables.

Using this transformation matrix TE, the interface variables of both subdo-
mains can be changed. We denote the interface variables in the new basis by
(û

(i)
1 , . . . , û

(i)
m , . . . , û

(i)
l ), so we write




u
(i)
1
...

u
(i)
m

...

u
(i)
l



= TE




û
(i)
1
...

û
(i)
m

...

û
(i)
l



=




1 1
. . .

...
−1 · · · 1 · · · −1

...
. . .

1 1







û
(i)
1
...

û
(i)
m

...

û
(i)
l



.
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u
(i)
1
...

u
(i)
m

...

u
(i)
l



=




1
...
1
...
1



û(i)
m +




û
(i)
1
...

−û
(i)
1 − · · · − û

(i)
m−1 − û

(i)
m+1 − · · · − û

(i)
l

...

û
(i)
l



,

the first part corresponds to the basis function which is constant on the edge and has
the value û

(i)
m for the subdomain Ωi; while the second corresponds to the functions

with zero edge average. Figure 6.3 depicts the nodal basis in 1D for the edge nodes
from Figure 6.2. The basis includes the average in analogy to [38].

Figure 6.3: (left): Nodal basis consisting of 3 nodal basis functions.
(right): Basis consisting of an average basis function (corresponding to the middle
point) and a 2 nodal basis functions.

Let us now introduce the matrix T(i), the transformation matrix for all variables
of one subdomain. Since the transformation affects only the interface variables, the
matrix T(i) is a block diagonal of the form

T(i) =

[
II

TE

]
,

where II is an identity matrix on the positions of the interior variables. The trans-
formed subdomain problem can now be written as

T(i)T




K
(i)
II K

(i)T
1I · · · K

(i)T
mI · · · K

(i)T
lI

K
(i)
1I k

(i)
11 · · · k

(i)
1m · · · k

(i)
1l

...
...

. . .
...

...

K
(i)
mI k

(i)
m1 · · · k

(i)
mm · · · k

(i)
ml

...
...

...
. . .

...

K
(i)
lI k

(i)
l1 · · · k

(i)
lm · · · k

(i)
ll




T(i)




u
(i)
I

û
(i)
1
...

û
(i)
m

...

û
(i)
l




= T(i)T




f
(i)
I

f
(i)
1
...

f
(i)
m

...

f
(i)
l




.

The subdomain edge average variables, û
(1)
m and û

(2)
m , are required to have a com-

mon value throughout the FETI-DP iteration. Let us denote this common variables
by ûΠ, as a primal variable. The other interface variables, the dual displacement
variables, are denoted by û

(1)
∆ and û

(2)
∆ , with their own values at the same interface

nodes. The global system of the example can then be written as
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K̄
(1)
BB K̄

(1)T
ΠB B

(1)T
B

K̄
(2)
BB K̄

(2)T
ΠB B

(2)T
B

K̄
(1)
ΠB K̄

(2)
ΠB K̄

(1)
ΠΠ + K̄

(2)
ΠΠ

B
(1)
B B

(2)
B







û
(1)
B

û
(2)
B

ûΠ

λ


 =




f̂
(1)
B

f̂
(2)
B

f̂
(1)
Π + f̂

(2)
Π

o


 , (6.6)

where û
(i)
B = [û

(i)T
I , û

(i)T
∆ ]. System (6.6) is of the same form as system (5.11) and can

be solved in the same way, see Chapter 5. To obtain the primal solution we need to
use the backward transformation in the form of uE = TEûE .

To see that û
(i)
m represents the edge average indeed, it is enought to express this

variable using the relation ûE = T−1
E uE . To save the simplicity, let us consider only

3 interface variables, so we have



û1

û2

û3


 =

1

3




2 −1 −1
1 1 1

−1 −1 2






u1

u2

u3


 .

It is easy to see that, in this case, the edge average is represented by

û3 =
1

3
(u1 + u2 + u3).

We note that the average can be placed to any interface position.

6.3 Many subdomains

Let us again consider the model problem (2.1). Now, the problem will be decomposed
into many subdomains. Let ûE denote the edge unknowns in the new basis, then

uE = TEûE , (6.7)

where TE is the transformation matrix with columns representing the new basis.
This matrix performs the desired change of basis from the new basis to the original
nodal basis.

Ordering the average last, TE can be written as

TE =




1 . . . 0 1
. . .

...
0 1 1

−1 . . . −1 1


 . (6.8)

Such transformation matrix can be constructed separately for each edge. The re-
sulting transformation matrix T

(i)
E , which operates on all relevant edges of Ωi, is

a direct sum of the relevant transformation matrices TE associated with the edges
of the subdomain Ωi. T

(i)
E is a block diagonal, where each block represents the

transformation of the variables of one edge.
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matrix for all variables of one subdomain Ωi is of the form

T(i) =




I
(i)
I O O

O I
(i)
V O

O O T
(i)
E


 , (6.9)

where the subscripts I, V, E denote interior, vertex, and edge nodes, respectively.
I
(i)
I and I

(i)
V denote identity matrices.

The transformed subdomain problem is of the form

T(i)TK(i)T(i)û = T(i)T f . (6.10)

Using the same decomposition as in (6.9) also for the local stiffness matrix K(i),
we have

K
(i) =




K
(i)
II K

(i)T
V I K

(i)T
EI

K
(i)
V I K

(i)
V V K

(i)T
EV

K
(i)
EI K

(i)
EV K

(i)
EE


 .

The matrix of the transformed system (6.10) than has the form

T(i)TK(i)T(i) =




K
(i)
II K

(i)T
V I K

(i)T
EI T

(i)
E

K
(i)
V I K

(i)
V V K

(i)T
EV T

(i)
E

T
(i)T
E K

(i)
EI T

(i)T
E K

(i)
EV T

(i)T
E K

(i)
EET

(i)
E


 (6.11)

=




K
(i)
II K

(i)T
V I K̄

(i)T
EI

K
(i)
V I K

(i)
V V K̄

(i)T
EV

K̄
(i)
EI K̄

(i)
EV K̄

(i)
EE


 .

The edge variables are now split into two parts: the dual variables and the averages,
so that ûE = [û∆, ûA]. Using this notation, we rewrite the matrix K̄

(i)
EE in the form

K̄
(i)
EE =

[
K̄

(i)
∆∆ K̄

(i)T
A∆

K̄
(i)
A∆ K̄

(i)
AA

]
.

Putting it into the previous matrix, we obtain

T
(i)T

K
(i)
T

(i) =




K
(i)
II K

(i)T
V I K̄

(i)T
∆I K̄

(i)T
AI

K
(i)
V I K

(i)
V V K̄

(i)T
∆V K̄

(i)T
AV

K̄
(i)
∆I K̄

(i)
∆V K̄

(i)
∆∆ K̄

(i)T
A∆

K̄
(i)
AI K̄

(i)
AV K̄

(i)
A∆ K̄

(i)
AA


 .

Ordering the primal variables last, we obtain

T(i)TK(i)T(i) =




K
(i)
II K̄

(i)T
∆I K

(i)T
V I K̄

(i)T
AI

K̄
(i)
∆I K̄

(i)
∆∆ K̄

(i)
∆V K̄

(i)T
A∆

K
(i)
V I K̄

(i)T
∆V K

(i)
V V K̄

(i)T
AV

K̄
(i)
AI K̄

(i)
A∆ K̄

(i)
AV K̄

(i)
AA


 ,
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and using the substitution [ûV , ûA] = ûΠ, we have




K
(i)
II K̄

(i)T
∆I K̂

(i)T
ΠI

K̄
(i)
∆I K̄

(i)
∆∆ K̂

(i)T
Π∆

K̂
(i)
ΠI K̂

(i)
Π∆ K̂

(i)
ΠΠ


 .

Assembling the primal contributions of each transformed K(i) to K̃ΠΠ, we obtain
the transformed stiffness matrix K̃ in the form

K̃ =




K
(1)
II K̄

(1)T
∆I K̃

(1)T
ΠI

K̄
(1)
∆I K̄

(1)
∆∆ K̃

(1)T
Π∆

. . .
...

K
(s)
II K̄

s)T
∆I K̃

(s)T
ΠI

K̄
(s)
∆I K̄

(s)
∆∆ K̃

(s)T
Π∆

K̃
(1)
ΠI K̃

(1)
Π∆ . . . K̃

(s)
ΠI K̃

(s)
Π∆ K̃ΠΠ




.

Now we rewrite problem (3.2)

min
1

2
uTKu− fTu

as

min
1

2
ûTTTKTû− fTTû = min

1

2
ûT K̃û− ûT f̂ , (6.12)

where û, f̂ denote the vector of unknowns and the load vector in the new basis,
respectively. Using the process described in Chapter 5 and PCG (Algorithm 4) with
Dirichlet preconditioner (Section 5.4), we obtain the solution to this problem. To
obtain the primal solution we need to use the backward transformation in the form
of (6.7).

Remarks

• The transformation of basis changes the sparsity pattern of the transformed
matrices T(i)TK(i)T(i) compared to that of the original local stiffness matrices
K(i), but only the matrix blocks related to the edge variables are affected,
see (6.11). Thus, the transformation of basis only slightly affects the sparsity
pattern.

• If the transformation of basis is used, then the edge averages constraints can
be treated algoritmically exactly in the same way as primal vertices. After
the change of basis has been carried out, we can always use the same imple-
mentation of FETI-DP as the description of the algorithm in Chapter 5 does
not depend on a specific choice of the primal and dual displacement variables.
We note that the local problems as well as the Schur complement S̃ΠΠ remain
symmetric positive definite.
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applied in combination with Dirichlet preconditioner introduced in Section
5.4.

• The set V can be formed by another well choosen primal nodes, not only by
the vertices, as was presented in this chapter. We also allow the set V to be
empty. This situation is depicted in Figure 6.4.

• The averages can be situated to arbitrary nodes on the edge.

Figure 6.4: Illustration of the nodes of set V (black nodes) and the averages
(white nodes). (left) Empty set V and averages in the middle of the edges. (right)
Set V formed by some well chosen primal nodes and averages in arbitrary node
of the edge.

• For the solution of 2D and 3D elasticity problems we introduce the transfor-
mation matrix in the form

TE =




Id . . . O Id
. . .

...
O Id Id

−Id . . . −Id Id


 , (6.13)

where the Id is an identity matrix of order 2 or 3.
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II
Nonlinear problems
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7Model variational inequality problem

In this section we describe the model contact problem used throughout this part of
the thesis.

Let Ω = (0, 1) × (0, 1) be an open domain with the boundary ∂Ω, and by ν
we denote the outward normal to ∂Ω. Let us consider a two-dimensional mixed
problem depicted in Figure 7.1, with an obstacle ` under the contact boundary Γc,
a Dirichlet boundary condition on ΓD, and a Neumann boundary condition on ΓN ,
so that





−∆u = f in Ω
u = 0 on ΓD

∂u

∂ν
= 0 on ΓN ,

u ≥ ` on Γc,

(7.1)

where

Γc = {1} × [0, 1],
ΓD = {0} × [0, 1],
ΓN = {[0, 1]× {0}} ∪ {[0, 1]× {1}}

are disjoint subsets of ∂Ω.
The solution to this problem is shown in Figure 7.2. It can be interpreted as

the displacement of the membrane under the traction defined by the density f . The
membrane is fixed on ΓD and it is not allowed to penetrate the obstacle on Γc.

Our contact model problem (7.1) can also be discretized by the finite element
method in the similar way as the linear model problem (2.1).

After the discretization we write the problem (7.1) in the form

min
u∈ΥB

φ(u), ΥB = {u ∈ R
n : uI ≥ `I}, I = {n− k, . . . , n− 1, n}, (7.2)

where φ(u) = 1
2
uTKu − uT f is a quadratic function. Since the feasible set ΥB is

described by the bound constraints on some variables, the problems of this type are
called partially bound constrained problems.
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ΓD
ΓN

ΓN
Γc

`

Figure 7.1: Two-dimensional problem with the Dirichlet boundary condition on
ΓD and the homogeneous Neumann boundary condition elsewhere (on ΓN ).
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0

Figure 7.2: The solution to the model problem.

Let us now consider an inequality constrained problem, where the feasible region
is described by linear inequalities. So, we want to find

min
u∈ΥI

φ(u), ΥI = {u ∈ R
n : BIu ≤ c}. (7.3)

Denoting BI = [O,−I] and c = [oT ,−`TI ]
T we can observe that

ΥI = {u ∈ R
n : −IuI ≤ −`I} = {u ∈ R

n : uI ≥ `I} = ΥB,

so the problem (7.2) is a special case of the problem (7.3). Using theory of duality
the problem (7.3) can be transformed to problem (7.2).
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8Numerical solution

In this chapter we describe the MPRGP (modified proportioning with reduced gradi-
ent projections) algorithm for the solution of bound constrained quadratic program-
ing problems (7.2). This algorithm, based on active set strategy, was introduced by
Dostál and Schöberl [14]. They proved the rate of convergence of this algorithm in
terms of the spectral condition number of the Hessian matrix.

8.1 Basic terms

It is well known that the solution to the problem (7.2) always exists, and it is
necessarily unique [3]. To simplify our notation, let us denote, for any n-vector u,
the gradient of φ at u by

g = g(u) = Ku− f . (8.1)

Then the unique solution û of (7.2) is fully determined by the Karush-Kuhn-Tucker
(KKT) optimality conditions [3]. To describe them in more detail, let

N = {1, 2, . . . , n},
and let I denote the set of indices of the constrained variables from problem (7.2).
Then the KKT conditions read

ûi = `i and i ∈ I implies ĝi ≥ 0,

and ûi > `i or i ∈ N \ I implies ĝi = 0.
(8.2)

The set of all indices i ∈ I for which ui = `i is called an active set of u. We
denote it by A(u), i.e.,

A(u) = {i ∈ I : ui = `i}.
The complement F(u) = N \ A(u) of A(u) will be called a free set of u.

To enable an alternative reference to the Karush-Kuhn-Tucker conditions (8.2),
we introduce a notation for the free gradient ϕ that is defined by

ϕi(u) =

{
gi(u) for i ∈ F(u)
0 for i ∈ A(u)

(8.3)



N
O
N
L
IN

E
A
R

P
R
O
B
L
E
M
S

48

and the chopped gradient β that is defined by

βi(u) =

{
0 for i ∈ F(u)

g−i (u) for i ∈ A(u)
, (8.4)

where we used the notation g−i = min{gi, 0}. Thus the Karush-Kuhn-Tucker condi-
tions (8.2) are satisfied if and only if the projected gradient gP (u) = ϕ(u) + β(u) is
equal to zero.

The projection PΩ to the set of feasible vectors is defined for any n-vector u by

PΩ(u)i =

{
max{ui, `i} for i ∈ I

ui for i ∈ N \ I .

8.2 MPRGP algorithm

Let us briefly describe the algorithm [14] for the solution of (7.2) that combines
the proportioning algorithm [5] with the gradient projections [41]. We use a given
constant Γ > 0, a test to decide about leaving the face, and three types of steps to
generate a sequence of iterates {uk} that approximate the solution of (7.2).

The expansion step is defined by

uk+1 = PΩ

(
uk − αϕ(uk)

)
(8.5)

with the fixed step length α ∈ (0, ‖K‖−1]. This step may expand the current active
set. To describe it without PΩ, let us introduce, for any feasible u, the reduced free
gradient ϕ̃(u) with the entries

ϕ̃i = ϕ̃i(u) = min{(ui − `i)/α, ϕi} for i ∈ I, ϕ̃i = ϕi for i ∈ N \ I,

so that
PΩ (u− αϕ(u)) = u− αϕ̃(u). (8.6)

If the inequality
||β(uk)||2 ≤ Γ2ϕ̃(uk)Tϕ(uk) (8.7)

holds, then we call the iterate uk strictly proportional. The test (8.7) is used to
decide which component of the projected gradient gP (uk) will be reduced in the
next step.

The proportioning step is defined by

uk+1 = uk − αcgβ(u
k) (8.8)

with the step length αcg that minimizes f
(
uk − αβ(uk)

)
with respect to α. It is

easy to check [1] that αcg minimizing f(u−αd) for a given d and u may be evaluated
by the formula

αcg = αcg(d) =
dTg(u)

dTKd
. (8.9)

The purpose of the proportioning step is to remove indices from the active set.
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Algorithm 7. Modified proportioning with reduced gradient projections (MPRGP)

Given a symmetric positive definite matrix K of the order n, n-vectors f , `,
ΩB = {u ∈ R

n : u ≥ `}; choose u0 ∈ ΩB, Γ > 0, α ∈ (0, 2‖A‖−1].
Step 0. {Initialization.}

Set k = 0, g = Ku0 − f , p = ϕ(u0)
while ‖gP (uk)‖ is not small
if ‖β(uk)‖2 ≤ Γ2ϕ̃(uk)Tϕ(uk)

Step 1. {Proportional uk. Trial conjugate gradient step.}
αcg = gTp/pTKp, y = uk − αcgp

αf = max{α : uk − αp ∈ ΩB} = min{(uk
i − `i)/pi : pi > 0}

if αcg ≤ αf

Step 2. {Conjugate gradient step.}
uk+1 = y, g = g − αcgKp

β = ϕ(y)TKp/pTKp, p = ϕ(y)− βp
else

Step 3. {Expansion step.}
uk+ 1

2 = uk − αfp, g = g − αfKp

uk+1 = PΩB

(
uk+ 1

2 − αϕ(uk+ 1

2 )
)

g = Kuk+1 − f , p = ϕ(uk+1)
end if

else

Step 4. {Proportioning step.}
d = β(uk), αcg = gTd/dT

Kd

uk+1 = uk − αcgd, g = g − αcgKd, p = ϕ(uk+1)
end if
k = k + 1

end while
Step 5. {Return (possibly inexact) solution.}

ũ = uk

The conjugate gradient step is defined by

uk+1 = uk − αcgp
k (8.10)

where pk is the conjugate gradient direction [1] which is constructed recurrently.
The recurrence starts or restarts with ps = ϕ(us) whenever us is generated by the
expansion step or the proportioning step. If pk is known, then pk+1 is given by the
formula [1]

pk+1 = ϕ(uk)− γpk, γ =
ϕ(uk)TKpk

(pk)TKpk
. (8.11)

The conjugate gradient steps are used to carry out the minimization in the face

WJ = {u : ui = `i for i ∈ J } (8.12)

given by J = A(us) efficiently.
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The algorithm MPRGP is described in Algorithm 7. More details about im-
plementation of the algorithm can be found in [14]. The basic properties of the
algorithm are summed up in the following theorem.

Theorem 8. Let Γ > 0 be a given constant, let λmin denote the smallest eigenvalue of
K, Γ̂ = max{Γ,Γ−1}, let û denote the unique solution of (7.2), and let {uk} denote
the sequence generated by Algorithm 7 with α ∈ (0, ‖K‖−1]. Then the following
statements hold:

(i) The rate of convergence in the energy norm defined by ‖u‖2K = uTKu is given
by

‖uk − û‖2K ≤ 2ηk
(
φ(u0)− φ(û)

)
, (8.13)

where

η = 1− αλmin

2 + 2Γ̂2
. (8.14)

(ii) If the solution û satisfies the strict complementarity conditions, i.e., ûi = 0
implies gi(û) > 0, then there is k ≥ 0 such that uk = û.

(iii) If Γ and the spectral condition number κ(K) of K satisfy

Γ ≥ 2
(√

κ(K) + 1
)
, (8.15)

then there is k ≥ 0 such that uk = û.

Proof. See [14].
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9Dual-Primal FETI methods

In this chapter we describe FETI-DP method for the solution of problems described
by variational inequalities. Even though this method was originally developed for
the solution of linear problems [15], it has been observed that domain decomposition
methods, based on theory of duality, may also be successful for the solution of varia-
tional inequalities. Since the duality transforms more general inequality constraints
to bound constraints, the dual problem can be solved much more efficiently than the
primal problem. Results concerning application of basic FETI-DP to the solution
of variational inequalities can be found in [12, 13].

FETI-DP for variational inequalities

We use the notation introduced in Section 5.1. Using the theory of duality [11] let us
now derive the dual problem to reduce (7.2) to the subdmain interface Γ and contact
boundary Γc. Let us denote the Lagrange multipliers associated with the inequality
and equality constraints by λI and λE , respectively. The situation is depicted in
Figure 9.1.

Figure 9.1: Lagrange multipliers associated with the inequality constraints λI

(green arrows) and with the equality constraints λE (red arrows).
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The Lagrangian function [20, 12] associated with (7.2) is of the form

L0(u, λ) =
1

2
uT K̃u− uT f̃ + (Bu− c)Tλ, (9.1)

where

c =

[
o

−`I

]
, λ =

[
λE

λI

]
(9.2)

and

B =

[
BEB O

BIB O

]
=

[
BB O

] (
=

[
BB BΠ

] )
. (9.3)

The continuity at the dual displacement variables is enforced by the jump oper-
ator BEB, which is constructed from {−1, 0, 1}, in such a way that the values of the
solution uB, associated with more than one subdomain, coincide when BEBuB = 0;
the interior variables uI remain unchanged and thus the corresponding entries in
BEB are zero.

Matrix BIB, which enforces inequality constraints, has entries corresponding to
nodal values of the solution on a contact boundary equal to −1; the rest of the
variables remains unchanged and thus the corresponding entries in BIB are zero.

Using the notation described in Chapter 5 and (9.2), we rewrite (9.1) as

L0(uB, ũΠ, λ) =
1

2
uT
BKBBuB + uT

BK
T
ΠBLũΠ +

1

2
ũT
ΠL

TKΠΠLũΠ − fTBuB

− fTΠLũΠ + uT
BB

T
Bλ− cTλ

=
1

2
uT
BKBBuB − uT

B(fB − K
T
ΠBLũΠ − B

T
Bλ)

+
1

2
ũT
ΠL

TKΠΠLũΠ − fTΠLũΠ − cTλ. (9.4)

To minimize L0(uB, ũΠ, λ) over uB, we consider

∂L0

∂uB

= KBBuB −
(
fB − KT

ΠBLũΠ − BT
Bλ

)
= 0

which implies

uB = K−1
BB

(
fB − KT

ΠBLũΠ − BT
Bλ

)
.

By inserting this result into (9.4), we obtain

L0(ũΠ, λ) =
1

2
ũT
ΠL

T
(
KΠΠ − KΠBK

−1
BBK

T
ΠB

)
LũΠ

− ũT
ΠL

T
(
fΠ − KΠBK

−1
BBfB + KΠBK

−1
BBB

T
Bλ

)

− 1

2
(fB − B

T
Bλ)

T
K

−1
BB(fB − B

T
Bλ)− cTλ

=
1

2
ũT
ΠS̃ΠΠũΠ − ũT

Π(f̂Π − K̂ΠBλ)

− 1

2
(fB − BT

Bλ)
TK−1

BB(fB − BT
Bλ)− cTλ, (9.5)
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where

S̃ΠΠ = L
T
(
KΠΠ − KΠBK

−1
BBK

T
ΠB

)
L,

f̂Π = LT
(
fΠ − KΠBK

−1
BBfB

)
,

K̂T
ΠB = −BBK

−1
BBK

T
ΠBL. (9.6)

In order to minimize (9.5) over ũΠ, we consider

∂L0

∂ũΠ
= S̃ΠΠũΠ −

(
f̂Π − K̂ΠBλ

)
= 0

and obtain
ũΠ = S̃−1

ΠΠ

(
f̂Π − K̂ΠBλ

)
, uΠ = LũΠ.

Using this result, we can rewrite (9.5) in the form

L0(λ) =
1

2
λT

(
K̂BB − K̂

T
ΠBS̃

−1
ΠΠK̂ΠB

)
λ− λT

(
f̂B − K̂

T
ΠBS̃

−1
ΠΠf̂Π + c

)

− 1

2
fTBK

−1
BBfB − 1

2
f̂TΠ S̃

−1
ΠΠ f̂Π, (9.7)

where K̂BB = −BBK
−1
BBB

T
B and f̂B = −BBK

−1
BBfB.

Using the notation of theory of duality, we rewrite (9.7) as the dual problem

min
λ≥0

Θ(λ), Θ(λ) =
1

2
λTFλ− λTd, (9.8)

where F = K̂BB − K̂T
ΠBS̃

−1
ΠΠK̂ΠB and d = f̂B − K̂T

ΠBS̃
−1
ΠΠf̂Π + c. Minimizing Θ(λ) over

λ ≥ 0 is equivalent to solving problem (7.2).

Remarks

• If the primal displacement variables are used on the contact boundary it is
necessary to carry out some modifications introduced by Horák in [20]. Let Bc

be the matrix made of the columns of the matrix B corresponding to primal
variables, including primal variables on the contact boundary and let Lc denote
the global to local map enforcing the continuity at the primal variables, in-
cluding primal variables on the contact boundary. Then, using a modification
of (9.6) in the form

K̂
T
ΠB = K̂

T
ΠB − BcLc, (9.9)

we can allow the primal variables also on the contact boundary [20] without
further changes.

• Let us introduce two parameters describing the discretization in FETI meth-
ods. The discretization parameter h describes the size of the element, and the
decomposition parameter H describes the size of the subdomain as depicted
in Figure 9.2.
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hH

Figure 9.2: Parameters h and H in FETI methods.

Proposition 9. Let FH,h denote the Hessian of the dual function Θ of (9.8) de-
fined by the decomposition parameter H and discretization parameter h. Then
there are constants C1 > 0 and C2 > 0 independent of h and H such that

C1 ≤ λmin(FH,h) and λmax(FH,h) = ‖FH,h‖ ≤ C2

(
H

h

)2

.

Proof. See [12].
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10Preconditioning

for nonlinear problems

Even if the preconditioning changes variables and transforms the bound constraints
into more general inequality constraints, we can use some kind of preconditioning
also for bound constraints problems.

10.1 Preconditioning in face

Though the performance of the algorithm can be improved considerably by the
preconditioners described in this section. This type of preconditioning does not
result in improved bounds on the rate of convergence, since this preconditioner
affects only the CG step, leaving the expansion and the proportioning steps without
any preconditioning.

Preconditioning out of contact boundary

The first idea is to use preconditioner, which doesn’t affect the variables on the
contact boundary. Figure 10.1 depicts this type of preconditioner. The nodes cor-
responding to affected variables are in the red rectangle, while the nodes, which are
not affected, corresponding to variables on the contact boundary, are in the green
rectagle. Let us call this preconditioning as preconditioning out of contact boundary
and denote it by Mout.

Let us now describe the construction of the preconditioner Mout ∈ R
n×n. First,

we need to define an auxiliary logical vector j of the length n, with entries equal to
zero on the positions corresponding to variables on the contact boundary and equal
to one on the positions corresponding to variables away from the contact boundary,
so that

ji =

{
0, for the i−th node on the contact boundary,
1, for the i−th node out of the contact boundary.

(10.1)
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Figure 10.1: Preconditioning out of contact boundary. The nodes corresponding
to affected variables are in the red rectangle, while the nodes, which are not
affected, corresponding to variables on the contact boundary, are in the green
rectangle.

Let M ∈ R
n×n denote preconditioning matrix generated, e.g., by any of the methods

described in Section 4.1. The preconditioner Mout is constructed from M in the
following way. Let Mout be initialized to a zero matrix

Mout = O.

Using the vector j (10.1) and the matrix M we set the entries of Mout corresponding
to ones in j to the values at the same positions in matrix M, so that

Mout(j, j) = M(j, j).

Preconditioner Mout affects all variables out of the contact boundary, leaving
variables on contact boundary without any change.

Preconditioning in face

Obviously preconditioning out of contact boundary can be improved, applying the
preconditioner also for the free variables on the contact boundary. Let us now define
an auxiliary logical vector j in the following way,

ji =

{
0, for the i−th node ∈ A,
1, for the i−th node ∈ F ,

(10.2)

where A and F ate the active and the free set, respectively, defined in Section 8.1.
This preconditioner is changing, as well as the free and active sets. Let us denote
it by Mface. Figure 10.2 depicted this type of preconditioner. Green nodes on the
contact boundary are in the contact with the obstacle, so they are in the active set
A denoted by the green rectangle. The white nodes on the contact boundary are
not at the moment in contact, so they are, as well as black nodes inside the domain,
in the free set F depicted by the red set.
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Figure 10.2: Preconditioning in face. Green nodes on the contact boundary are
in the contact with the obstacle, so they are in active set A denoted by green
rectangle. The white nodes on the contact boundary are not at the moment
in contact, so they are, as well as black nodes inside the domain, in free set F
depicted by red set.

The construction of the preconditioner Mface from matrix M is almost same as
described in the previous part for Mout. Let Mface be initialized again to a zero
matrix

Mface = O.

Using vector j defined by (10.2) and matrix M we can set the entries corresponding
to free variables in Mface to the values at the same positions in matrix M, so that

M
face(j, j) = M(j, j).

We need to know the actual information about the free and the active sets, so the
vector j is up-dated after every change of these sets.

Evidently, the preconditioning out of contact boundary is a special case of pre-
conditioning in face.

Notes to implementation

Both types of preconditioning described in this section can be implemented in the
way shown in Algorithm 10.

The preconditioner Mout can be established at the start of the algorithm, so that
the matrix-vector multiplication z = M(j, j) g can be replaced by z = Mout g.

Using preconditioning in face the matrix-vector multiplication z = M(j, j) g is in
the fact implemented as z = j.*(M*(j.*g)), where .* denotes element-by-element
multiplication.
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Algorithm 10. MPRGP with preconditioning in face

Given a symmetric positive definite matrix K of the order n, n-vectors f , `,
ΥI = {u ∈ R

n : u ≥ `}; choose u0 ∈ ΥI , Γ > 0, α ∈ (0, 2‖A‖−1], and logical
vector j defined by 10.1 and 10.2, respectively.
Step 0. {Initialization.}

Set k = 0, g = Ku0 − b, p = M(j, j) g
while ‖gP (uk)‖ is not small
if ‖β(uk)‖2 ≤ Γ2ϕ̃(uk)Tϕ(uk)

Step 1. {Proportional uk. Trial conjugate gradient step.}
αcg = zTg/pTKp, y = uk − αcgp

αf = max{α : uk − αp ∈ ΩB} = min{(xk
i − `i)/pi : pi > 0}

if αcg ≤ αf

Step 2. {Conjugate gradient step.}
uk+1 = y, g = g − αcgKp, z = M(j, j) g
β = zTKp/pTKp, p = z− βp

else

Step 3. {Expansion step.}
uk+ 1

2 = uk − αfp, g = g − αfKp

uk+1 = PΥI

(
uk+ 1

2 − αϕ(uk+ 1

2 )
)

g = Kuk+1 − b, p = M(j, j) g
end if

else

Step 4. {Proportioning step.}
d = β(uk), αcg = gTd/dT

Kd

uk+1 = uk − αcgd, g = g − αcgKd, p = M(j, j) g
end if
k = k + 1

end while
Step 5. {Return (possibly inexact) solution.}

x̃ = uk

10.2 Preconditioning by conjugate projector

In this section we consider the preconditioning by the conjugate projector for the
solution of (7.2). Using this approach which does not affect the constrained vari-
ables, it is possible to give an improvement bound on the rate of convergence of the
preconditioned problem [4]. We use notation from Section 4.3.

Let us assume that U is the subspace spanned by the full column rank matrix
U ∈ R

n×p,

U =

[
V

O

]
, V ∈ R

(n−m)×p.

We shall decompose our partially constrained problem (7.2) by means of the conju-
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gate projectors
P = U(UTKU)−1UTK (10.3)

and Q = I − P onto U and V = ImQ, respectively. Due to our special choice of U,
we get that for any u ∈ R

n is
[Qu]I = uI , (10.4)

and that for any y ∈ U and z ∈ V is y + z ∈ ΥI if and only if z ∈ ΥI . Using (4.9),
(4.10), and (10.4), we get

min
u∈ΥI

φ(u) = min
y∈U,z∈V
y+z∈ΥI

φ(y + z) = min
y∈U

φ(y) + min
z∈V∩ΥI

φ(z)

= φ(u0) + min
z∈V∩ΥI

φ(z) = φ(u0) + min
z∈KV

zI≥`I

1

2
zTQTKQz− fTQz

= φ(u0) + min
z∈KV
zI≥`I

1

2
zTQTKQz+

(
g0
)T

z,

where u0 = PK
−1f and g0 = −QT f . Thus we have reduced our bound constrained

problem (7.2) to the problem

min
z∈KV
zI≥`I

1

2
zTQT

KQz+
(
g0
)T

z. (10.5)

The following lemma shows that the above problem can be solved by the MPRGP
algorithm without any change.

Lemma 11. Let z1, z2, . . . be generated by the MPRGP algorithm for the problem

min
zI≥`I

1

2
zTQTKQz+

(
g0
)T

z (10.6)

starting from z0 = PΥI
(g0). Then zk ∈ KV, k = 0, 1, 2, . . . .

Proof. First observe that since KV is orthogonal to U and dimKV = dimV, it follows
that KV is the orthogonal complement of U . Thus KV is not only an invariant
subspace of Q, but it is also an invariant subspace of PΥI

. Moreover, it also follows
that KV contains the set V0 ⊆ R

n of all the vectors of Rm padded with zeros,

V0 = {u ∈ R
n : uJ = o, J = {m+ 1, . . . , n}} .

More formally,
PΥI

(KV) ⊆ KV and V0 ⊆ KV. (10.7)

Let us now recall that by (4.10) g0 ∈ ImQT and by (4.11) ImQT = KV, so that
g0 ∈ KV. Using the definition of z0 and (10.7), we have z0 ∈ KV.

To finish the proof by induction, let us assume that zk ∈ KV. Since

gk = QTKQz + g0 = KQz+ g0,
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we have gk ∈ KV. We shall use this observation to examine separately each of the
three possible steps of the MPRGP algorithm of the previous section that can be
used to generate zk+1.

First, let us assume that zk+1 is generated by the proportioning step. Then

zk+1 = zk + αcgβ(z
k).

Using the definition of the chopped gradient, it is rather easy to check that β(zk) ∈ V0.
Since KV is a subspace of R

n and we assume that zk ∈ KV, this proves that
zk+1 ∈ KV whenever zk+1 is generated by the proportioning step.

Before examining the other two steps, observe that ϕ(zk) − gk ∈ V0, so that

ϕ(zk) =
(
ϕ(zk)− gk

)
+ gk ∈ KV.

Thus
zk − αϕ(zk) ∈ KV

for any α ∈ R. Using the first inclusion of (10.7), we get that

PΥ

(
zk − αϕ(zk)

)
∈ KV

for any α of Algorithm 7. This proves that zk+1 ∈ KV for zk+1 generated by the
expansion step. To finish the proof, observe that the conjugate direction pk is either
equal to ϕ(zk) or is defined by the recurrence pk+1 = ϕ(uk)− γpk starting from the
restart ps = ϕ(zs). In either case, pk ∈ KV. Since we assume that zk ∈ KV and the
iterate zk+1 generated by the conjugate gradient step is a linear combination of zk

and pk, this completes the proof.

It follows that we obtain the correction ẑ which solves the auxiliary problem by
the standard MPRGP algorithm. Since the iterations are reduced to the subspace
KV, the projector preconditions all three types of steps and we can give an improved
bound on the rate of convergence. The solution x̂ of the bound constrained problem
(7.2) can then be expressed by x̂ = u0+Qẑ. The complete algorithm for the solution
of the preconditioned problem (10.6) is Algorithm 12. In our implementation, we
enhanced a feasible halfstep introduced in [14].
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Algorithm 12. MPRGP with conjugate projector

Given a symmetric positive definite matrix K of the order n, a full column rank
matrix U ∈ R

n×p, the K-conjugate projector P defined by (10.3), Q = I − P;
n-vectors g0, `, u0 = PK

−1f , z0 = PΥI
(g0);

Υ = {z : zI ≥ `I}, Γ > 0, α ∈ (0, ‖KQ‖−1], and ε > 0.
Step 0. {Initialization.}

Set k = 0, g = KQz0 + g0, p = ϕ(z0)
while ‖gP (zk)‖ > ε
if ‖β(zk)‖2 ≤ Γ ϕ̃(zk)Tϕ(zk)

Step 1. {Proportional zk. Trial conjugate gradient step. }
αcg = gTp/pTKQp, y = zk − αcgp

αf = max{α : zk − αp ∈ Υ} = min{(`i − zki )/pi : pi < 0}
if αcg ≤ αf

Step 2. {Conjugate gradient step.}
zk+1 = y, g = g − αcgKQp

γ = ϕ(y)TKQp/pTKQp, p = ϕ(y)− γp
end if
else

Step 3. {Expansion step.}
zk+

1

2 = zk − αfp, g = g − αfKQp

zk+1 = PΥI
(zk+

1

2 − αϕ(zk+
1

2 ))
g = KQzk+1 + g0, p = ϕ(zk+1)

end else
end if
else

Step 4. {Proportioning step.}
d = β(zk), αcg = gTd/dT

KQd

zk+1 = zk − αcgd, g = g − αcgKQd, p = ϕ(zk+1)
end else
k = k + 1

end while
Step 5. {Return solution.}

x̂ = u0 + Qzk

Preconditioning Effect

As we have seen above, the iterations of Algorithm 12 may be considered as the
conjugate gradient iterations for minimization of

f0,Q(z) =
1

2
zTQTKQz− (g0)Tz

that generate iterations
zk ∈ Kk(QTKQ, g0) ⊆ KV.

Thus only the positive definite restriction QTKQ|KV of QTKQ to KV takes part in
the process of solution, and the rate of convergence can be estimated by the spectral
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condition number κ(QTKQ|KV) of QTKQ|KV. For convenience of the reader, first
we rehearse the estimate that were used in [10].

It is rather easy to see that

κ(QTKQ|KV) ≤ κ(K).

Indeed, denoting the eigenvalues of K by λ1 ≥ · · · ≥ λn, we can observe that if
u ∈ KV, ‖u‖ = 1, then by Lemma 5

uTQTKQu ≥ (Qu)TK(Qu)/‖Qu‖2 ≥ λn

and
uTQTKQu ≤ uTQTKQu+ uTPTKPu = uTKu ≤ λ1. (10.8)

To see the preconditioning effect of the algorithm in more detail, let us denote
by E the p-dimensional subspace spanned by the eigenvectors corresponding to the
p smallest eigenvalues λn−p+1 ≥ · · · ≥ λn, and let RKU and RE denote the orthogonal
projectors on KU and E , respectively. Let

γ = ‖RKU − RE‖

denote the gap between KU and E . It can be evaluated effectively provided we have
matrices U and E whose columns form orthogonal bases of KU and E , respectively.
It is known [42] that if σ is the least singular value of UTE, then

γ =
√
1− σ2 ≤ 1.

Theorem 13. Let U and Q be those of Algorithm 12, V = ImQ. Then

κ(QTKQ|KV) ≤ λ1√
(1− γ2)λ2

n−m + γ2λ2
n

.

Proof. See [10].

The above theorem suggests that U should approximate the subspace spanned
by the eigenvectors which correspond to the smallest eigenvalues of K. If UTE is
nonsingular and λn < λn−m, then γ < 1 and

κ(QTKQ|KV) < κ(K).

Now we are ready to prove the following theorem.

Theorem 14. Let Γ > 0 be a given constant, let α ∈ (0, ‖KQ‖−1], and let {zk}
denote the sequence generated by Algorithm 12 for the problem (10.6) starting from
z0 = PΥ(g

0). Let us denote

f0,Q(z) =
1

2
zTQTKQz− (g0)Tz.

Then
f0,Q(z

k+1)− f0,Q(ẑ) ≤ ηΓ
(
f0,Q(z

k)− f0,Q(ẑ)
)
, (10.9)
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where ẑ denotes the unique solution of (7.2) and

ηΓ = 1− αλmin

2 + 2Γ̂2
(10.10)

with Γ̂ = max{Γ,Γ−1}. Moreover, if UTE is nonsingular and λn < λn−m, then

ηΓ = 1− αλmin

2 + 2Γ̂2
< 1− αλmin

2 + 2Γ̂2
= ηΓ, (10.11)

where λmin denotes the smallest eigenvalue of K.

Proof. It is enough to apply Theorem 8 with the given bounds above on the spectrum
of QTKQ|KV.

Figure 10.3: The basis functions are only used away from the contact boundary.

10.3 Projector in combination with FETI-DP method

We use an approach introduced in [21]. Let F ∈ R
m×m be a symmetric positive

definite matrix. A projector P is an F-conjugate projector or briefly a conjugate
projector if ImP is F-conjugate to KerP, or equivalently

PTF(I− P) = PTF− PTFP = O.

If U is the subspace spanned by the columns of a full column rank matrix U ∈ R
m×p,

then

P = U(UTFU)−1UTF (10.12)

is a conjugate projector onto U . Let Υ0 = {λ ∈ R
m : λ ≥ o}. We use the conjugate

projectors P and Q = I− P to decompose the dual minimization problem (9.8) into
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1

2

3

4

Figure 10.4: Aggregated Lagrange multipliers.

the minimization on U and the minimization on V ∩Υ0, V = ImQ, we write

min
λ≥0

Θ(λ) = min
η∈U,µ∈V

η+µ∈Υ0

Θ(η + µ) = min
η∈U

Θ(η) + min
µ∈V∩Υ0

Θ(µ)

= Θ(λ0) + min
µ∈V∩Υ0

Θ(µ) = Θ(λ0) + min
µ∈AV
µ≥0

1

2
µT

Q
T
FQµ − dT

Qµ

= Θ(λ0) + min
µ∈AV

µ≥0

1

2
µTQTFQµ + µTg0,

where λ0 = PF
−1d and g0 = −QTd. The solution λ̂ of the dual problem (9.8) can

then be expressed as λ̂ = λ0 + Qµ̂.
In this approach the matrix U is defined by the elements of the aggregation bases

such as those depicted in Figure 10.4. Aggregated variables are Lagrange multipliers
that enforce continuity conditions of primal displacement variables of two adjoining
subdomains. The matrix U for the problem depicted in Figure 10.4 has the form

U =




1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1

...
0 0 0 0

...




. (10.13)
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11Transformation of basis

Since the application of transformation of basis to contact problems is straightfor-
ward, we only introduce the theoretical estimate comparing the transformation of
basis with the preconditioning by conjugate projector. This result was presented in
[21].

Theoretical estimate

Theorem 15. The iterates generated by projector preconditioning with aggregated
Lagrange multipliers are in the same space as the iterates generated by the algorithm
using an explicit change of basis.

Proof. The dual problem of (7.2) in the form that is convenient for our analysis
reads as follows

min
λ≥0

Θ(λ), Θ(λ) =
1

2
λTFλ− λTd, (11.1)

where F = −BK̃−1BT and d = −BK̃−1f + c and the primal solution u has the form

u = K̃−1(f − BTλ).

Using preconditioning by conjugate projector to solve the dual problem (11.1),
the solution splits into

λ = λ0 + Qµ,

where λ0 = PF
−1d.

Let us compute the primal solution related to λ0, thus

u0 = K̃
−1(f − B

Tλ0) = K̃
−1
(
f − B

T
PF

−1(−BK̃
−1f + c)

)

= K̃−1f + K̃−1BTPF−1BK̃−1f − K̃−1BTPF−1c (11.2)

=
(
I+ K̃

−1
B
T
PF

−1
B

)
K̃

−1f − K̃
−1
B
T
PF

−1c.
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Using the definitions of the projector P = U(UTFU)−1UTF, the obstacle c in (9.2)
and the matrix U in (10.13), respectively, we have get

U
T
Bu0 = U

T
B

(
I+ K̃

−1
B
T
PF

−1
B

)
K̃

−1f − U
T
BK̃

−1
B
T
PF

−1c

=
(
UTB+ UT BK̃−1BT

︸ ︷︷ ︸
−F

PF−1B

)
K̃−1f − UT BK̃−1BT

︸ ︷︷ ︸
−F

PF−1c

=
(
UTB− UTB

)
K̃−1f + UTc = UT c = UT

Eo− OT
I `I = 0. (11.3)

Let us now compute the primal solution related to an iterate λ

u = K̃−1(f − BTλ) = K̃−1
(
f − BTλ0 − BTQµ

)
= u0 − K̃−1BTQµ

Furthermore we get

− UT BK̃−1BT

︸ ︷︷ ︸
−F

Qµ = UTFQµ = UT (F− FP)µ

= UTFµ − UTFU(UTFU)−1UTFµ = 0. (11.4)

From (11.3) and (11.4) we have for u related to λ that

U
T
Bu = U

T
Bu0 − U

T
BK̃

−1
B
T
Qµ = 0− 0 = 0.

Thus, the primal solution u{k} related to the k-th iterate λk has continuous averages
across the interface described by UTBu{k}.

This shows that all iterates of FETI-DP with projector preconditioning are
indeed in the space W̃ (coarse problem subspace) [29, 44].

Corollary 16. FETI-DP algorithm using average constraints and a transformation
of basis has the same bounds on the rate of convergence as FETI-DP algorithm with
preconditioning by conjugate projector introduced in Theorem 14.

Remarks

• In the case of contact problems we used orthogonalized transformation matrix,
obtained from (6.8) by QR factorization.

• Let us compare two variants, see (6.5) and (6.8), of the construction of the
transformation matrix. For illustration we consider two 5× 5 matrices, repre-
senting both strategies. Let us denote them by Ai and Bi, respectively, where
the index i denotes the position of average, i. e. for i = 5 we have

A5 =




1 1
1 1

1 1
1 1

−1 −1 −1 −1 1




and B5 =




1
1

1
1

−1 −1 −1 −1 1



.
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Let us denote by AO
i and BO

i , respectively, their orthogonalized versions ob-
tained by QR factorization. Now, we are prepared to compare matrices AO

1 ,
AO
3 and AO

5 , where

AO
1 =




−0.447 0.707 0.408 0.289 −0.224
−0.447 −0.707 0.408 0.289 −0.224
−0.447 0 −0.816 0.289 −0.224
−0.447 0 0 −0.866 −0.224
−0.447 0 0 0 0.894




AO
3 =




−0.707 0.408 −0.447 0.289 −0.224
0 −0.816 −0.447 0.289 −0.224

0.707 0.408 −0.447 0.289 −0.224
0 0 −0.447 −0.866 −0.224
0 0 −0.447 0 0.894




A
O
5 =




−0.707 0.408 0.289 0.224 0.447
0 −0.816 0.289 0.224 0.447
0 0 −0.866 0.224 0.447
0 0 0 −0.894 0.447

0.707 0.408 0.289 0.224 0.447




Obviously, we can write

A
O
1 = PiA

O
3 Pi ∼ PjA

O
5 Pj,

where Pi denotes a suitable permutation matrix and ∼ admits some differences
in the signs. We also can compare BO

1 , BO
3 and BO

3 , where

BO
1 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




BO
3 =




−0.707 0.408 0.577 0 0
0 −0.816 0.577 0 0

0.707 0.408 0.577 0 0
0 0 0 1 0
0 0 0 0 1
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BO
5 =




−0.707 0.408 0.289 0.224 0.447
0 −0.816 0.289 0.224 0.447
0 0 −0.866 0.224 0.447
0 0 0 −0.894 0.447

0.707 0.408 0.289 0.224 0.447




We observe that BO
1 = I. In the case of BO

3 we see that there is no average
for all 5 variables. The “average” in the 3th column is only for the first 3
variables. And for the matrix BO

5 we have AO
5 = BO

5 .

These observations illustrate that in combination with orthogonalization it is
better to use transformation matrix based on the form Ai. It seems, that it
does not matter where the average is situated. So, in our experiments we use
transformation matrix TE = Ai with the average in arbitrary edge node.



III
Numerical experiments
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12Projector preconditioning

First, we show the action of the projector on the string and then, on the model prob-
lem from the second part, we illustrated the improvement of the rate of convergence,
when the projector preconditioning is applied to the finite element discretization
problem.

12.1 One dimensional problem

To demonstrate the work of the conjugate projector visually, let us consider one
dimensional problem, where no obstacle is considered. This can be interpreted as a
displacement of the string fixed on both ends.

Figure 12.1, where we have aggregated 8 neighbouring nodes, illustrate approx-
imation of the solution u0 in the subspace U , approximation of the solution Qu in
the subspace V and the solution u.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

 

 

u

u0

Qu

u0+Qu

Figure 12.1: Splitting of the solution u: u0 ∈ U and Qu ∈ V.
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We have solved the problem with changing number of unknowns (dof) and the
fixed aggregation size equal to 8. The results are in Table 12.1, where iter in R

n

denotes the number of iteration of the CG algorithm, numA denotes the number
of aggregations and iter in V denotes the number of conjugate gradient iterations
with projector preconditioning (CGCP). We can see that the number of CGCP is
constant. The algorithm has a numerical scalability.

n iter in R
n numA iter in V

32 15 4 14
64 31 8 14
128 63 16 14
256 127 32 14
512 255 64 14
1024 511 128 14

Table 12.1: Scalability of aggregations with fixed agr-size = 8.

12.2 Displacement of membrane

The model problem considered here was introduced in Chapter 7, and is depicted
in Figure 12.2.

ΓD
ΓN

ΓN
Γc

`

Figure 12.2: Two-dimensional problem with the Dirichlet boundary condition
on ΓD and the homogeneous Neumann boundary condition elsewhere (on ΓN ).

The obstacle l on the contact boundary Γc was defined by the upper part of the
circle with the radius R = 1 and the center S = (1; 0.5;−1.3). We have discretized
this problem by the piece-wise finite elements using regular grids defined by the
discretization parameter h. After the discretization, we got the problem of the form
(7.2). The computations were performed with MPRGP algorithm (Algorithm 7) and
MPRGP-CP (Algorithm 12) the parameters α = ‖K‖−1 and Γ = 1. The stopping
criterion was ‖gP (x)‖ ≤ 10−8‖f‖.

Projector defined by aggregations

In the first set of our numerical experiments, we have used the projectors defined
by aggregations as depicted in Figure 12.3, see also Section 10.2 and 4.3.
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0

1

i
j

Figure 12.3: Aggregation basis function.

We have carried out the computations with the number of unknows dof ∈
{323, 115, 4355, 16899, 66563} and a fixed size of aggregations sizeA = 8, see Figure
12.4, and with changing parameter sizeA ∈ {8, 16, 32, 64} and fixed dof = 16899.
The results are in Table 12.2, where contact denotes the number of the constrained
variables. After that follows the numbers of iterations and the time in seconds that
was necessary to get the solution, and in Table 12.3, respectively.

Figure 12.4: Illustration of the parameter sizeA = 4.

No projector Projector
dof contact iter sec iter time
323 17 130 0.026 80 0.041
1155 33 236 0.056 105 0.089
4355 65 511 0.327 134 0.246
16899 129 997 2.379 180 1.309
66563 257 2471 26.921 275 9.398

Table 12.2: Projectors defined by aggregations. Counts of iterations for increas-
ing number of variables and fixed sizeA = 8.

Figure 12.5 illustrates that number of iterations varies moderately with increas-
ing dimension of the problem, so we observe a numerical scalability in the computa-
tions. In spite of poor approximation properties of the aggregation bases, our results
show that it can considerably reduce both the number of iterations and the time of
the solution.
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MPRGP
traces of lin. fun.
aggregations

Figure 12.5: Scalability of aggregations and piece-wise linear functions with
fixed sizeA = 8.

Traces of lin. fun. Aggregations
sizeA iter time iter time

8 180 8.317
16 148 7.001 242 10.730
32 184 8.369 351 15.911
64 277 13.198 614 28.315
128 433 20.153

Table 12.3: Iteration counts for changing sizeA and fixed dof = 16899.

0

0.5

1

i
j
k

Figure 12.6: Coarse linear basis function.
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Projector defined by the traces of linear functions on a coarse grid

We used also the projectors defined by the traces of linear functions on the coarse
grids such as depicted in Figure 12.6, see Section 10.2 and 4.3.

The results of numerical experiments are in Table 12.4, where the notation has
the same meaning as in Table 12.2. In this case, we fixed the size of basis functions
sizeA = 8, see Figure 12.4. The results for changing parameter sizeA are in Table
12.3. We see that the number of iterations is in general smaller than that for the
aggregations, but the iterations are more costly. The picture can change in different
implementation.

No projector Projector
dof contact iter sec iter time
323 17 130 0.137 51 0.171
1155 33 236 0.440 70 0.288
4355 65 511 3.176 94 1.311
16899 129 997 20.303 135 6.422

Table 12.4: Projectors defined by the traces of linear functions. Iteration counts
for increasing number of variables and fixed sizeA = 8.
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13Transformation of basis

vs. projector preconditioning

In this chapter we compare two methods exploiting the edge averages to improve
the performace: projector preconditioning and transformation of basis.

Let us consider the model problem from Chapter 7. The obstacle c on the
contact boundary Γc was defined by the upper part of the circle with the radius
R = 1 and the center S = (1; 1;−1.3).

The problem was solved with piece-wise linear finite elements and established
in the form using primal displacement variables also on the contact boundary de-
scribed in [20]. It was solved by the MPRGP algorithm (Algorithm 7) and its
modification MPRGP-CP (Algorithm 12), where preconditioning by conjugate pro-
jector was used. We note, that for the numerical experiments with a transformation
of basis we used the orthogonal transformation matrix, see Remarks in Chapter 11.

Computational results, presented by Jarošová, Klawonn, and Rheinbach in [21],
are shown in Tables 13.1 and 13.2. Iteration counts for changing number of subdo-
mains and H/h = 8 are shown in Table 13.2 and iteration counts for 4×4 subdomains
and changing H/h are shown in Table 13.1.

FETI-DP
H/h no preconditioned proj. preconditioning trans. of basis
4 32 22 22
8 51 30 31
16 82 41 42
32 118 58 61

Table 13.1: Iteration counts of dual problem for 4×4 subdomains and changing
H/h.
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FETI-DP
num. of sub. no preconditioned proj. preconditioning trans. of basis

4 × 4 51 30 31
8 × 8 79 34 35
12 × 12 91 46 45
16 × 16 101 52 51
20 × 20 118 58 57

Table 13.2: Iteration counts of dual problem for changing number of subdomains
and H/h = 8.

We have the same results in terms of iteration counts for a) FETI-DP using
edge constraints implemented by using a transformation of basis and b) FETI-DP
enforcing edge constraints by projector preconditioning.
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14FETI-DP averages

for linear elasticity contact problems

The benchmark considered here is a variant of the 2D Hertz problem [9, 43] of
pressure distribution between an elastic cylinder and an elastic half-space in mutual
contact. The geometry of the problem is in Figure 14.1.

steel body
E2 = 2.1 · 105
ν2 = 0.29

aluminium body
E1 = 7 · 104
ν1 = 0.35

-2000 MPa

Figure 14.1: Geometry and traction. Figure 14.2: Solution.

The upper body is loaded by traction -2000 [Mpa] along the top edge. The ma-
terial constants are defined by the Young modulus E1 = 7 · 104 [MPa] and Poisson’s
ratio ν1 = 0.35 for the lower aluminium body and E2 = 2.1 ·105 [MPa] and ν2 = 0.29
for the upper steel body. The lower body is fixed in horizontal direction along the
vertical boundary and in vertical direction along the bottom. The upper body is
fixed in both directions along the vertical boundary. The nonpenetration condition
was imposed between the bodies and the plain strain was assumed.
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sub coarse primal dual iter time
left 3 48 2916 393 46 2.278

middle 3 48 2916 393 46 2.200
right 3 48 2916 393 46 2.184

Table 14.1: The computational results for the averages placed to arbitrary edge
nodes. Notation left, middle, right corresponds to Figure 14.3.

In Table 14.1 we show the results for the averages placed to arbitrary edge nodes.
We can compare the same results for all three variants depicted in Figure 14.3.

Figure 14.3: The averages (white nodes) placed to arbitrary edge nodes.

We have carried out the computations with the decomposition parameter H ∈
{1/2, 1/4, 1/8, 1/12, 1/16} and with the fixed discretization parameter h = 1/16.
The stopping criterion was ‖gP (x)‖ ≤ 10−6‖f‖. The results, for different positions
of primal displacement variables (coarse problem nodes), are shown in Tables 14.2–
14.5 along with the figures illustrating the tested strategies. In the tables, 1/H
denotes the number of subdomains in one direction of one body, coarse denotes the
number of coarse problem nodes, primal denotes the total number of degrees of
freedom, dual denotes the number of dual displacement variables, then there is the
number of iterations and time in seconds that was necessary to get the solution.
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Strategy A

1/H coarse primal dual iter/time
2 20 4624 273 50/2
4 84 18496 1505 82/9
8 308 73984 6849 119/104
12 660 166464 16033 144/837
16 1140 295936 29057 169/3246

Table 14.2: The coarse problem nodes (black nodes) were introduced in the
vertices. This can be assumed to be the standard FETI-DP method.

Strategy B Strategy C

1/H coarse primal dual iter/time iter/time
2 36 4624 257 35/1 24/1
4 180 18496 1409 44/5 28/4
8 756 73984 6401 60/59 36/40
12 1716 166464 14977 83/544 37/262
16 3060 295936 27137 84/1701 40/924

Table 14.3: The coarse problem nodes (black and white nodes) were introduced
in the vertices as well as in the middle of the edges. The averages (white nodes)
were placed in the middle of the edges when the transformation of basis was
assumed.
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Strategy D Strategy E

1/H coarse primal dual iter/time iter/time
2 16 4624 285 70/1 47/2
4 96 18496 1565 111/10 67/8
8 448 73984 7101 289/204 136/125
12 1056 166464 16605 466/2213 158/842
16 1920 295936 30077 659/9719 253/4462

Table 14.4: The coarse problem nodes (black and white nodes) were introduced
in the middle of the edges, as well as the averages (white nodes) were placed when
the transformation of basis was assumed.

Strategy F Strategy G

1/H coarse primal dual iter/time iter/time
2 32 4624 269 49/1 42/1
4 192 18496 1469 54/7 48/7
8 896 73984 6653 75/67 64/80
12 2112 166464 15549 88/538 68/385
16 3840 295936 28157 93/1878 86/1961

Table 14.5: Two coarse problem nodes (black and white nodes) per edge were
assumed. The averages (white nodes) were placed in one of them when the trans-
formation of basis was assumed.
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15Total FETI

Just to compare the results of numerical experiments we briefly describe the variant
of classical FETI method called Total FETI (TFETI), introduced independently by
Dostál, Horák, and Kučera [7] and Of (all floating FETI) [36].

Figure 15.1: Original domain is decomposed for FETI (middle) and TFETI
(right) method.

We use the description of Dostál [11]. The TFETI method differs from the origi-
nal FETI method in the way which is used to implement the Dirichlet boundary con-
ditions. While the FETI method assumes that the subdomains inherit the Dirichlet
boundary conditions from the original problem, TFETI uses the Lagrange multi-
pliers to “glue” the subdomains to the boundary whenever the Dirichlet boundary
conditions are prescribed, see Figure 15.1. Such approach simplifies the implemen-
tation as all the stiffness matrices of the subdomains have typically a priori known
kernels and can be treated in the same way. For more details about TFETI we refer
to [7, 9, 8]. This method is also implemented in our MatSol library.
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1/H primal dual iter time
4 18496 1921 57 6
8 73984 8065 76 61
12 166464 18433 103 185
16 295936 33025 129 396

Table 15.1: TFETI method: Iteration counts for 2D Hertz problem.

The results of numerical experiments on 2D Hertz problem, described in Chapter
14, are in Table 15.1, where 1/H denotes number of subdomains in one direction of
one body, primal denotes total number of degrees of freedom, dual denotes number
of dual displacement variables, then there is number of iteration and time in seconds
that was necessary to get the solution.

Let us compare the numerical experiments for FETI-DP and T-FETI. Since the
FETI-DP need some time to preprocessing steps, we can see the differences in the
time requirements. On other hand, the iteration counts for FETI-DP (e.g. Strategy
F and G) are smaller than for T-FETI. It could be interesting to try to combine
both approaches.
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16Conclusions

In this thesis two preconditioning strategies, which result in the improved bounds
on the rate of convergence, were considered. The first one was a preconditioning by
conjugate projector, where in combination with FETI-DP, the Lagrange multipliers
corresponding to the variables of the coinciding edges were aggregated. The sec-
ond one was an explicit transformation of basis, where certain edge averages were
introduced as new, additional primal variables.

For a special case, it was shown that both methods iterate in the same space
and thus have the same rate of convergence. This is an important result, since
the explicit construction of the projector can be replaced by the transformation of
basis which works locally and can be easily parallelized. Let us recall that until
recently, there were no results on the rate of convergence for the problems with
inequality constraints in the terms of bounds on the spectrum of the Hessian. Even
the classical result by O’Leary [37] on preconditioning in face does not guarantee
any improvement.

The future development comprises two parts. The first one is the convergence
analysis of FETI-DP with variants of averaging, but without preconditioning. It
will comprise of analysis of the linear and nonlinear model elasticity problems with
the goal to find the theoretical support for the results without preconditioning. The
second one, numerical experiments, will comprise development and implementation
of the algorithms for the problems from 2D and 3D linear elasticity, application of
standard preconditioners for linear iterations, formulation and implementation of
academic benchmarks for contact problems with focus on scalability, and demon-
stration of the performance of the algorithms on real world problems.
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[21] M. Jarošová, A. Klawonn, and O. Rheinbach. Projector preconditioning and
transformation of basis in FETI-DP algorithms for contact problems. Mathe-
matics and Computers in Simulations, 2009. Accepted for publication.

[22] A. Klawonn and O. Rheinbach. Highly scalable parallel domain decomposi-
tion methods with an application to biomechanics. ZAMM - Journal of Ap-
plied Mathematics and Mechanics / Zeitschrift fr Angewandte Mathematik und
Mechanik, 90:5–32, 2009.

[23] Axel Klawonn and Olof B.Widlund. Dual and dual-primal FETI methods for
elliptic problems with discontinuous coefficients in three dimensions. In Twelfth
International Conference on Domain Decomposition Methods, Chiba, Japan,
2001.

[24] Axel Klawonn, Luca F. Pavarino, and Oliver Rheinbach. Spectral element
FETI-DP and BDDC preconditioners with multi-element subdomains. Comput.
Meth. Appl. Mech. Engrg., 198(3–4):511–523, 2008.



87

[25] Axel Klawonn and Oliver Rheinbach. A parallel implementation of Dual-Primal
FETI methods for three dimensional linear elasticity using a transformation of
basis. SIAM J. Sci. Comput., 28(5):1886–1906, 2006.

[26] Axel Klawonn and Oliver Rheinbach. Robust FETI-DP methods for hetero-
geneous three dimensional elasticity problems. Comput. Methods Appl. Mech.
Engrg., 196(8):1400–1414, 2007.

[27] Axel Klawonn, Oliver Rheinbach, and Olof B. Widlund. An analysis of a FETI-
DP algorithm on irregular subdomains in the plane. SIAM J. Numer. Anal.,
46(5):2484–2504, 2008.

[28] Axel Klawonn and Olof B. Widlund. Selecting constraints in dual-primal FETI
methods for elasticity in three dimensions. In Ralf Kornhuber, Ronald H. W.
Hoppe, Jacques Périaux, Olivier Pironneau, Olof B. Widlund, and Jinchao Xu,
editors, Proceedings of the 15th international domain decomposition conference,
pages 67–81. Springer, 2003.

[29] Axel Klawonn and Olof B. Widlund. Dual-primal FETI methods for linear
elasticity. Communications on pure and applied mathematics, 59(11):1523–
1572, 2006.

[30] Axel Klawonn, Olof B. Widlund, and Maksymilian Dryja. Dual-Primal FETI
methods for three-dimensional elliptic problems with heterogeneous coefficients.
SIAM J.Numer. Anal., 40:159–179, 2002.

[31] Jing Li and Olof B. Widlund. FETI-DP, BDDC, and block cholesky methods.
International journal for numerical methods in engineering, 66:250–271, 2006.

[32] Jan Mandel and Radek Tezaur. On the convergence of a dual-primal substruc-
turing method. Numer. Math., 88:543–558, 2001.

[33] G.I. Marchuk and Yu.A. Kuznetsov. Theory and applications of the generalized
conjugate gradient method. Adv. Math., Suppl. Stud., 10:153–167, 1986.

[34] R. A. Nicolaides. Deflation of conjugate gradients with applications to boundary
value problems. SIAM J. Numer. Anal., 24(2):355–365, 1987.

[35] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer Series
in Operations Research. Springer, 2nd edition, 2006.

[36] G. Of. BETI - Gebietszerlegungsmethoden mit schnellen Randelementverfahren
und Anwendungen. PhD thesis, University of Stuttgart, Germany, 2006.

[37] Dianne P. O’Leary. A generalised conjugate gradient algorithm for solving a
class of quadratic programming problems. Linear Algebra and its Applications,
34:371–399, 1980.



88

[38] Oliver Rheinbach. Parallel Scalable Iterative Substructuring: Robust Exact and
Inexact FETI-DP Methods with Applications to Elasticity. PhD thesis, Depart-
ment of Mathematics, University of Duisburg-Essen, Essen, Germany, 2006.

[39] Oliver Rheinbach. Parallel iterative substructuring in structural mechanics.
Journal Archives of Computational Methods in Engineering, 16(4):425–463,
2009.

[40] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2003.

[41] J. Schoberl. Solving the signorini problem on the basis of domain decomposition
techniques. Computing, 60:323–344, 1998.

[42] G. W. Stewart. Error and perturbation bounds for subspace associated with
certain eigenvalue problems. SIAM Review, 15:727–763, 1973.

[43] S.P. Timoshenko and J.N. Goodier. Theory of Elasticity. McGraw-Hill, New
York, 1970.

[44] Andrea Toselli and Olof Widlund. Domain Decomposition Methods - Algo-
rithms and Theory, volume 34 of Springer Series in Computational Mathemat-
ics. Springer, 2004.

[45] O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu. The finite element method: its
basis and fundamentals; 6th ed. Elsevier, Amsterdam, 2005.


	Introduction
	PART I: Linear problems
	Model problem
	Weak Formulation
	Discretization and minimization

	Numerical solution
	Existence of a solution
	Direct methods
	Conjugate gradient method

	Preconditioning for linear problems
	Basic preconditioners
	Preconditioned conjugate gradient method
	Conjugate projectors

	Dual-Primal FETI Method
	Notation
	Lagrangian function
	Projector preconditioning for FETI-DP   method
	Dirichlet preconditioner

	Transformation of basis
	Change of variables
	Two subdomains
	Many subdomains


	PART II: Nonlinear problems
	Model variational inequality problem
	Numerical solution
	Basic terms
	MPRGP algorithm

	Dual-Primal FETI methods
	Preconditioning   for nonlinear problems
	Preconditioning in face
	Preconditioning by conjugate projector
	Projector in combination with FETI-DP method

	Transformation of basis

	PART III: Numerical experiments
	Projector preconditioning
	One dimensional problem
	Displacement of membrane

	Transformation of basis   vs. projector preconditioning
	FETI-DP averages for linear elasticity contact problems 
	Total FETI
	Conclusions




