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VŠB–Technical University of Ostrava

Faculty of Electrical Engineering and Computer Science

Department of Applied Mathematics

Optimal Shape Design in Magnetostatics

Ph.D. Thesis

September 2003 Ing. Dalibor Lukáš
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Abstract

This thesis treats with theoretical and computational aspects of three–dimensional optimal shape
design problems that are governed by linear magnetostatics. The aim is to present a complete
process of mathematical modelling in a well–balanced way. We step–by–step visit the world
of physics, functional analysis, computational mathematics, and we end up with real–life applica-
tions. Nevertheless, the main emphasis is put on an efficient implementation of numerical methods
for shape optimization which exploits an effective evaluation of gradients by the adjoint method
and a just recently introduced multilevel optimization approach. We also emphasize numerical
experiments with real–life problems of complex three–dimensional geometries.

We begin from a description of the electromagnetic phenomena by Maxwell’s equations and
we derive their three–dimensional (3d) and two–dimensional (2d) magnetostatic cases with the
linear constitutive relation between the magnetic flux density and the magnetic strength density.

Then we start to develop a general theory that covers both 2d and 3d optimal interface–shape
design problems that are constrained by a second–order linear elliptic boundary vector–value prob-
lem (BVP). First we pose a weak formulation of the BVP with the homogeneous Dirichlet bound-
ary condition. Whenever the kernel of the BVP operator is not trivial, we employ a regularization
technique such that the regularized solutions converge to the true one. The continuous weak for-
mulation of the abstract BVP is discretized by the first–order finite element method on triangles
and tetrahedra, respectively. We set an abstract continuous shape optimization problem, the state
problem of which involves one or more BVPs such that they only differ in the right–hand sides,
i.e., different current excitations in case of magnetostatics. The design boundary is an interface
between two materials, rather than a part of the computational domain boundary, as it is usual in
optimal shape design for mechanics. We prove the existence of an optimal shape by checking the
continuity of the cost functional and the compactness of the set of admissible shapes. Then we dis-
cretize the continuous optimization problem by the finite element method and prove the existence
of the approximate solutions. The main theoretical result of this thesis is a proof of the conver-
gence of the approximate optimized solutions to an optimal solution of the continuous problem,
where we also involve an inner approximation of the original computational domain with a Lips-
chitz boundary by a polyhedral (in the 3d case) or polygonal (in the 2d case) domain. Throughout
the abstract theory we introduce many assumptions that are checked for concrete applications
afterwards. These assumptions show the scope of the theory.

Concerning the computational aspects in optimization, we use the sequential quadratic pro-
gramming method with a successive approximation of the Hessian. To justify the use, we verify
the smoothness of both the discretized cost and constraint functionals. Then we focus on the
calculation of gradients by means of the adjoint method and we derive an efficient algorithm for
that, including its Matlab implementation enclosed on the CD. We introduce a new multilevel
optimization approach as a possible adaptive optimization method.

Finally, we end up with physics again. We present two real–life applications with rather com-
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plex 3d geometries. After some motivation, we describe the optimization problem in terms of
verifying the theoretical assumptions, and we give numerical results. We present the speedup
of the adjoint method comparing to the numerical differentiation, and of the multilevel approach
comparing to the classical optimization. One optimized design was manufactured, we are provided
with measurements and, at the end, we discuss real improvements of the cost functional.
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Notation

N non–negative integers
R real numbers
i imaginary unit
C complex plane
C1, . . . , C16 fixed constants

Abbreviations

1d one–dimensional
2d two–dimensional
3d three–dimensional
PDE partial differential equation
BVP boundary (vector–)value problem
FEM finite element method
BFGS update formula for the Hessian matrix named after Broyden,

Fletcher, Goldfarb, and Shanno
SQP sequential quadratic programming
AD automatic differentiation

Chapter 2

B magnetic flux density p. 10
H magnetic field p. 10
µ permeability p. 10
J direct electric current density p. 10
u magnetic vector potential p. 10
Ω three–dimensional computational domain p. 10
Ω2d two–dimensional reduced computational domain which is the

cross section of Ω with the plane x3 = 0
p. 11

J two–dimensional scalar direct electric current density p. 11
u two–dimensional scalar magnetic potential p. 11

Chapter 3

‖ · ‖U norm in the normed linear vector space U p. 14
V/U quotient space p. 14
Ker(L) kernel of the linear vector operator L p. 15
U ′ dual space to the normed linear vector space U p. 15
〈·, ·〉 duality pairing p. 15
(·, ·) scalar product p. 15
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U⊥ orthogonal complement to the space U p. 16
H = U ⊕ U⊥ orthogonal decomposition of the Hilbert space H p. 17
Rn Euclidean space consisting of n–dimensional real vectors p. 17
AT transposed matrix p. 18
det(A) determinant of the matrix A p. 18
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derivatives over Ω, k ∈ N

p. 20

C∞(Ω) space of infinitely differentiable functions over Ω p. 21
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p. 21

C0,1(Ω) space of Lipschitz continuous functions over Ω p. 21
L set of all the domains with Lipschitz continuous boundaries p. 21
div divergence operator p. 22
grad gradient operator p. 22
curl curl operator p. 22
n× u cross product, tangential component of the function u along the

boundary ∂Ω
p. 23
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[
C1(Ω)
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p. 23
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]ν1

p. 23

γ trace operator related to B by Green’s theorem, γ :
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p. 23

Lp(Ω) Lebesgue space of measurable functions defined over Ω for which
the Lebesgue integral of their p–th power is finite, p ∈ [1,∞)

p. 24

L∞(Ω) Lebesgue space of measurable essentially bounded functions over
Ω

p. 24

meas(Ω) Lebesgue measure of the domain Ω p. 24
a.e. almost everywhere p. 24
Dαu the α–th generalized derivative of the function u, α is a multi–

index
p. 25

Hk(Ω) Sobolev space of functions whose generalized derivatives up to
the k–th order belong to Lp(Ω)

p. 25

(·, ·)k,Ω scalar product in Hk(Ω) p. 25
‖ · ‖k,Ω norm in Hk(Ω) p. 25
| · |k,Ω seminorm in Hk(Ω) p. 25[
Hk(Ω)
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p. 25

H1
0 (Ω) space of functions from H1(Ω) whose traces vanish along ∂Ω p. 26



xi
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B
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H0,⊥(B; Ω) space of functions from H0(B; Ω) that are orthogonal to
Ker(B; Ω)

p. 31

(S) strong formulation of an abstract linear elliptic boundary vector–
value problem

p. 32

D matrix function of material coefficients in (S) p. 32
f vector function of the right–hand side in (S) p. 32
a(·, ·) bilinear form in (W ) p. 33
f(·) linear functional in (W ) p. 33
(W ) weak formulation of an abstract linear elliptic boundary vector–
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u solution to (W ) p. 33
ε positive regularization parameter that regularizes the non–
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(Wε) regularized weak formulation p. 34
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ε ) p. 40
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p. 42
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ei the i–th finite element p. 43
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Chapter 1

Introduction

Nowadays dynamic progress in computer technology has made powerful computers to become
cheap. This has been influencing the development of numerical methods. Many both commercial
and academic simulation software tools are available for a large variety of problems. Computer
simulations replaced prototyping. A usual picture is that developers in a company are modelling
a new product on a computer, doing some calculations, and thinking what parameters and how to
shift to achieve better properties of the product. Still increasing standard of technologies brings
together experts from different areas. Developers’ work is now much more interdisciplinary. It
involves

• experts in the area of main interest, e.g., engineers, physicists, medics, economists, etc.,

• theoretical mathematicians who introduce correct theories that can be used for mathematical
modelling,

• numerical analysts who design efficient numerical methods and analyze their properties,
e.g., speedup, convergence rate, etc.,

• and computer scientists who effectively implement the methods on a proper platform.

The people who are experienced in more areas are especially welcome to coordinate the design
process.

As far as the direct simulation is fast enough, it is straightforward to automatize also the
synthesis (design) process. To this end, a developer has to exactly formulate

• the objective criterion saying what design is better,

• the design parameters that can be changed including their possible limit values,

• and some additional constraining criteria that the product must satisfy.

The objective criterion (the optimization goal) might be the minimal weight, the maximal output
power, the minimal cost, the minimal loss, etc. The design parameters are for example size of
the product, microstructure of the used material, or shape of the product. We might additionally
require that the product must not exceed a given volume, weight, or that it must be robust, e.g.,
stiff enough. Once we know these exactly, we have formulated an optimization problem that can
be solved automatically.

1
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1.1 General aspects of optimization

We can optimize very disparate systems, for instance, maximize profit of a market, minimize pollu-
tion of a forest, minimize petrol consumption when driving a car, control a robot in an optimal way,
etc. Optimal shape design is only a small area within the general optimization context. Besides,
we can mention optimal control, optimal sizing, thickness optimization, topology optimization,
optimization in graphs, and so further. Each class of optimization problems has a structure of its
own. However, a direct simulation – the state problem – is always involved and the inverse process
(the synthesis) plays around with some parameters and resolve the direct problem until the system
behaves in a required way.

1.1.1 Optimization problems: Classification and connections

Optimization can be seen in a wider context of inverse problems, in which we know behaviour
of a system, usually from physical measurements, and under this knowledge we are looking for
structure of the system and/or for distribution of sources. A typical inverse problem is the computer
tomography in medicine. An introductionary textbook to this field is given by KIRSCH [109].
Inverse problems are known to be ill–posed which has to be treated by regularization techniques,
see ENGL, HANKE, AND NEUBAUER [58]. Some connections between optimization and inverse
problems are presented by NEITTAANMÄKI, RUDNICKI, AND SAVINI [144].

Here, we are especially interested in structural optimization, where we change the structure
of an object, which is interacted in a physical field, in order to achieve required behaviour. The
structure means either material properties, topology, or shape of the object boundary or inter-
faces. Various issues of structural optimization are covered in BANICHUK [17], BENDSØE [21],
CHERKAEV [43], KALAMKAROV [105], OLHOFF AND TAYLOR [152], PEDERSEN [154], ROZ-
VANY [173, 174, 175], SAVE AND PRAGER [180, 181], XIE AND STEVEN [213]. Applications
in electromagnetism are given by HOPPE, PETROVA, AND SCHULZ [97], in plasticity by YUGE

AND KIKUCHI [216], and, for instance, in ergonomics by RASMUSSEN ET AL. [165]. An optimal
design of microstructures is presented by JACOBSEN, OLHOFF, AND RØNHOLT [100].

If we are interested in the topology design – it is usually the question where to put holes
– we speak about topology optimization. The basic literature is BENDSØE [20, 21], BENDSØE

AND SIGMUND [22], BORRVALL [25]. Some applications in electromagnetism are presented
by HOPPE, PETROVA, AND SCHULZ [96], YOO AND KIKUCHI [214]. More theoretical issues are
given by STADLER [198] or by SIGMUND AND PETERSSON [190].

In the design process, the second step after topology optimization is shape optimization,
where we tune the shape of the boundary or interfaces. The basic literature on shape optimiza-
tion is given by BEGIS AND GLOWINSKI [19], MURAT AND SIMON [140], PIRONNEAU [159],
HASLINGER AND NEITTAANMÄKI [85], HASLINGER AND MÄKINEN [83], SOKOLOWSKI AND

ZOLESIO [196], BÖRNER [24], DELFOUR AND ZOLESIO [54], KAWOHL ET AL. [107], MO-
HAMMADI AND PIRONNEAU [135]. Besides the basic textbooks, one can find a lot of theoret-
ical analysis in BUCUR AND ZOLESIO [35], PEICHL AND RING [155, 156], PETERSSON AND

HASLINGER [158], PETERSSON [157]. Papers focused on applications in electromagnetism are,
for example, DI BARBA ET AL. [18], BRANDSTÄTTER ET AL. [30], LUKÁŠ [123], MARROCCO

AND PIRONNEAU [132], TAKAHASHI [206].
It turns out that there is much in common in topology and shape optimization. Recently there

have appeared several papers in this context, like CEA ET AL. [40], RIETZ AND PETERSSON [171],
TANG AND CHANG [207].
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1.1.2 Optimization methods

Another point of view to optimization is from the side of numerical mathematics. We can clas-
sify optimization problems with respect to what algorithm is used. There is a class of evolution-
ary algorithms, cf. XIE AND STEVEN [213], typical examples of which are genetic algorithms,
which search for the global optimum. However, the number of evaluations of the objective func-
tional is exponential to the number of design variables. This is due to the fact that the whole
design space has to be randomly explored. On the other hand, there are Newton–like algorithms,
which look for a local optimum. These use the first–, eventually the second–order derivatives
to approximate the objective functional locally by a quadratic function. The local algorithms
are much faster comparing to the global ones and in this thesis we will concern with them only.
Many algorithmical issues of local optimization are covered in NOCEDAL AND WRIGHT [148],
FLETCHER [61], DENNIS AND SCHNABEL [55], GILL, MURRAY, AND WRIGHT [66], GROSS-
MANN AND TERNO [72], CEA [39], HESTENSEN [88, 89], HAGER, HEARN, AND PARDA-
LOS [81], POLAK [161], MÜHLHUBER [139], BOGGS AND TOLLE [23], CONN, GOULD, AND

TOINT [49]. However, there are also optimization problems, whose cost functional is not dif-
ferentiable, not even twice differentiable. This is the case of nonsmooth optimization, see e.g.,
CLARKE [48], MÄKELÄ AND NEITTAANMÄKI [130], HASLINGER, MIETTINEN, AND PANA-
TIOTOPOULOS [84]. Let us also mention multicriterial optimization, which tries to include more
aspects with respect to which the design should be optimal, see OLHOFF [151].

There are several interesting optimization techniques that have appeared just recently. In the
papers by BURGER AND MÜHLHUBER [37, 38] they solve simultaneously for both the design
and state variables, i.e., they minimize at the same time the cost functional as well as the quadratic
energy functional of the direct problem. Another challenging issue in optimization is adaptivity. A
hierarchical approach in shape optimization is used by LUKÁŠ [123, 128]. The works of RAMM,
MAUTE, AND SCHWARZ [164], SCHLEUPEN, MAUTE, AND RAMM [185] make even use of the
FE–adaptivity in both the topology and shape optimization. Using multilevel approach for solving
nonlinear ill–posed problems is presented in SCHERZER [182].

The Newton–like optimization methods suffer from the computational costs and from the fact
that they are searching for local optima. It is partly overcome by the homogenization method, the
study of which has just been started. It aims at describing macroscopic behaviour of materials
with heterogeneous microstructures. For the literature see ALLAIRE [5], ALLAIRE ET AL. [7],
CIORANESCU AND DONATO [47]. The method is very much connected to structural (both shape
and topology) optimization, which is studied in ALLAIRE [6], SUZUKI AND KIKUCHI [202], YOO

AND KIKUCHI [214], YUGE, IWAI, AND KIKUCHI [215]. However, this method is well–suited
only for some cost functionals and the linear elasticity. Another new interesting approach is the
level–set method, see SETHIAN AND WIEGMANN [188], ALLAIRE, JOUVE, AND TOADER [8].
It determines the set of admissible designs implicitly by a level–set function and uses the shape
or topology derivative with respect to this implicit scheme. The level–set method was already
applied in the field of inverse problems, see BURGER [36]. Nevertheless, the method involves a
time explicit scheme, which takes many iterations. An overcome can be done by a coupling with
Newton methods.

1.1.3 Iterative methods for linear systems of equations

The main computational effort is related with solution of the state problem. Fast solution iterative
methods have been especially developed for linear systems with sparse symmetric positive definite
matrices. Such a system can be stated as a quadratic minimization problem. For those, since 50
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years ago, the development of conjugate gradients methods has been running. The conjugate
gradients methods are looking for minimum of the quadratic functional in the directions that are
conjugated by the energy scalar product related to the system matrix. The research was initiated
by HESTENSEN AND STIEFEL [90] and from then an extensive literature to this topic has been
written, see ZOUTENDIJK [221], GOLUB AND VAN LOAN [69], AXELSSON [13], SAAD [179].

Nowadays, the key point is the construction of proper preconditioners. The ones that turned
out to be the best are based on multigrid techniques. They construct a hierarchy of finite element
discretizations such that they first minimize the low frequencies (eigenvalues) of the residual er-
ror on a coarse discretization, which is very fast, and then the higher frequencies on a finer one,
which is again fast, as the low frequencies are not any longer present. The hierarchy can be con-
structed either with respect to the computational grid (geometrical multigrids) or with respect to
the structure of the system matrix (algebraic multigrids). Various topics on multigrid techniques
are presented in HACKBUSCH [78], BRAMBLE [28], BRAMBLE, PASCIAK, AND XU [29], HIPT-
MAIR [91], JUNG AND LANGER [102], REITZINGER [169], HAASE AND LANGER [74], HAASE

ET AL. [75, 76]. Applications in electromagnetism can be found in SCHINNERL ET AL. [183, 184].
A software package based on algebraic multigrids was done by REITZINGER [168].

1.1.4 Commercial versus academic software tools

Basically, we distinguish between commercial and academic software. Commercial software
tools, see THOMAS, ZHOU, AND SCHRAMM [209] for a review, are developed to provide a large
functionality in a user–friendly way. They have to really attract as large audience as possible in
order to survive in the commercial market. They try to be robust, automatic, and sexy. They ben-
efit from a deep engineering experience. From the matter of fact, commercial software tools are
much more suitable for immediate applications in the industry than the academic ones, because the
developers are much more closer to the industrial users. However, from a lack of knowledge they
cannot provide the latest scientific computational methods and the solution time is often rather
slow. Whenever the user needs more functionality, he/she has to wait until a new release is done.
Typical commercial software packages for both analysis and design are ANSYS [1] or FLUENT [2].

On the other hand, scientific computing tools are developed with respect to an apriori known
scientific goal. At the very beginning they do not need to attract a large audience, as they are
supported by research grants. They do not need to be user–friendly, as the researchers that use
them know very well what is going on and can remove some errors themselves. Their main
advantage is that the scientific computing tools implement the up–to–date knowledge and they
use fast solution methods that have just appeared in the world research. However, they cannot
be directly applied in the industry, since they do not treat complicated real–life geometries, they
are not as user–friendly and as robust as the commercial ones. Some scientific computing tools
for the analysis or optimization are presented in KUHN, LANGER, AND SCHÖBERL [117], SILVA

AND BITTERCOUNT [191], RASMUSSEN ET AL. [166], PARKINSON AND BALLING [153]. An
example of more educational software system is in TSCHERNIAK AND SIGMUND [210]. A typical
commercial software directed to the academy is MATLAB [208].

Until recently, one could hardly work in both the industry and academy, as their objectives
were rather different. The nowadays trend seems to be towards interdiciplinary work. Industrial
partners are invited to talk at scientific symposia, and many companies invest to further education
of their staff. The gap between the industry and academy gets smaller, thus, the difference be-
tween the commercial and scientific software does so. The commercial software should take more
into account the latest research progress and the scientists developing research software pack-
ages should put more effort into the documentation, user–interface, and better coordination of the
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development. The more communication between the industry and academy there is, the more
improvement can be done.

1.2 Optimal shape design

In this thesis we treat with optimal shape design problems. These are very well–structured, in
a consequence of which we can design a very efficient solution method taking the structure into
account. The direct problem within the shape optimization is a partial differential equation (PDE).
There is still a number of PDEs that can be considered. Imagine the following examples: a flying
aeroplane, a loaded bridge, an electromagnet pumped by direct electric currents (DC), or a hy-
draulic press acting on a piece of steel. Here, the PDEs are very diverse, namely, air fluid can be
modelled by a hyperbolic PDE, flight of the aeroplane by a parabolic PDE, load of the bridge or
the DC electromagnet by elliptic PDEs, and the hydraulic press is modelled as a contact problem,
which is nonsmooth. If we concern nonlinear constitutive relations, then the PDEs are even more
complicated to solve. Hence, the solution method should be suited for the type of PDE that we
are concerned with. In this thesis we will deal with shape optimization governed by elliptic linear
PDEs.

Since we will employ Newton algorithms for smooth optimization, the crucial point is the
sensitivity analysis, which is the evaluation of gradients of the cost and constraint functionals
with respect to the design variables. One can either derive a Fréchet derivative from the contin-
uous setting of the optimization problem, see SOKOLOWSKI AND ZOLESIO [196], or discretize
the continuous problem first and then use an algebraic approach, see HASLINGER AND NEIT-
TAANMÄKI [85]. We prefer the second approach. In SOKOLOWSKI AND ZOCHOWSKI [195] a
connection between topological and shape sensitivity analysis is presented.

Let us consider a shape optimization problem governed by an elliptic PDE on a bounded com-
putational domain. The most common solution approach is the following: At the very beginning,
given an initial shape design, we decompose the computational domain into polygonal (or poly-
hedral) convex elements, cf. GEORGE [65]. Then we discretize a weak formulation of the elliptic
PDE by the finite element method (FEM). We get a sparse positive definite system matrix and a
right–hand side vector. We employ a fast iterative method to solve the system with a sufficient
precision. Then we calculate the cost (optimization) functional and we can start play around with
the shape. Some design variables describe the design boundary (or interface). Changes of the
design variables are mapped onto displacements of the nodes lying on the design boundary (or
interface), e.g., by means of Bézier parameterization, cf. FARIN [59]. Displacements of nodes
along the design boundary influence displacements of the remaining nodes in the discretization
grid. Finally, the displaced discretization grid influences the system matrix, and eventually the
right–hand side vector. Thus, the grid influences the solution of the PDE and so it also influences
the cost functional. The main effort in the sensitivity analysis lies on an efficient evaluation of
the gradient of the solution to the direct simulation problem. This is usually done by the adjoint
method, cf. HAUG, CHOI, AND KOMKOV [86].

Besides the finite element analysis, there are also boundary element methods (BEM). They
discretize the boundary integral form of the PDE. These techniques are not as spread as the finite
elements. The fundamental principles are covered in BANERJEE AND BUTTERFIELD [16], BREB-
BIA [31], CHEN AND ZHOU [41]. Using BEM in optimal shape design is presented in CHEN,
ZHOU, AND MCLEAN [42], KITA AND TANIE [110], or in SIMON [193]. Applications in electro-
magnetism are given in HIPTMAIR AND SCHWAB [94], and in KALTENBACHER ET AL. [106].
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1.3 Computational electromagnetism

Due to some historical aspects, the finite element method was firstly reviewed and applied by me-
chanical engineers, cf. ZIENKIEWICZ [217]. Then the fluid dynamics community started to use the
method. Electrical engineers and scientists started to apply the method little bit later, nevertheless,
mainly in the last two decades the finite element analysis has been becoming still more popular
in the electromagnetic community, too. An important point was introducing a new class of finite
elements by NÉDÉLEC [142, 143]. A lot of theoretical work was done by ADAM ET AL. [3], AM-
ROUCHE ET AL. [9], COSTABEL AND DAUGE [50], HIPTMAIR [92, 93], KAČŮR ET AL. [104],
MONK [136, 137, 138], NEITTAANMÄKI AND SARANEN [146, 147]. The fundamental textbooks
were published by ARORA [11], BOSSAVIT [26], GIRAULT AND RAVIART [67], IDA AND BAS-
TOS [99], KOST [112], KŘÍŽEK AND NEITTAANMÄKI [115], MAYERGOYZ [133], SILVESTER

AND FERRARI [192], STEELE [199], VANRIENEN [211].

1.4 Structure of the thesis

The rest of the thesis is structured as follows. In Chapter 2, we describe Maxwell’s equations
for 3–dimensional time–dependent electromagnetic fields. By neglecting some phenomena we
respectively arrive at 3–dimensional (3d) and 2–dimensional (2d) linear magnetostatic cases.

At the beginning of Chapter 3, we recall fundamental issues of the linear functional analysis.
We describe the Sobolev spaces H1, H(div), and H(curl). Then we start to develop an abstract
theory, which can cover a wide class of boundary value problems. Under four assumptions we
introduce an abstract function space H(B) for some abstract elliptic first–order vector–value linear
differential operator B. We basically assume the abstract space to be dense in C∞, to fulfill
the trace theorem, Green’s theorem, and Friedrichs–like inequality. Further, we formulate an
abstract linear elliptic second–order boundary vector–value problem (BVP) with the homogeneous
Dirichlet boundary condition. We derive its weak formulation. In the cases when the kernel of the
operator B is not trivial, the bilinear form is not H(B)–elliptic and the weak formulation is not
suited for the finite element discretization. Therefore, we introduce a regularized weak formulation
and prove the convergence of the regularized solutions to the true one in the seminorm. At the end
of Chapter 3, we apply the theory to both 2d and 3d linear magnetostatics while all the previously
introduced assumptions are verified.

In Chapter 4, we first recall the general concept of the finite element method. Then we deal
with algorithmical aspects and derive an efficient assembling algorithm, which approximates our
abstract BVP. Further, under some assumptions we prove convergence of the approximate solu-
tions to the true weak solution of the BVP. The proof is mainly based on first Strang’s lemma
and on the Lebesgue dominated convergence theorem. In this approximation theory there is also
involved an inner approximation of the original Lipschitz boundary by polygonal (or polyhedral)
ones. At the end, we present Lagrange nodal and Nédélec edge finite elements, which are re-
spectively used for 2d and 3d magnetostatics. For these two types of elements we verify all the
assumptions of the introduced convergence theory.

In Chapter 5, we introduce a continuous setting of a shape optimization problem, which is
governed by the abstract BVP. The shape controls an interface between two materials while the
computational domain is fixed. We spend some effort in proving the continuity of the state solution
with respect to the shape. We suppose the cost functional to be continuously dependent on the
state solution. The set of admissible shapes is compact by definition. Hence, the existence of
an optimal solution can be proved. We further employ the regularization of the state problem
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and prove the corresponding convergence result. Finally, we discretize the state problem and,
consequently, the optimization problem by means of the finite element method. We prove the
convergence of the discretized optimized shapes to a continuous optimal one. The convergence
theory uses very standard tools of the functional and finite element analysis and it was inspired by
the monograph of HASLINGER AND NEITTAANMÄKI [85]. Nevertheless, one of its assumptions,
namely the continuity of the mapping between the shape nodes and the remainding grid nodes,
is difficult to assure in practice. For non–academic problems with complex geometries and for
fine discretizations one can hardly find such a continuous shape–to–mesh mapping, as for large
changes of the design shape some disturbed or even flipped elements can appear and the geometry
has to be re–meshed. This brings the discontinuity of the cost functional into the business. In
Conclusion, possible outcomes are discussed.

In Chapter 6, we revisit our abstract optimization problem from the computational point of
view. We analyze the structure of the cost functional and present it as a compound mapping,
consisting of several smooth submappings. Therefore, we can prove the smoothness of the cost
functional, which justify us to use algorithms of the Newton type afterwards. We briefly mention
all the ingrediences of the sequential quadratic programming method. Then, we derive an efficient
method for the first–order sensitivity analysis, including its implementation in Matlab, which is
enclosed on the CD. This is actually the heart of the whole thesis. Finally, we introduce a mul-
tilevel optimization algorithm, which is well–designed to be adaptive with respect to aposteriori
the error analysis of the underlying finite element discretization of the state problem. We refer
to the very recent papers by SCHLEUPEN, MAUTE, AND RAMM [185], RAMM, MAUTE, AND

SCHWARZ [164], in which the finite element adaptivity is already used for calculating error of the
approximation of the cost functional.

At the beginning of Chapter 7, we present an application, which has arisen from the research on
magnetooptic effects. Our aim is to find optimal shapes of two electromagnets in order to minimize
inhomogeneities of the magnetic field in a certain area. The electromagnets have rather complex
3–dimensional geometries. We formulate the cost functional, the set of admissible shapes, and the
state problem such that, simultaneously, we verify the related theoretical assumptions. We further
pose the corresponding reduced 2–dimensional settings of the problems. Then, both 2d and 3d
numerical results are given. We discuss the speedup of the used adjoint method comparing to the
numerical differentiation, and the speedup of the multilevel approach with respect to the standard
approach. Finally, an optimized shape was manufactured and we are provided with physical mea-
surements of the magnetic fields for both the original and optimized electromagnets. We present
the improvements of the magnetic field in terms of the cost functional.

In Conclusion, we summarize the results of this thesis and give directions of the further re-
search.
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Chapter 2

Mathematical modelling in
magnetostatics

In this chapter, we will start from Maxwell’s equations in a general time–dependent 3–dimensional
(3d) setting, we will pass through the time–harmonic case, and we will end up with the 3d mag-
netostatic boundary value problem. Neglecting the magnetic phenomena in a given direction, we
will arrive at the 2–dimensional (2d) magnetostatic boundary value problem. Throughout this
chapter, we will formally describe the physical phenomena, rather than introduce all the necessary
assumptions on the smoothness of the domain or the differentiability of the physical quantities.
Mathematically correct settings will be introduced in Chapter 3.

For the theory of electromagnetism we refer to FEYNAM, LEIGHTON, AND SANDS [60],
HAUS AND MELCHER [87], SOLYMAR [197], and STRATTON [201]. The monographs focused
more on numerical modelling are given by KŘÍŽEK AND NEITTAANMÄKI [115], BOSSAVIT [26],
VAN RIENEN [211], IDA AND BASTOS [99], KOST [112], MAYERGOYZ [133], STEELE [199].

2.1 Maxwell’s equations

The physical phenomena of the time-dependent 3–dimensional electromagnetic field are described
by Maxwell’s equations

curl(H) = J + σE +
∂D

∂t

curl(E) = −∂B

∂t
div(D) = ρ

div(B) = 0





, (2.1)

together with the constitutive relations

D = εE and B = µH, (2.2)

where E denotes the electric field (electric intensity), D is the electric flux density, ε > 0 is
the permittivity, J is the external electric current density, σ > 0 is the electric conductivity,
ρ ≥ 0 is the charge density, H is the magnetic field, B is the magnetic flux density, µ > 0 is the
permeability, t ≥ 0 is the time and the differential operators are defined as follows:

div(v) :=
∂v1

∂x1
+

∂v2

∂x2
+

∂v3

∂x3
,

9
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curl(v) :=

(
∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
,

where v = (v1, v2, v3) is a vector function and x = (x1, x2, x3) are point coordinates.
Now we introduce 3d time–harmonic linear Maxwell’s equations. First, we restrict our con-

sideration into a fixed bounded domain, assuming that the fields vanish outside the domain. Let
Ω ⊂ R3 be a nonempty domain the boundary ∂Ω of which is smooth enough. Further, let ω ≥ 0
be an angular frequency and assume that both the electric and magnetic field are time–harmonic

E(x, t) := Re
(
E(x)eiωt

)
,

H(x, t) := Re
(
H(x)eiωt

)
,

where E := E(x) and H := H(x) are complex–valued vector functions, i denotes the imaginary
unit, and Re(v) := (Re(v1),Re(v2),Re(v3)) is the component–wise real part of the vector v :=
(v1, v2, v3). Moreover, we assume the charge density and Maxwell’s current to be zeros

ρ = 0 and
∂D

∂t
= 0.

We also assume that the constitutive relations (2.2) are time–independent, real–valued and linear

ε := ε(x) and µ := µ(x),

rather than ε := ε(x,E) and µ := µ(x,H) in the nonlinear case. Finally, we assume the external
current density J and the conductivity σ to be time–independent and real–valued

J := J(x) and σ := σ(x).

Now, Maxwell’s equations (2.1) can be rewritten as follows:

curl(H) = J + σE

curl(E) = −iωB

div(D) = 0

div(B) = 0





in Ω, (2.3)

where, according to (2.2), D = εE and B = µH. We prescribe that the electric field vanishes on
the boundary

n ×E = 0 on ∂Ω, (2.4)

where n denotes the outer unit normal to ∂Ω and where, given vectors u := (u1, u2, u3) and
v := (v1, v2, v3),

u× v := (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

is the vector cross product.

2.2 Three–dimensional linear magnetostatics

We introduce the magnetic vector potential u by

curl(u) = B.
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The first two equations in (2.3) now read as follows:

curl

(
1

µ
curl(u)

)
= J + σE

curl(E) = −iωcurl(u)





in Ω,

the third equation becomes
div(−iωεu) = 0 in Ω

and last Maxwell’s equation is automatically fulfilled, since the vector identity div(curl(u)) = 0
holds. We consider the time–independent case of (2.3). Taking ω := 0 and neglecting the electric
field, we arrive at the following magnetostatic boundary value problem

curl

(
1

µ
curl(u)

)
= J in Ω

n × u = 0 on ∂Ω





. (2.5)

2.3 Two–dimensional linear magnetostatics

Let us assume that the magnetic field given by (2.5) does not significantly depend on the x3–
coordinate. This is often the case when J(x) = (0, 0, J(x1, x2)) and µ(x) = µ(x1, x2) in a
large enough neighbourhood of the zero–plane Z :=

{
x ∈ R3 | x3 = 0

}
. We are interested in an

approximate solution of (2.5) in this neighbourhood. So, let us assume that

J(x) := (0, 0, J(x1, x2)) , µ(x) := µ(x1, x2), and u(x) := (0, 0, u(x1, x2)) .

Using the latter, the problem (2.5) reduces to the following

−div

(
1

µ
grad(u)

)
= J in Ω2d

u = 0 on ∂Ω2d





, (2.6)

where
Ω2d :=

{
x′ = (x1, x2) ∈ R2 | (x1, x2, 0) ∈ Ω

}

represents a cross section of Ω in the sense Ω2d×{0} = Ω∩Z , and where the differential operator
grad is defined as follows:

grad(u) :=

(
∂u

∂x1
,

∂u

∂x2

)
,

where u is a scalar function. It is easy to see that the magnetic flux density is then given by

B =

(
∂u

∂x2
,− ∂u

∂x1
, 0

)
,

where u solves (2.6).
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Chapter 3

Abstract boundary vector–value
problems

In this chapter, we will recall the necessary mathematics used for weak formulations in magne-
tostatics. We will begin with the continuous function spaces and introduce some Sobolev spaces
together with the corresponding trace, Green’s theorems, and Friedrichs’–like inequalities. Then,
we will formally describe the concept of a weak formulation for an abstract elliptic linear bound-
ary vector–value problem. Particularly, we will illustrate the concept on both the 3d and 2d linear
magnetostatic problems.

There is already an exhaustive literature on weak formulations of electromagnetic problems,
see KŘÍŽEK AND NEITTAANMÄKI [115], AMROUCHE ET AL. [9], ADAM ET AL. [3], BOSSA-
VIT [26] VAN RIENEN [211], KAČUR, NEČAS, POLÁK, AND SOUČEK [104], MONK [136, 137,
138], HIPTMAIR [93], NEITTAANMÄKI AND SARANEN [146, 147], STEELE [199], SILVESTER

AND FERRARI [192]. The monograph by GIRAULT AND RAVIART [67] and the paper by HIPT-
MAIR [92] inspired us to build an abstract theoretical framework for the weak formulations and
consequent finite element discretizations of the linear elliptic boundary vector–value problems.

3.1 Preliminaries from linear functional analysis

This section recalls basic definitions from functional analysis which will be frequently used in the
sequel. Most definitions as well as notation are due to K ŘÍŽEK AND NEITTAANMÄKI [115, p. 12].
Let us mention the monographs by NEČAS [141], ODEN AND DEMKOWICZ [149], RUDIN [177],
COURANT AND HILBERT [51], SHOWALTER [189], FRANCŮ [64], or by REKTORYS [170].

3.1.1 Normed linear vector spaces

The nonempty set V with the operations + : V × V 7→ V and . : R × V 7→ V is called a linear
vector space over reals if for any u, v, w ∈ V and any α, β ∈ R the following axioms are satisfied

(u + v) + w = u + (v + w), u + v = v + u, ∃z ∈ V : u + z = v,

α(u + v) = αu + αv, (α + β)u = αu + βu, α(βu) = (αβ)u,

1u = u.

Among others, the axioms imply that the following hold

∃0 ∈ V ∀u ∈ V : 0 + u = u, ∀u ∈ V ∃(−u) ∈ V : u + (−u) = 0.

13
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We define the operation − : V × V 7→ V by

u − v := u + (−v), u, v ∈ V.

The subset U ⊂ V is called a subspace of V if it is also a linear vector space with respect to the
operations . and +.

Let V be a linear vector space. The mapping ‖ · ‖V : V 7→ R is called a norm if for any
u, v ∈ V and any α ∈ R the relations

‖u + v‖V ≤ ‖u‖V + ‖v‖V , ‖αu‖V = |α|‖u‖V , ‖u‖V 6= 0 if v 6= 0 (3.1)

hold. The space V equipped with a norm is called a normed linear vector space.
Let V be a normed linear vector space. The sequence {un}∞n=1 ⊂ V is said to be convergent

if there exists u ∈ V such that

‖un − u‖V → 0, as n → ∞.

We denote it by un → u in V .
Let M ⊂ V be a subset of a normed linear vector space V . The subset M is said to be closed

if for any convergent sequence {un}∞n=1 ⊂ M the following is true

un → u in V ⇒ u ∈ M.

The subset M is said to be dense in V if the condition

∀u ∈ V ∃{un}∞n=1 ⊂ M : un → u in V

is satisfied. We denote it by
V = M in the norm ‖ · ‖V .

Let V be a normed linear vector space and U ⊂ V be a subspace. The space

V/U := {[u] ⊂ V | u ∈ V and ∀v ∈ U : u + v ∈ [u]}

is called a quotient space. The space V/U equipped with the norm

‖[u]‖V/U := inf
v∈U

‖u + v‖V

forms a normed linear vector space. Moreover, if U is a closed subspace, then the infimum is
realized on U and it becomes the minimum.

3.1.2 Linear operators

Let U, V be normed linear vector spaces. Then the mapping L : U 7→ V is called a linear operator
if for any u, v ∈ U and any α ∈ R the following relations

L(u + v) = L(u) + L(v), L(αu) = αL(u)

hold. The linear operator L : U 7→ V is continuous if the following is satisfied

∃C > 0 ∀u ∈ U : ‖L(u)‖V ≤ C‖u‖U .
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The set
Ker(L) := {u ∈ U | L(u) = 0} (3.2)

is called the kernel of the operator L and it is a closed subspace of U . The linear operator L−1 :
V 7→ U is called the inverse to L if

∀u ∈ U ∀v ∈ V : L(u) = v ⇔ L−1(v) = u.

The mapping f : U 7→ R is called a functional. The space of continuous linear functionals
that are defined on a normed linear vector space U is called a dual space and it is denoted by U ′.
The mapping 〈·, ·〉 : U ′ × U 7→ R defined by

〈f, u〉 := f(u), f ∈ U ′, u ∈ U,

is called a duality pairing. The following

‖f‖U ′ := sup
u∈U

‖u‖U=1

|〈f, u〉|

is a norm. The space U ′ equipped with ‖ · ‖U ′ and with the following operations

〈f + g, u〉 := 〈f, u〉 + 〈g, u〉, 〈αf, u〉 := α〈f, u〉 f, g ∈ U ′, α ∈ R, u ∈ U,

forms a normed linear vector space.

3.1.3 Hilbert spaces

The normed linear space V is called a Banach space if for any Cauchy sequence {un}∞n=1 ⊂ V ,
i.e.,

∀ε > 0 ∃n0 ∈ N ∀m,n ∈ N : m,n ≥ n0 ⇒ ‖um − un‖V ≤ ε,

the following holds
∃u ∈ V : un → u in V.

Let H be a linear vector space. The mapping (·, ·)H : H × H 7→ R which satisfies for any
u, v, w ∈ H and any α ∈ R the following conditions

(α(u + v), w)H = α(u,w)H + α(v, w)H , (u, v)H = (v, u)H ,

(u, u)H ≥ 0, (u, u)H 6= 0 if u 6= 0

is called a scalar product. The norm defined by

‖u‖H :=
√

(u, u)H

is called the induced norm. Moreover, if the space H with the scalar product and the induced norm
is a Banach space, then it is called a Hilbert space. The following Cauchy–Schwarz inequality
holds:

|(u, v)H | ≤ ‖u‖H‖v‖H (3.3)

for any u, v ∈ H . Let U ⊂ H be a closed subspace of H , then it is a Hilbert space, too.
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Theorem 3.1. (Riesz theorem) Let H be a Hilbert space. Then for any f ∈ H ′ there exists exactly
one element u ∈ H such that

∀v ∈ H : (v, u)H = f(v). (3.4)

Moreover,
‖u‖H = ‖f‖H′ . (3.5)

Proof. See ODEN AND DEOMKOWICZ [149, p. 557].

Let H be a Hilbert space. The mapping a(·, ·) : H × H 7→ R is called a bilinear form if for
any fixed u ∈ H both the mappings a(·, u) and a(u, ·) are linear functionals. The bilinear form is
said to be continuous on H if there exists a positive constant C1 such that

∀u, v ∈ H : |a(u, v)| ≤ C1‖u‖H‖v‖H .

The bilinear form is called H–elliptic if there exists a positive constant C2 such that

∀v ∈ H : |a(v, v)| ≥ C2‖v‖2
H (3.6)

Lemma 3.1. (Lax–Milgram lemma) Let H be a Hilbert space and let a(·, ·) be a continuous
bilinear form on H which is H–elliptic with the constant C2. Then for any f ∈ H ′ there exists
exactly one element u ∈ V such that

∀v ∈ H : a(v, u) = f(v). (3.7)

Moreover,

‖u‖H ≤ 1

C2
‖f‖H′ .

Proof. See NEČAS [141, p. 38].

Lemma 3.2. Let the assumptions of Lemma 3.1 be satisfied and let the bilinear form be, in addi-
tion, symmetric on H , i.e.,

∀u, v ∈ H : a(u, v) = a(v, u).

Then (3.7) is equivalent to: Find u ∈ H such that

J(u) = min
v∈H

J(v),

where J is a quadratic functional given by

J(v) :=
1

2
a(v, v) − f(v), v ∈ H.

Proof. See KŘÍŽEK AND NEITTAANMÄKI [115, p. 14].

The normed linear vector spaces U and V are said to be isomorphically isometric if there exists
a one–to–one linear operator L : U 7→ V such that

∀u ∈ U : ‖L(u)‖V = ‖u‖U .

The operator L is called an isomorphism.
Let H be a Hilbert space and U ⊂ H be a closed subspace. The space U⊥ defined by

U⊥ := {u ∈ H | ∀v ∈ U : (u, v)H = 0} (3.8)
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is called the complementary space to U and the orthogonal decomposition

H = U ⊕ U⊥

holds, which means that

∀u ∈ H ∃v ∈ U ∃w ∈ U⊥ : u = v + w.

Let H be a Hilbert space. We say that the set E := {ei ∈ H | i ∈ N} forms a base of the
space H if the following two assumptions are fulfilled

(i) ∀u ∈ H ∀i ∈ N ∃αi ∈ R : u =
∑∞

i=1 αiei ,

(ii) ∀i ∈ N ∀αi ∈ R :
∑∞

i=1 αiei = 0 ⇒ αi = 0 .

The vectors ei are the base vectors and the real numbers αi are the coordinates of the vector u
in the base E. If the base consists of only a finite number of base vectors, we say that H is
finite–dimensional, otherwise, H is infinite–dimensional.

3.1.4 Linear algebra

Linear algebra, cf. GOLUB AND VAN LOAN [69] or DOSTÁL [57], is a special case of the linear
functional analysis, where we work with finite–dimensional Hilbert spaces – the Euclidean spaces.
By the Euclidean space Rn, n ∈ N, we mean the Hilbert space Rn equipped with the scalar product

(u,v) := u · v, u · v :=

n∑

i=1

uivi,

where u := (u1, . . . , un) ∈ Rn, v := (v1, . . . , vn) ∈ Rn stand for column vectors. Then the set
{e1, . . . , en} forms the Euclidean base, where all the entries of the Euclidean base vector ei ∈ Rn

are zeros except for the i–th entry which is one.
Let A := (A1, . . . ,Am) : Rn 7→ Rm be a linear vector operator acting between two Euclidean

spaces. Then we can represent A by the following matrix

A :=




a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n
...

...
. . .

...
am,1 am,2 . . . am,n


 , where ai,j := Ai(ej) for i = 1, . . . ,m, j = 1, . . . , n.

We will also denote the matrix by A := (ai,j) ≡ (ai,j)i,j ∈ Rm×n. From the linearity of A it
follows that for a vector u := (u1, u2, . . . , un) ∈ Rn

A(u) = A · u, where A · u :=




∑n
j=1 a1,juj∑n
j=1 a2,juj

...∑n
j=1 am,juj


 .

We define the matrix norm ‖ · ‖ : Rm×n 7→ R by

‖A‖ := max
i,j

|ai,j| . (3.9)
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By the matrix AT :=
(
aT

i,j

)
∈ Rn×m we denote the transpose matrix to the matrix A, where

the entries of AT are as follows:

aT
i,j := aj,i for i = 1, . . . , n, j = 1, . . . ,m.

The mapping AT : Rm 7→ Rn, which is represented by the matrix AT , is called the transpose
mapping to the mapping A.

Let A := (A1, . . . ,Am) : Rn 7→ Rm and B := (B1, . . . ,Bp) : Rm 7→ Rp be linear vector op-
erators, represented by the matrices A := (ai,j) ∈ Rm×n and B := (bi,j) ∈ Rp×m, respectively.
Then it can be easily proven that the compound mapping C := B ◦ A : Rn 7→ Rp, defined by

[B ◦ A] (u) := B (A(u)) , u ∈ Rn,

is represented by the matrix C := (ci,j) ∈ Rp×n, where

ci,j :=

m∑

k=1

bi,kak,j for i = 1, . . . , p, j = 1, . . . , n.

The linear algebra provides a powerful tool for solving linear operator equations. Given a
linear mapping A : Rn 7→ Rm and a vector f := (f1, . . . , fm) ∈ Rm, the linear operator
equation

A(u) = f , (3.10)

solved for u ∈ Rn, can be equivalently written as a system of linear algebraic equations, the
matrix form of which is

A · u = f , (3.11)

where the matrix A := (ai,j) ∈ Rm×n represents the linear operator A. Moreover, if m = n
and if there exists the inverse operator A−1 : Rn 7→ Rn, then the solution to the linear operator
equation (3.10) is represented by

u = A−1(f).

The latter can be again written in terms of matrices. To this end, we introduce a multilinear form
det(A), called the determinant of the matrix A, which is recursively defined by

det(A) :=

{
a1,1 , n = 1∑n

j=1(−1)j+1det(A1,j) , n ≥ 2
, (3.12)

where the matrix Ai,j ∈ R(n−1)×(n−1) is made from the matrix A ∈ Rn×n by excluding its i–th
row and j–th column. Further, to the matrix A we associate the adjoint matrix Ã := (ãi,j) ∈
Rn×n by

ãi,j := (−1)i+jdet(Aj,i) . (3.13)

Lemma 3.3. Let A : Rn 7→ Rn, n ∈ N, be a linear operator, which is represented by the
matrix A ∈ Rn×n. Then there exists the inverse linear operator A−1 : Rn 7→ Rn if and only if
det(A) 6= 0. The corresponding inverse matrix is then as follows:

A−1 :=
1

det(A)
Ã (3.14)

and it is such that
A ·A−1 = A−1 · A = I,

where I := [e1, . . . , en] ∈ Rn×n, where ei ∈ Rn denotes an Euclidean base vector.
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Proof. See GOLUB AND VAN LOAN [69].

Let a matrix A ∈ Rn×n be given. If there does not exist the inverse matrix A−1 ∈ Rn×n, then
A is said to be a singular matrix. Otherwise, A is nonsingular and then the solution to the system
of linear algebraic equations (3.11) reads as follows:

u =
1

det(A)
Ã · f . (3.15)

Note that (3.15) is extremely inappropriate for practical calculations of u, since the computation
of both det(A) and Ã is very time–consuming. We will rather use (3.15) for analysis only.

Given a nonsingular matrix A ∈ Rn×n, the transposition and the inversion are mutually com-
mutative and we abbreviate them as follows:

A−T :=
(
A−1

)T
=
(
AT
)−1

.

PSfrag replacements

x1x1

x2x2

x3x3

e1

e2

e3

A

A(e1)

A(e2)

A(e3)

Figure 3.1: Linear transformation of a unit cube

The determinant det(A) has a clear geometric meaning, which is depicted in Fig. 3.1. If we
write the matrix A columnwise as A := (a1, . . . ,an), then the vectors ai := (a1,i, . . . , an,i) =
A(ei) are the images of the Euclidean base vectors ei in the mapping A. The vectors ei determine
an n–th dimensional unit cube, while the value |det(A)| is the n–th dimensional volume of the
image of this cube after the transformation A. This determinant property is for example used,
when a substitution is employed in some n–th dimensional, e.g., volume integration.

3.2 Preliminaries from real analysis

A domain is due to HASLINGER AND NEITTAANMÄKI [85, p. 2] a bounded, open, and connected
set Ω ⊂ Rm, m ∈ N. The symbol Ω stands for the closure of Ω, ∂Ω is the boundary of Ω, and
n denotes the unit outer normal vector to the boundary ∂Ω. As only two– or three–dimensional
domains are meaningful for optimal shape design, we employ the following:
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Assumption 3.1. In all what follows we will assume that Ω denotes a nonempty, bounded, open,
and connected subset of Rm, where m ∈ {2, 3}.

Nevertheless, all the results up to Chapter 5 are valid for any m ∈ N.

3.2.1 Continuous function spaces

This section is due to HASLINGER AND NEITTAANMÄKI [85, p. 2–4].
A sequence {un}∞n=1 of real–valued functions defined in Ω is uniformly bounded in Ω if there

exists a constant C > 0 such that

∀n ∈ N ∀x ∈ Ω : |un(x)| ≤ C.

Let F be a collection of functions u : Ω → R. We say that the functions belonging to F and
the set F itself are equicontinuous at x ∈ Ω if

∀ε > 0 ∃δ(ε,x) > 0 ∀u ∈ F : ‖y − x‖ < δ(ε,x) ⇒ |u(y) − u(x)| ≤ ε.

Functions are equicontinuous in Ω if they are equicontinuous at any x ∈ Ω.
Let {un}∞n=1 be a sequence of functions and let u be a function, all defined over Ω. We say

that un uniformly converges to u if

max
x∈Ω

{|un(x) − u(x)|} → 0, as n → ∞, (3.16)

and we denote this convergence by un ⇒ u in Ω, as n → ∞.

Theorem 3.2. (Ascoli–Arzelà) Let {un}∞n=1 be a set of uniformly bounded equicontinuous func-
tions in Ω, un : Ω 7→ R. Then there exists a subsequence {unk

}∞k=1 ⊂ {un}∞n=1 and a function u
(continuous in Ω) such that unk

⇒ u in Ω, as k → ∞.

Proof. See ODEN AND DEMKOWICZ [149, p. 365].

Let k ∈ N ∪ {0}. The symbol Ck(Ω) denotes the space of continuous real–valued functions
that are differentiable up to the order k. In particular, we denote the space of continuous functions
by

C(Ω) := C0(Ω),

which, being equipped with the norm

‖u‖C(Ω) := max
x∈Ω

|u(x)|,

forms a Banach space.

Lemma 3.4. Let ω ⊂ Rl and Ω ⊂ Rm be domains, where l,m ∈ N. Let u := (u1, . . . , um) ∈[
Ck(ω)

]m
and v := (v1, . . . , vn) ∈

[
Ck
(
Ω
)]n

, n ∈ N, be vector functions continuously differen-
tiable up to the order k ∈ N, and let

∀x ∈ ω : u(x) ∈ Ω.

Then v ◦ u ∈
[
Ck(ω)

]n
, where for x ∈ ω the function v ◦ u is defined by

(v ◦ u) (x) := v(u(x)).
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Moreover, partial derivatives of the compound function are as follows:

∂ (v ◦ u)i (x)

∂xj
=

m∑

k=1

∂vi(y)

∂yk

∂uk(x)

∂xj
, i = 1, . . . , n, j = 1, . . . , l, (3.17)

where x := (x1, . . . , xl) ∈ ω and y := (y1, . . . , ym) := (u1(x), . . . , um(x)) ∈ Ω.

Proof. See RUDIN [178, p. 86].

Further, we introduce the space of infinitely differentiable functions by

C∞(Ω) :=

∞⋂

k=1

Ck(Ω)

and the space of infinitely differentiable functions with a compact support by

C∞
0 (Ω) :=

{
v ∈ C∞(Ω) | suppv ⊂ Ω

}
,

where
supp v := {x ∈ Ω | v(x) 6= 0}.

We introduce the space of Lipschitz continuous functions by

C0,1(Ω) :=
{
u ∈ C(Ω) | ∃C > 0 ∀x,y ∈ Ω : |u(x) − u(y)| ≤ C‖x− y‖

}
,

where C > 0 is a Lipschitz constant.
Now we define a class of domains of a more practical use. The following definition is due

to KŘÍŽEK AND NEITTAANMÄKI [115, p. 17] or HASLINGER AND NEITTAANMÄKI [85, p. 4].

Definition 3.1. A nonempty domain Ω ⊂ Rm is said to have a Lipschitz continuous boundary if
for any z ∈ ∂Ω there exists a neighbourhood U := U(z) such that the set U ∩Ω can be expressed,
in some Cartesian coordinate system (x1, . . . , xm), by the inequality xm < F (x1, . . . , xm−1),
where F is a Lipschitz continuous function.

The symbol L denotes the set of all domains with Lipschitz continuous boundaries.

3.2.2 Some fundamental theorems

Here, we refer to the classical textbooks by RUDIN [176, 178]. Let the vector α := (α1, . . . , αm)
denotes a multi–index, where α1, . . . , αm are non–negative integers, and let |α| := α1 + · · ·+αm

be an order of the multi–index. Then for any u ∈ Ck(Ω) and any x ∈ Ω we define the α–th
classical derivative, α ≤ k, at the point x as follows:

Dαu(x) :=





∂|α|u(x)

∂x
α1
1

...∂xαm
m

, |α| ∈ N

u(x) , α = (0, . . . , 0)
.

The following classical theorems of real analysis are due to RUDIN [178].

Theorem 3.3. (Taylor’s theorem) Let Ω be an open subset of Rm, m ∈ N, and let u ∈ Ck
(
Ω
)
.

Let further x := (x1, . . . , xm) ∈ Ω and let z ∈ Rm be such that

∀t ∈ R : 0 ≤ t ≤ 1 ⇒ x + tz ∈ Ω.
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Then

u(x + z) =

k−1∑

i=1

1

i!

∑

0≤|α|≤i

Dαu(x)

m∏

j=1

(xj)
αj + r(z),

where α := (α1, . . . , αm) denotes a multi–index,

i! :=

{∏k
j=1 j , i ∈ N

1 , i = 0

denotes the factorial of i ∈ N ∪ {0}, and where the remainder function r : Ω 7→ R satisfies

lim
z→0

r(z)

|z|k−1
= 0.

Proof. See RUDIN [178, Exercise 30].

Theorem 3.4. (Green’s theorem) Let Ω ⊂ Rm, Ω ∈ L, and let u, v ∈ C1(Ω). Then, the relation
∫

Ω

∂u

∂xi
v dx +

∫

Ω
u

∂v

∂xi
dx =

∫

∂Ω
uvni ds for i = 1, . . . ,m

holds, where n := (n1, . . . , nm) denotes the outer unit normal to ∂Ω.

Proof. See Exercise 1.22.3 in ODEN AND DEMKOWICZ [149, p. 120] for the case m = 2 and ∂Ω
being a (closed) C1 curve.

Corollary 3.1. Let the assumptions on Ω and u hold and let v ∈
[
C1(Ω)

]m
. Then the following

is satisfied ∫

Ω
grad(u) · v dx +

∫

Ω
udiv(v) dx =

∫

∂Ω
(un) · v ds ,

where the differential operators grad and div are respectively defined as follows:

grad(u) :=

(
∂u

∂x1
, . . . ,

∂u

∂xm

)
, u ∈ C1(Ω),

div(v) :=
m∑

i=1

∂vi

∂xi
, v := (v1, . . . , vm) ∈

[
C1(Ω)

]m
.

Proof. Denote v := (v1, . . . , vm), then, for each i = 1, . . . ,m Green’s formula
∫

Ω

∂u

∂xi
vi dx +

∫

Ω
u

∂vi

∂xi
dx =

∫

∂Ω
(uni)vi ds

holds. Summing up the latter for the index i = 1, . . . ,m, we get the assertion.

Corollary 3.2. Let Ω ⊂ R3, Ω ∈ L, and let u,v ∈
[
C1(Ω)

]3
. Then the following is satisfied

∫

Ω
curl(u) · v dx−

∫

Ω
u · curl(v) dx =

∫

∂Ω
(n × u) · v ds, (3.18)

where for u := (u1, u2, u3) ∈
[
C1(Ω)

]3
the differential operators curl is defined by

curl(u) :=

(
∂u3

∂x2
− ∂u2

∂x3
,
∂u1

∂x3
− ∂u3

∂x1
,
∂u2

∂x1
− ∂u1

∂x2

)
, (3.19)
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and the cross product is as follows:

n× u := (n2u3 − n3u2, n3u1 − n1u3, n1u2 − n2u1), (3.20)

where n := (n1, n2, n3) denotes the outer unit normal vector to ∂Ω.

Proof. Using the definitions (3.19), (3.20), and Theorem 3.4, we can easily see that the rela-
tion (3.18) holds.

We will extend Theorem 3.4 for a general linear differential operator of the first order. To this
end we define the following.

Definition 3.2. Suppose Ω ⊂ Rm, Ω ∈ L. Let B :
[
C1(Ω)

]ν1 7→
[
C(Ω)

]ν2 , ν1, ν2 ∈ N, be a
linear differential operator of the first order defined by

B(u) := (B1(u), . . . , Bν2
(u)) , where Bi(u) :=

ν1∑

k=1

m∑

l=1

, b
(k,l)
i

∂uk

∂xl
, (3.21)

where b
(k,l)
i ∈ R for i = 1, . . . , ν2, and where u := (u1, . . . , uν1

) ∈
[
C1(Ω)

]ν1 . We define the
adjoint operator B∗ :

[
C1(Ω)

]ν2 7→
[
C(Ω)

]ν1 to the operator B by

B∗(v) :=
(
B∗

1(v), . . . , B∗
ν1

(v)
)
, where B∗

k(v) :=

ν2∑

i=1

m∑

l=1

b
(k,l)
i

∂vi

∂xl
for k = 1, . . . , ν2,

(3.22)
and where v := (v1, . . . , vν2

) ∈
[
C1(Ω)

]ν2 .
Moreover, we define the trace operator γ :

[
C(Ω)

]ν1 7→ [C(∂Ω)]ν2 associated to B by

γ(u) := (γ1(u), . . . , γν2
(u)) , where γi(u) :=

ν1∑

k=1

m∑

l=1

b
(k,l)
i uk|∂Ω nl for i = 1, . . . , ν2,

(3.23)
where n := (n1, . . . , nm) is the outer unit normal to ∂Ω.

The following is a consequence of Theorem 3.4.

Corollary 3.3. Let the assumptions and notation of the previous definition are fulfilled. Let u :=
(u1, . . . , uν1

) ∈
[
C1(Ω)

]ν1 and v := (v1, . . . , vν2
) ∈

[
C1(Ω)

]ν2 . Then the following is satisfied

∫

Ω
B(u) · v dx +

∫

Ω
u ·B∗(v) dx =

∫

∂Ω
γ(u) · v ds. (3.24)

Proof. Let u ∈
[
C1(Ω)

]ν1 and v ∈
[
C1(Ω)

]ν2 be arbitrary. Using the previous definition, we
write down the left–hand side of (3.24)

∫

Ω
B(u) · v dx +

∫

Ω
u · B∗(v) dx =

ν1∑

k=1

ν2∑

i=1

m∑

l=1

b
(k,l)
i

(∫

Ω

∂uk

∂xl
vi dx +

∫

Ω
uk

∂vi

∂xl
dx

)
=

=

ν1∑

k=1

ν2∑

i=1

m∑

l=1

b
(k,l)
i

∫

∂Ω
ukvinl ds =

∫

∂Ω
γ(u) · v ds,

where we used Theorem 3.4.
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Theorem 3.5. (Stokes’ theorem) Let Ω ⊂ R3 be an open set and let u := (u1, u2, u3) ∈
[
C1(ω)

]3
,

where ω is a 2–dimensional surface with the boundary ∂ω being a piecewise C 1 curve. Then the
following is satisfied ∫

ω
curl(u) · n dx =

∫

∂ω
u× n ds,

where n := (n1, n2, n3) denotes the outer unit normal to ∂ω.

Proof. See RUDIN [178, p. 287]

3.3 Hilbert function spaces

3.3.1 Lebesgue spaces

Let Ω ∈ L. In the sequel all the integrals will be understood in the Lebesgue’s sense, cf. LUKE Š

AND MALÝ [129]. We introduce the Lebesgue spaces of real–valued functions

Lp(Ω) :=

{
u : Ω → R

∣∣∣∣
∫

Ω
|u|p dx < +∞

}
, p ∈ [1,∞),

equipped with the norm

‖u‖Lp(Ω) :=

(∫

Ω
|u|p dx

)1/p

, u ∈ Lp(Ω).

Let p, q ∈ (1,∞) be adjoint by
1

p
+

1

q
= 1

and let u ∈ Lp(Ω), v ∈ Lq(Ω), then the following Hölder inequality holds
∣∣∣∣
∫

Ω
uv dx

∣∣∣∣ =

(∫

Ω
|u|p dx

)1/p(∫

Ω
|v|q dx

)1/q

. (3.25)

The Lebesgue space of measurable essentially bounded functions is defined by

L∞(Ω) :=

{
u : Ω → R

∣∣∣∣ ess sup
x∈Ω

|u(x)| < +∞
}

and it is equipped with the norm

‖u‖L∞(Ω) := ess sup
x∈Ω

|u(x)|, u ∈ L∞(Ω).

We say that the set Ω is measurable in the Lebesgue sense if the following Lebesgue integral
exists

meas(Ω) :=

∫

Ω
dx,

and we call it the measure of Ω.
Let Ω ∈ L. We say that the function u ∈ L1(Ω) is defined almost everywhere (a.e.) if it is

defined for each x ∈ Ω \ω, where the subset ω ⊂ Ω is such that meas(ω) = 0. The notion almost
everywhere is understood similarly in different contexts, e.g., the sequence {un}∞n=1 ⊂ L1(Ω) is
said to converge almost everywhere to u : Ω 7→ R if for any ω ⊂ Ω such that meas(ω) = 0 the
following holds

un(x) → u(x) in Ω \ ω.
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Theorem 3.6. (Lebesgue dominated convergence theorem) Let {un}∞n=1 ⊂ L1(Ω) be a sequence
of functions measurable in the Lebesgue’s sense. Let un → u almost everywhere in Ω, where
u : Ω → R is a function. If there exists a function v ∈ L1(Ω) such that |un| ≤ v almost
everywhere in Ω for all n ∈ N, then u ∈ L1(Ω) and

∫

Ω
u dx = lim

n→∞

∫

Ω
un dx.

Proof. See LUKEŠ AND MALÝ [129, p. 26].

3.3.2 Sobolev spaces

There is a lot of references on this topic. Let us mention the monographs by SOBOLEV [194],
NEČAS [141], ADAMS [4], KUFNER, JOHN, AND FUČÍK [116], MAZYA [134], or the paper
by DOKTOR [56].

The function z ∈ L2(Ω) is said to be the α–th generalized derivative of the function u ∈
L2(Ω) if the following is satisfied

∀v ∈ C∞
0 (Ω) :

∫

Ω
zv dx = (−1)|α|

∫

Ω
uDαv dx. (3.26)

We can easily see that for any u ∈ Ck(Ω), k ∈ N ∪ {0}, for a multi–index α such that |α| ≤ k,
and for z := Dαu ∈ C(Ω), which is the α–th classical derivative of u, the relation (3.26) holds
in virtue of Theorem 3.4. Therefore, we can extend the symbol Dαu and we denote the α–th
generalized derivative still by Dαu := z.

Now, for k ∈ N ∪ {0} we define the Sobolev spaces as follows:

Hk(Ω) := {u ∈ L2(Ω) | ∀α : |α| ≤ k ⇒ ∃Dαu ∈ L2(Ω)}.

The latter, equipped with the scalar product

(u, v)k,Ω :=
∑

|α|≤k

∫

Ω
DαuDαv dx, u, v ∈ Hk(Ω),

forms a Hilbert space with the following induced norm and seminorm

‖u‖k,Ω :=
√

(u, u)k,Ω, |u|k,Ω :=

√√√√
∑

|α|=k

∫

Ω
|Dαu|2 dx, u ∈ Hk(Ω),

respectively. The Sobolev spaces of vector functions
[
Hk(Ω)

]n
, n ∈ N, equipped with the scalar

product

(u,v)n,k,Ω :=
n∑

i=1

(ui, vi)k,Ω, u,v ∈
[
Hk(Ω)

]n
,

where u := (u1, . . . , un) and v := (v1, . . . , vn) are Hilbert spaces, too.
We will make use of some properties of Sobolev spaces. The following theorem gives us an

insight how functions behave along the boundary ∂Ω.

Theorem 3.7. (Trace theorem) Let Ω ∈ L. Then there exists exactly one linear continuous oper-
ator γ : H1(Ω) 7→ L2(∂Ω) such that

∀u ∈ C∞(Ω) : γ(u) = u|∂Ω.
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Proof. See KUFNER, JOHN, AND FUČÍK [116, p. 318] or NEČAS [141, p. 15].

The function γ(u) is called the trace of u. The trace theorem enables us to define the space

H1
0 (Ω) :=

{
u ∈ H1(Ω) | γ(u) = 0

}
.

Finally, we denote the space of traces by

H1/2(∂Ω) :=
{
v ∈ L2(∂Ω) | ∃u ∈ H1(Ω) : γ(u) = v

}

and its dual space by H−1/2(∂Ω).
The spaces

[
C∞

(
Ω
)]n

and [C∞
0 (Ω)]n, respectively, are dense in

[
H1(Ω)

]n
and

[
H1

0 (Ω)
]n

,
i.e.,

[
H1(Ω)

]n
=
[
C∞

(
Ω
)]n

and
[
H1

0 (Ω)
]n

= [C∞
0 (Ω)]n in the norm ‖ · ‖n,1,Ω. (3.27)

The next theorem extends Theorem 3.4.

Theorem 3.8. (Green’s theorem) Let Ω ⊂ Rm, Ω ∈ L, and let u, v ∈ H1(Ω). Then the relation
∫

Ω

∂u

∂xi
v dx +

∫

Ω
u

∂v

∂xi
dx =

∫

∂Ω
γ(u)γ(v)ni ds for i = 1, . . . ,m

holds, where n := (n1, . . . , nm) denotes the outer unit normal to ∂Ω.

Proof. See NEČAS [141, p. 29].

Note that, avoiding some additional effort, yet we have not defined either the boundary integral
or the space L2(∂Ω), for which we refer to KUFNER, JOHN, AND FUČÍK [116] or NEČAS [141].

The last theorem, of which we will make use later when analyzing the ellipticity of differential
operators in H1(Ω), is due to HASLINGER AND NEITTAANMÄKI [85, p. 9] or KŘÍŽEK AND

NEITTAANMÄKI [115, p. 26].

Theorem 3.9. (Friedrichs’ inequality) Let Ω ∈ L. Then there exists a positive constant C3 ≡
C3(Ω) such that

∀u ∈ H1
0 (Ω) : ‖u‖1,Ω ≤ C3|u|1,Ω.

Proof. See NEČAS [141, p. 30].

3.3.3 The space H(grad)

Let Ω ⊂ Rm, Ω ∈ L. In the previous section we extended the notion of the partial derivative
to the generalized case. Now we extend the differential operator grad : C 1(Ω) 7→

[
C(Ω)

]m
onto a subspace of L2(Ω). The function z ∈

[
L2(Ω)

]m
is said to be the generalized gradient of

u ∈ L2(Ω) if the following is satisfied

∀v ∈ [C∞
0 (Ω)]m :

∫

Ω
udiv(v) dx = −

∫

Ω
z · v dx,

and we denote the generalized gradient by grad(u) := z. In particular, from (3.26) it is clear that

∀u ∈ H1(Ω) : grad(u) =

(
∂u

∂x1
, . . . ,

∂u

∂xm

)
,
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where the partial derivatives are the generalized ones. We define the space

H(grad; Ω) :=
{
u ∈ L2(Ω) | ∃z ∈

[
L2(Ω)

]m
: z = grad(u)

}
.

The latter together with the scalar product

(u, v)grad,Ω :=

∫

Ω
uv dx +

∫

Ω
grad(u) · grad(v) dx, u, v ∈ H(grad; Ω),

forms a Hilbert space. We introduce the following induced norm and seminorm

‖u‖grad,Ω :=
√

(u, u)grad,Ω, |u|grad,Ω :=

√∫

Ω
‖grad(u)‖2 dx, u ∈ H(grad; Ω),

respectively. Clearly

‖u‖2
grad,Ω = ‖u‖2

0,Ω + |u|2grad,Ω, u ∈ H(grad; Ω),

holds. From the definition of H1(Ω) it is obvious that H(grad; Ω) = H1(Ω), (u, v)grad,Ω =
(u, v)1,Ω, ‖u‖grad,Ω = ‖u‖1,Ω, and |u|grad,Ω = |u|1,Ω. Therefore, Theorem 3.7 holds and we can
define the space

H0(grad; Ω) := {u ∈ H(grad; Ω) | γ(u) = 0} ,

where the trace operator

γ(u) := γ(u)n,

where n := (n1, . . . , nm) denotes the outer unit normal to ∂Ω and γ is due to Theorem 3.8.
Obviously, H0(grad; Ω) = H1

0 (Ω) holds and H0(grad; Ω)/Ker(grad; Ω) is equal to H1
0 (Ω),

since Ker(grad; Ω) = {0}, where due to (3.2)

Ker(grad; Ω) := {u ∈ H0(grad; Ω) | grad(u) = 0} . (3.28)

Theorem 3.10. (Green’s theorem in H(grad)) Let Ω ⊂ Rm, Ω ∈ L, and let u ∈ H(grad; Ω),
v := (v1, . . . , vm) ∈

[
H1(Ω)

]m
. Then the relation

∫

Ω
grad(u) · v dx +

∫

Ω
udiv(v) dx =

∫

Ω
γ(u) · v dx

holds, where the differential operator div is extended onto
[
H1(Ω)

]m
as follows:

div(v) :=

m∑

i=1

∂vi

∂xi
, v := (v1, . . . , vm) ∈

[
H1(Ω)

]m
.

Proof. We use Theorem 3.8 and similar arguments as in the proof of Corollary 3.1.

Finally, in Theorem 3.9 we replace the symbols ‖u‖1,Ω and |u|1,Ω by the symbols ‖u‖grad,Ω

and |u|grad,Ω, respectively, and the theorem holds with the same constant C3.
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3.3.4 The space H(curl)

Let Ω ⊂ R3 and Ω ∈ L. Now, like in the cases of Dα and grad, we extend the differential
operator curl :

[
C1(Ω)

]3 7→
[
C(Ω)

]3
onto a subspace of

[
L2(Ω)

]3
. The function z ∈

[
L2(Ω)

]3

is said to be the generalized rotation of u ∈
[
L2(Ω)

]3
if the following is satisfied

∀v ∈ [C∞
0 (Ω)]3 :

∫

Ω
u · curl(v) dx =

∫

Ω
z · v dx,

and we denote the generalized rotation by curl(u) := z. We define the space

H(curl; Ω) :=
{
u ∈

[
L2(Ω)

]3 ∣∣∣ ∃z ∈
[
L2(Ω)

]3
: z = curl(u)

}
,

which, together with the scalar product

(u,v)curl,Ω :=

∫

Ω
u · v dx +

∫

Ω
curl(u) · curl(v) dx, u,v ∈ H(curl; Ω),

forms a Hilbert space. We introduce the induced norm and seminorm

‖u‖curl,Ω :=
√

(u,u)curl,Ω, |u|curl,Ω :=

√∫

Ω
‖curl(u)‖2 dx, u ∈ H(curl; Ω),

respectively, and the following is satisfied

‖u‖2
curl,Ω = ‖u‖2

3,0,Ω + |u|2curl,Ω, u ∈ H(curl; Ω).

The following two theorems are due to GIRAULT AND RAVIART [67, p. 34].

Theorem 3.11. (Trace theorem in H(curl)) Let Ω ⊂ R3, Ω ∈ L. Then there exists exactly one

linear continuous operator γ : H(curl; Ω) 7→
[
H−1/2(∂Ω)

]3
such that

∀u ∈
[
C∞(Ω)

]3
: γ(u) = n× u|∂Ω,

where n is the outer unit normal to ∂Ω.

Proof. See GIRAULT AND RAVIART [67, p. 34].

Theorem 3.11 enables us to define the space

H0(curl; Ω) := {u ∈ H(curl; Ω) | γ(u) = 0} .

Then, due to (3.2),

Ker(curl; Ω) := {u ∈ H0(curl; Ω) | curl(u) = 0} .

By GIRAULT AND RAVIART [67, Corollary 2.9], the space Ker(curl; Ω) is equal to the space

H0,0(curl; Ω) :=
{
u ∈

[
L2(Ω)

]3 ∣∣ ∃p ∈ H1
0 (Ω) : u = grad(p)

}
(3.29)

and, by HIPTMAIR [91, p. 94–95], the quotient space H0(curl; Ω)/Ker(curl; Ω) is isomorphi-
cally isometric to

H0,⊥(curl; Ω) :=

{
u ∈ H0(curl; Ω)

∣∣∣∣ ∀v ∈ H1
0 (Ω) :

∫

Ω
u · grad(v) dx = 0

}
, (3.30)
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and, moreover, the following orthogonal decomposition holds

H0(curl; Ω) = H0,⊥(curl; Ω) ⊕H0,0(curl; Ω).

The spaces
[
C∞

(
Ω
)]3

and [C∞
0 (Ω)]3 are dense in H(curl; Ω) and H0(curl; Ω), respectively,

i.e.,

H(curl; Ω) =
[
C∞

(
Ω
)]3

and H0(curl; Ω) = [C∞
0 (Ω)]3 in the norm ‖ · ‖curl,Ω. (3.31)

Theorem 3.12. (Green’s theorem in H(curl)) Let Ω ⊂ R3, Ω ∈ L, and let u ∈ H(curl; Ω),
v ∈

[
H1(Ω)

]3
. Then the relation

∫

Ω
curl(u) · v dx−

∫

Ω
u · curl(v) dx = 〈γ(u),v〉∂Ω

holds, where 〈γ(u),v〉∂Ω denotes the duality pairing between
[
H−1/2(∂Ω)

]3
and

[
H1/2(∂Ω)

]3
.

Proof. See GIRAULT AND RAVIART [67, p. 34].

The last theorem is a Friedrichs’–like inequality and it will be useful for analyzing the ellip-
ticity of differential operators defined on H(curl; Ω).

Theorem 3.13. (Friedrichs’ inequality in H(curl)) Let Ω ⊂ R3, Ω ∈ L. Then there exists a
positive constant C4 ≡ C4(Ω) such that

∀u ∈ H0,⊥(curl; Ω) : ‖u‖curl,Ω ≤ C4|u|curl,Ω.

Proof. See HIPTMAIR [91, p. 96].

3.3.5 The space H(div)

Let Ω ⊂ R3 and Ω ∈ L. We extend the differential operator div :
[
C1(Ω)

]3 7→ C(Ω) onto

a subspace of
[
L2(Ω)

]3
. The function z ∈ L2(Ω) is said to be the generalized divergence of

u ∈
[
L2(Ω)

]3
if the following is satisfied

∀v ∈ C∞
0 (Ω) :

∫

Ω
u · grad(v) dx = −

∫

Ω
zv dx,

and we denote the generalized divergence by div(u) := z. We define the space

H(div; Ω) :=
{
u ∈

(
L2(Ω)

)3 ∣∣ ∃z ∈ L2(Ω) : z = div(u)
}

,

which, together with the scalar product

(u,v)div,Ω :=

∫

Ω
u · v dx +

∫

Ω
div(u) div(v) dx, u,v ∈ H(div; Ω),

forms a Hilbert space. We introduce the induced norm and seminorm

‖u‖div,Ω :=
√

(u,u)div,Ω, |u|div,Ω :=

√∫

Ω
(div(u))2 dx, u ∈ H(div; Ω),

respectively, and the following is satisfied

‖u‖2
div,Ω = ‖u‖2

3,0,Ω + |u|2div,Ω, u ∈ H(div; Ω).

The following two theorems are due to GIRAULT AND RAVIART [67, p. 27–28].
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Theorem 3.14. (Trace theorem in H(div)) Let Ω ⊂ R3, Ω ∈ L. Then there exists exactly one
linear continuous operator γ : H(div; Ω) 7→ H−1/2(∂Ω) such that

∀u ∈
[
C∞(Ω)

]3
: γ(u) = n · u|∂Ω,

where n is the outer unit normal to ∂Ω.

Proof. See GIRAULT AND RAVIART [67, p. 27].

Theorem 3.14 enables us to define the spaces

H0(div; Ω) := {u ∈ H(div; Ω) | γ(u) = 0} ,

Ker(div; Ω) := {u ∈ H0(div; Ω) | div(u) = 0} .

The spaces
[
C∞

(
Ω
)]3

and [C∞
0 (Ω)]3, respectively, are dense in H(div; Ω) and H0(div; Ω),

i.e.,

H(div; Ω) =
[
C∞

(
Ω
)]3

and H0(div; Ω) = [C∞
0 (Ω)]3 in the norm ‖ · ‖div,Ω.

Theorem 3.15. (Green’s theorem in H(div)) Let Ω ⊂ R3, Ω ∈ L, and let u ∈ H(div; Ω),
v ∈ H1(Ω). Then the relation

∫

Ω
div(u) v dx +

∫

Ω
u · grad(v) dx = 〈γ(u), v〉∂Ω

holds, where 〈γ(u), v〉∂Ω denotes the duality pairing between γ(u) ∈ H−1/2(∂Ω) and v ∈
H1/2(∂Ω).

Proof. See GIRAULT AND RAVIART [67, p. 28].

3.3.6 The abstract space H(B)

In the previous subsections we could observe a similar structure, which we will formally summa-
rize now.

Suppose Ω ⊂ Rm, Ω ∈ L. Let B :
[
C1(Ω)

]ν1 7→
[
C(Ω)

]ν2 be a linear differential operator
of the first order defined by (3.21), where ν1, ν2 ∈ N. Let the adjoint operator B∗ :

[
C1(Ω)

]ν2 7→[
C(Ω)

]ν1 be defined by (3.22). Then, the Green’s formula (3.24) holds. We extend the differential
operator B onto a subspace of

[
L2(Ω)

]ν1 . The function z ∈
[
L2(Ω)

]ν2 is said to be the gen-
eralized first–order linear differential operator B of u ∈

[
L2(Ω)

]ν1 if the following is satisfied

∀v ∈ [C∞
0 (Ω)]ν2 :

∫

Ω
u · B∗(v) dx = −

∫

Ω
z · v dx, (3.32)

and we denote the generalized operator by B(u) := z. We define the space

H(B; Ω) :=
{
u ∈

[
L2(Ω)

]ν1 | ∃z ∈
[
L2(Ω)

]ν2 : z = B(u)
}

,

which is obviously a linear space. Further, we define the bilinear form

(u,v)B,Ω :=

∫

Ω
u · v dx +

∫

Ω
B(u) · B(v) dx, u,v ∈ H(B; Ω), (3.33)
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which can be shown to be a scalar product on H(B; Ω). The space H(B; Ω), together with this
scalar product, forms a Hilbert space. The induced norm and seminorm are as follows:

‖u‖B,Ω :=
√

(u,u)B,Ω, |u|B,Ω :=

√∫

Ω
‖B(u)‖2 dx, u ∈ H(B; Ω),

and the following is satisfied

‖u‖2
B,Ω = ‖u‖2

ν1 ,0,Ω + |u|2B,Ω, u ∈ H(B; Ω). (3.34)

We assume that the following trace property holds.

Assumption 3.2. Let Ω ⊂ Rm, Ω ∈ L. We assume that the trace operator γ :
[
C∞(Ω)

]ν1 7→
[C(∂Ω)]ν2 defined by (3.23) can be uniquely extended by continuity to the operator, still denoted
by, γ : H(B; Ω) 7→

[
H−1/2(∂Ω)

]ν2 such that on
[
C∞(Ω)

]ν1 the relation (3.23) holds.

Now, we define the spaces

H0(B; Ω) := {u ∈ H(B; Ω) | γ(u) = 0} ,

Ker(B; Ω) := {u ∈ H0(B; Ω) | B(u) = 0} . (3.35)

Assumption 3.3. Let Ω ⊂ Rm, Ω ∈ L. We assume that
[
C∞

(
Ω
)]ν1 and [C∞

0 (Ω)]ν1 , respectively,
are dense in H(B; Ω) and H0(B; Ω), i.e.,

H(B; Ω) =
[
C∞

(
Ω
)]ν1 and H0(B; Ω) = [C∞

0 (Ω)]ν1 in the norm ‖ · ‖B;Ω.

The following lemma gives a space which will be useful for the finite element approximation.

Lemma 3.5. The space

H0,⊥(B; Ω) := {u ∈ H0(B; Ω) | ∀ϕ ∈ Ker(B; Ω) : (u,ϕ)ν1,0,Ω = 0} (3.36)

is isomorphically isometric to H0(B; Ω)/Ker(B; Ω) and the orthogonal decomposition

H0(B; Ω) = H0,⊥(B; Ω) ⊕Ker(B; Ω) (3.37)

holds.

Proof. Here, we use exactly the same technique as presented in HIPTMAIR [91, p. 94–95].
Let us recall the norm in the quotient space H0(B; Ω)/Ker(B; Ω)

‖[v]‖H0(B;Ω)/Ker(B;Ω) := min
w∈Ker(B;Ω)

‖v + w‖B,Ω, v ∈ H0(B; Ω).

We look for a subspace of H0(B; Ω) that consists of the minimizers v + w(v) determined as
follows:

‖v + w(v)‖2
B,Ω = ‖v‖2

B,Ω + min
w(v)∈Ker(B;Ω)

{
2 (v,w(v))ν1,0,Ω + ‖w(v)‖2

ν1,0,Ω

}
.

Due to Lemma 3.2, we arrive at the variational problem

Find w(v) ∈ Ker(B; Ω) :

(ϕ,w(v))ν1,0,Ω = − (v,ϕ)ν1,0,Ω ∀ϕ ∈ Ker(B; Ω)

}
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and, since (·, ·)ν1 ,0,Ω is a scalar product on Ker(B; Ω), by Theorem 3.1 w(v) is unique. There-
fore, the minimizer u := v + w(v) ∈ H0(B; Ω) is uniquely characterized by

∀ϕ ∈ Ker(B; Ω) : (u,ϕ)ν1,0,Ω = (u,ϕ)B,Ω = 0. (3.38)

The space H0,⊥(B; Ω), see (3.36), which consists of such minimizers is a closed subspace of
H0(B; Ω) and, due to (3.38) and (3.8),

H0,⊥(B; Ω) = Ker(B; Ω)⊥,

which completes the proof.

Further, we assume that the following Green’s formula holds.

Assumption 3.4. Let Ω ⊂ Rm, Ω ∈ L, and let u ∈ H(B; Ω), v ∈
[
H1(Ω)

]ν2 . We assume that
the relation ∫

Ω
B(u) · v dx +

∫

Ω
u · B∗(v) dx = 〈γ(u),v〉∂Ω

holds, in which the duality pairing between
[
H−1/2(∂Ω)

]ν2 and
[
H1/2(∂Ω)

]ν2 is denoted by
〈γ(u),v〉∂Ω .

Finally, we will need the ellipticity. To this end, we assume that the following Friedrichs’–like
inequality holds.

Assumption 3.5. Let Ω ⊂ Rm, Ω ∈ L. We assume that there exists a positive constant C5 ≡
C5(Ω) such that

∀u ∈ H0,⊥(B; Ω) : ‖u‖B,Ω ≤ C5|u|B,Ω.

At the end, we summarize how the abstract operators B, B∗, and γ read in the spaces intro-
duced above.

m ν1 ν2 H(B; Ω) B B∗ γ(v)

∈ N 1 m H(grad; Ω) grad div vn

∈ N m 1 H(div; Ω) div grad n · v
3 3 3 H(curl; Ω) curl −curl n× v

Table 3.1: Operators in Hilbert function spaces

3.4 Weak formulations of boundary vector–value problems

Let us refer to some more literature, where the authors deal with weak settings of boundary value
problems, see RITZ [172], AUBIN [12], WASHIZU [212], GROSSMANN AND ROSS [71], JOHN-
SON [101], SHOWALTER [189], or HLAVÁČEK, HASLINGER, NEČAS, AND LOVÍŠEK [95].

Let Ω ⊂ Rm, Ω ∈ L. Like in KŘÍŽEK AND NEITTAANMÄKI [115, p. 27], we consider a
boundary value problem, the strong formulation of which reads as follows: Find u ∈

[
C2(Ω)

]ν1 ,
ν1 ∈ N, such that

−B∗ (D · B(u)) = f in Ω

γ(u) = 0 on ∂Ω

}
, (S)
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where B, B∗, and γ are defined by Definition 3.2, and where D ∈
[
C1(Ω)

]ν2×ν2 , ν2 ∈ N, is a
uniformly positive definite real–valued matrix, i.e., there exists a constant C6 > 0 such that

∀x ∈ Ω∀v ∈ Rν2 : v · (D(x) · v) ≥ C6‖v‖2, (3.39)

and where f ∈
[
C(Ω)

]ν1 . The function u ∈
[
C2(Ω)

]ν1 is called the classical solution to (S).
Now, we introduce a weak setting of (S), which will enable us to weaken the assumptions on

the differentiability of the data in (S) and to deal with problems of more practical purposes. Let
us take into account the extensions of definitions of B, B∗, and γ from Section 3.3.6, as well as
Assumptions 3.2–3.5 and Lemma 3.5 introduced there. We define the continuous bilinear form
a : H(B; Ω) ×H(B; Ω) 7→ R and the continuous linear functional f : H(B; Ω) 7→ R by

a(v,u) :=

∫

Ω
B(v) · (D ·B(u)) dx, u,v ∈ H(B; Ω), (3.40)

f(v) :=

∫

Ω
f · v dx, v ∈ H(B; Ω), (3.41)

respectively, where f ∈
[
L2(Ω)

]ν1 , D := (di,j) is a matrix the entries of which di,j ∈ L∞(Ω),
i, j = 1, . . . , ν2, and the condition (3.39) holds almost everywhere (a.e.) in Ω. A weak formulation
of the problem (S) reads as follows:

Find u ∈ H0(B; Ω):

a(v,u) = f(v) ∀v ∈ H0(B; Ω)

}
. (3.42)

Just by applying Corollary 3.3, we can see that the classical solution u ∈
[
C2(Ω)

]ν1 of the
problem (S) is also a solution to (3.42). However, the problem (3.42) admits more general and
physically still reasonable data.

We can observe that if u ∈ H0(B; Ω) is a solution to (3.42), then for any p ∈ Ker(B; Ω)
the function u + p is a solution, too. This indicates a Neumann–like problem. Therefore, we
restrict our consideration onto the quotient space H0(B; Ω)/Ker(B; Ω), which is by Lemma 3.5
isomorphically isometric to H0,⊥(B; Ω)), being a subspace of H0(B; Ω). In this case, we have to
introduce a compatibility condition on the right–hand side f

∀p ∈ Ker(B; Ω) :

∫

Ω
f · p dx = 0. (3.43)

The correct weak formulation of (S) reads as follows:

Find u ∈ H0,⊥(B; Ω):

a(v,u) = f(v) ∀v ∈ H0,⊥(B; Ω)

}
, (W )

where f satisfies (3.43). It can be easily verified that a solution u to (W ) also solves the problem
(3.42). On the other hand, the next theorem shows that (W ) has a unique solution, unlike the
problem (3.42).

Theorem 3.16. There exists exactly one solution u ∈ H0,⊥(B; Ω) to the problem (W ). Moreover,
there exists a positive constant C7 such that

‖u‖B,Ω ≤ C7 ‖f‖ν1,0,Ω . (3.44)
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Proof. We will check the assumptions of Lemma 3.1 and the assertion then follows.
Since H0,⊥(B; Ω) is a closed subspace of H0(B; Ω), it is also a Hilbert space equipped with

the scalar product (3.33). The form a is clearly bilinear. Concerning the matrix D, we denote

d := max
i,j

{
ess sup

x∈Ω
|di,j(x)|

}
(3.45)

and, using (3.3) and (3.34), we prove the continuity of a as follows:

|a(v,u)| ≤ d

∣∣∣∣
∫

Ω
B(v) ·B(u) dx

∣∣∣∣ ≤ d ‖B(v)‖ν2 ,0,Ω ‖B(u)‖ν2 ,0,Ω ≤ d ‖v‖B,Ω ‖u‖B,Ω,

where u,v ∈ H(B; Ω), and where we used that D ∈ [L∞(Ω)]ν2×ν2 , (3.3), and (3.34), respec-
tively. The H0,⊥(B; Ω)–ellipticity of a follows from

a(v,v) =

∫

Ω
B(v) · (D · B(v)) dx ≥ C6

∫

Ω
‖B(v)‖2 dx ≥ C6

C2
5

‖v‖2
B,Ω, v ∈ H0,⊥(B; Ω),

(3.46)
where (3.39) and Assumption 3.5 were used, respectively. Finally, f is obviously a linear func-
tional on H(B; Ω) and it is continuous thereon, too, since

|f(v)| =

∣∣∣∣
∫

Ω
f · v dx

∣∣∣∣ ≤ ‖f‖ν1,0,Ω‖v‖ν1,0,Ω ≤ ‖f‖ν1,0,Ω‖v‖B,Ω, v ∈ H(B; Ω),

where we used (3.3) and (3.34), respectively. The assertion now follows from Lemma 3.1, where
the H0,⊥(B; Ω)–ellipticity constant is

C7 :=
C6

C2
5

.

3.4.1 A regularized formulation in H0(B)

In many cases, as in both 2d and 3d magnetostatics, we look for B(u) rather than for u, a solution
to (W ). Since there is the additional condition (3.38) in the definition of the space H0,⊥(B; Ω),
it would be difficult to approximate the space by the finite element method. Therefore, we will
introduce a regularized weak formulation in the original space H0(B; Ω) such that its solution
tends towards the solution u ∈ H0(B; Ω) of the problem (W ), but in the seminorm | · |B,Ω only.

Let ε > 0 be a regularization parameter. We introduce the following bilinear form

aε(v,u) := a(v,u) + ε

∫

Ω
v · u dx, u,v ∈ H(B; Ω), (3.47)

where a is given by (3.40). The regularized weak formulation reads as follows:

Find uε ∈ H0(B; Ω):

aε(v,uε) = f(v) ∀v ∈ H0(B; Ω)

}
, (Wε)

where f is given by (3.41) such that (3.43) holds.

Theorem 3.17. For each ε > 0 there exists a unique solution uε ∈ H0(B; Ω) to the problem
(Wε). Moreover, there exists a positive constant C8(ε) such that

‖uε‖B,Ω ≤ C8(ε) ‖f‖ν1,0,Ω .
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Proof. The proof is fairly the same as the one of Theorem 3.16. The continuity of a is proven as
follows:

|aε(v,u)| ≤ d

∣∣∣∣
∫

Ω
B(v) ·B(u) dx

∣∣∣∣ + ε

∣∣∣∣
∫

Ω
v · u dx

∣∣∣∣ ≤ max {d, ε} ‖v‖B,Ω‖u‖B,Ω, (3.48)

where u,v ∈ H(B; Ω) and where d is given by (3.45). The H0(B; Ω)–ellipticity of aε follows
from

aε(v,v) ≥ C6

∫

Ω
‖B(v)‖2 dx + ε

∫

Ω
|v|2 dx ≥ min{C6, ε}‖v‖2

B,Ω, v ∈ H(B; Ω),

where C6 is given by (3.39). Therefore, the H0(B; Ω)–ellipticity constant is

C8(ε) := min{C6, ε}. (3.49)

Theorem 3.18. The following holds:

B(uε) → B(u) in
[
L2(Ω)

]ν2 , as ε → 0+, (3.50)

where uε ∈ H0(B; Ω) are the solutions to (Wε) and u ∈ H0,⊥(B; Ω) is the solution to (W ).

Proof. Let ε > 0 be arbitrary. Using (3.39) and the definitions of (W ) and (Wε), we have

‖B(uε) −B(u)‖2
ν2 ,0,Ω = |uε − u|2B,Ω =

∫

Ω
‖B(uε) −B(u)‖2 dx ≤

≤ 1

C6

∫

Ω
B(uε − u) · (D · B(uε − u)) dx =

1

C6
a(uε − u,uε − u) ≤

≤ 1

C6
aε(uε − u,uε − u)) =

1

C6
(f(uε − u) − aε(uε − u,u)) =

=
1

C6

(
f(uε − u) − a(uε − u,u) − ε

∫

Ω
(uε − u) · u dx

)

(3.51)
Using the orthogonal decomposition (3.37), there exists uε,⊥ ∈ H0,⊥(B; Ω) and there exists
uε,0 ∈ Ker(B; Ω) such that

uε = uε,⊥ + uε,0.

Using the latter, the condition (3.43), (3.38) and (3.25), the estimate (3.51) reads

‖B(uε) −B(u)‖2
ν2 ,0,Ω = ‖B(uε,⊥) −B(u)‖2

ν2 ,0,Ω ≤

≤ 1

C6

(
f(uε,⊥ − u) − a(uε,⊥ − u,u) − ε

∫

Ω
(uε,⊥ − u) · u dx

)
≤

≤ ε

C6

∣∣∣∣
∫

Ω
(uε,⊥ − u) · u dx

∣∣∣∣ ≤
ε

C6
‖uε,⊥ − u‖B,Ω‖u‖ν1,0,Ω.

Now we use Assumption 3.5

‖B(uε) −B(u)‖2
ν2 ,0,Ω = |uε,⊥ − u|2B,Ω ≤ ε

C5

C6
|uε,⊥ − u|B,Ω‖u‖ν1,0,Ω.

After dividing the latter by |uε,⊥ − u|B,Ω, the statement follows.
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3.4.2 A weak formulation of three–dimensional linear magnetostatics

Here we apply the results of the previous sections to the strong formulation (2.5).
Let Ω ⊂ R3, Ω ∈ L. Taking a look into Table 3.1, at (S), and (2.5), we specify the symbols

B := curl, B∗ := −curl, and γ(v) := n× v|∂Ω,

where n := (n1, n2, n3) denotes the outer unit normal to ∂Ω. Due to (2.5), we determine the
symbols

D :=
1

µ
, f := J,

where µ ∈ L∞(Ω), µ > 0 a.e. in Ω, J ∈
[
L2(Ω)

]3
. The condition (3.39) is now equivalent to

∃µ1 > 0 : µ(x) ≤ µ1 a.e. in Ω (3.52)

in such a way that

C6 :=
1

µ1
.

Since Ker(curl; Ω) is equal to the space H0,0(curl; Ω) defined by (3.29) the condition (3.43)
reads as follows:

∀p ∈ H1
0 (Ω) :

∫

Ω
J · grad(p) dx = 0.

Finally, we specify the terms in (W ). As we have seen in Section 3.3.4, the quotient space
H0(curl; Ω)/Ker(curl; Ω) is isomorphically isometric to the space H0,⊥(curl; Ω), which was
defined by (3.30). The bilinear form (3.40) and the linear form (3.41) are, respectively, determined
by

a(v,u) :=

∫

Ω
curl(v) ·

(
1

µ
curl(u)

)
dx, u,v ∈ H(curl; Ω),

and by

f(v) :=

∫

Ω
J · v dx, v ∈ H(curl; Ω).

We have specified all the assumptions on the abstract weak formulation (W ) introduced in Sec-
tion 3.4. Therefore, Theorem 3.16 holds with the H0,⊥(curl; Ω)–ellipticity constant

C7 :=
1

µ0C2
4

,

where C4 is given by Theorem 3.13. In case of the formulation (Wε), we only recall the regularized
bilinear form

aε(v,u) :=

∫

Ω
curl(v) ·

(
1

µ
curl(u)

)
dx + ε

∫

Ω
v · u dx, u,v ∈ H(curl; Ω),

whose ellipticity constant is given by (3.49).
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3.4.3 A weak formulation of two–dimensional linear magnetostatics

Now we apply the results of Section 3.4 to the strong formulation (2.6).
Let Ω ⊂ R2, Ω ∈ L. We specify the symbols

B := grad, B∗ := −div, and γ(v) := v|∂Ωn,

where n := (n1, n2) denotes the outer unit normal to ∂Ω. Due to (2.6), we determine the symbols

D :=
1

µ
, f := J, (3.53)

where µ ∈ L∞(Ω), µ > 0 a.e. in Ω, J ∈ L2(Ω). We again replace the condition (3.39) by (3.52).
Since Ker(grad; Ω) defined by (3.28) is equal to the zero space {0}, the condition (3.43) always
holds and does not need to be introduced in this case. Finally, we specify the terms in (W ). As
we have seen in Section 3.3.3, the quotient space H0(grad; Ω)/{0} is equal to the space H1

0 (Ω).
The bilinear form (3.40) and the linear functional (3.41) are, respectively, determined by

a(v, u) :=

∫

Ω
grad(v) ·

(
1

µ
grad(u)

)
dx, u, v ∈ H1(Ω),

and by

f(v) :=

∫

Ω
Jv dx, v ∈ H1(Ω).

Now, Theorem 3.16 holds with the H1
0 (Ω)–ellipticity constant

C7 :=
1

µ0C2
3

,

where C3 is given by Theorem 3.9. In this case, we do not need to introduce the regularized
problem (Wε), since all the spaces are equal

H0,⊥(grad; Ω) = H0(grad; Ω) = H1
0 (Ω).
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Chapter 4

Finite element method

In this chapter, we will recall the basic techniques of the finite element method. First, we will
present the ideas and concept of the method. Then, we will deal with algorithmic issues. Further,
approximation properties will be proved. At the end, we will describe the finite elements used
for the linear magnetostatics, namely Lagrange nodal elements on triangles and Nédélec edge
elements on tetrahedra. We refer to KŘÍŽEK AND NEITTAANMÄKI [115, Chapter 4] for a detailed
description of the method.

The large popularity of the method can be documented by the following unsorted list of lit-
erature: GIRAULT AND RAVIART [67], BRAESS [27], BOSSAVIT [26], STRANG AND FIX [200],
CIARLET [45], ZLÁMAL [219], RAVIART AND THOMAS [167], HIPTMAIR [91, 93], ZIENKIE-
WICZ [217], ZIENKIEWICZ AND TAYLOR [218], HASLINGER, MIETTINEN, AND PANAGIOTOP-
ULOS [84], BREZZI AND FORTIN [33], HUGHES [98], JUNG AND LANGER [103], BRENNER

AND SCOTT [32], GROSSMANN AND ROSS [71], JOHNSON [101], KIKUCHI [108], ODEN AND

REDDY [150], SCHWAB [187], SZABÓ AND BABUŠKA [205], BABUŠKA AND AZIZ [14, 15],
GLOWINSKI [68], KŘÍŽEK AND NEITTAANMÄKI [114, 115], KŘÍŽEK [113], NEITTAANMÄKI

AND SARANEN [147, 146], SILVESTER AND FERRARI [192], HACKBUSCH AND SAUTER [79,
80].

4.1 The concept of the method

We consider the regularized weak formulation (Wε) of the abstract elliptic linear boundary vector–
value problem (S), which was introduced in Section 3.4.1. The aim of this chapter is to develop
a method which approximates the continuous regularized solution uε of the problem (Wε) by a
sequence of some discretized solutions uh

ε , where h > 0 stands for a discretization parameter.

4.1.1 Galerkin approximation

Let Vh ⊂ H0(B; Ω) be a closed subspace. We introduce approximations of the bilinear form (3.47)
and of the linear functional (3.41), respectively, by

ah
ε (v,w) :=

∫

Ω
B(v) ·

(
Dh · B(w)

)
dx + ε

∫

Ω
v · w dx, v,w ∈ H(B; Ω), (4.1)

fh(v) :=

∫

Ω
fh · v dx, v ∈ H(B; Ω), (4.2)

39
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where fh ∈
(
L2(Ω)

)ν1 is such that

∀h > 0 ∀p ∈ Ker(B; Ω) :

∫

Ω
fh · p dx = 0,

and where Dh :=
(
dh

i,j

)ν2

i,j=1
is a matrix the entries of which dh

i,j ∈ L∞(Ω) and such that

∀h > 0 : ess sup
x∈Ω

∣∣∣dh
i,j(x)

∣∣∣ ≤ ess sup
x∈Ω

|di,j(x)| , i, j = 1, . . . , ν2. (4.3)

Both fh and Dh are assumed to be piecewise constant. Moreover, we suppose that

∀h > 0 ∀v ∈ Rν2 : v ·
(
Dh(x) · v

)
≥ C6‖v‖2 a.e. in Ω, (4.4)

where C6 > 0 is given by (3.39). We consider the following problem

Find uh
ε ∈ Vh:

ah
ε

(
vh,uh

ε

)
= fh

(
vh
)

∀vh ∈ Vh



 , (W h

ε )

which is called the Galerkin approximation to the problem (Wε).

Theorem 4.1. For each ε > 0 and h > 0 there exists a unique solution uh
ε ∈ Vh to the problem

(W h
ε ). Moreover, there exists a positive constant C8(ε) such that

∀h > 0 : ‖uh
ε‖B,Ω ≤ C8(ε)

∥∥∥fh
∥∥∥

ν1,0,Ω
.

Proof. The proof is fairly the same as the one of Theorem 3.17.
Let ε > 0 and h > 0 be arbitrary. By definition, Vh is a closed subspace of H0(B; Ω),

therefore, it is also a Hilbert space. The form ah
ε is obviously bilinear and fh is a linear functional

on Vh. We have the continuity of ah
ε

∣∣∣ah
ε (v,w)

∣∣∣ ≤ max{dh, ε} ‖v‖B,Ω ‖w‖B,Ω , v,w ∈ H(B; Ω),

where

dh := max
i,j

{
ess sup

x∈Ω

∣∣∣dh
i,j(x)

∣∣∣
}

.

Due to (4.4), we have the Vh–ellipticity of ah
ε

ah
ε (v,v) ≥ min{C6, ε} ‖v‖2

B,Ω , v ∈ H(B; Ω),

independently of h. Finally, the continuity of f h follows from

fh(v) ≤
∥∥∥fh
∥∥∥

ν1,0,Ω
‖v‖B,Ω , v ∈ H(B; Ω).

Therefore, the assertion follows with the Vh–ellipticity constant

C8(ε) := min{C6, ε}. (4.5)
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The following lemma, cf. BRAESS [27], CIARLET [45], or STRANG AND FIX [200], says
that we can study the approximation properties of uh

ε via the approximation of H0(B; Ω) by its
subspaces Vh and via the approximation properties of the forms ah

ε and fh.

Lemma 4.1. (1st Strang’s lemma) Let ε > 0 and h > 0 be a regularization and discretization
parameter, respectively. Then there exists a positive constant C9(ε), independent of h, such that

∀vh ∈ Vh :
∥∥∥uε − uh

ε

∥∥∥
B,Ω

≤ C9(ε)

{∥∥∥uε − vh
∥∥∥
B,Ω

+

+

∣∣aε

(
vh,uh

ε − vh
)
− ah

ε

(
vh,uh

ε − vh
)∣∣

‖uh
ε − vh‖B,Ω

+

+

∣∣f
(
uh

ε − vh
)
− fh

(
uh

ε − vh
)∣∣

‖uh
ε − vh‖B,Ω

}
,

where uε ∈ H0(B; Ω) is a solution to (Wε) and uh
ε ∈ Vh are solutions to (W h

ε ).

Proof. Let h > 0 and vh ∈ Vh be arbitrary. By the triangle inequality,
∥∥∥uε − uh

ε

∥∥∥
B,Ω

≤
∥∥∥uε − vh

∥∥∥
B,Ω

+
∥∥∥uh

ε − vh
∥∥∥
B,Ω

. (4.6)

To make the proof more readable, we introduce the symbol

wh
ε := uh

ε − vh. (4.7)

Now, we use the Vh–ellipticity of aε, the bilinearity of aε, ah
ε , and the definitions of prob-

lems (Wε), (W h
ε ), respectively, and we get

C8(ε)
∥∥∥wh

ε

∥∥∥
2

B,Ω
≤ ah

ε

(
wh

ε ,wh
ε

)
= aε

(
wh

ε ,uε − vh
)
− aε

(
wh

ε ,uε − vh
)

+ ah
ε

(
wh

ε ,wh
ε

)
=

= aε

(
wh

ε ,uε − vh
)

+
(
aε

(
wh

ε ,vh
)
− ah

ε

(
wh

ε ,vh
))

+

+
(
ah

ε

(
wh

ε ,uh
ε

)
− aε

(
wh

ε ,uε

))
=

= aε

(
wh

ε ,uε − vh
)

+
(
aε

(
wh

ε ,vh
)
− ah

ε

(
wh

ε ,vh
))

+

+
(
fh
(
wh

ε

)
− f

(
wh

ε

))
.

Dividing the latter by ‖wh
ε ‖B,Ω and using (3.48) yield

C8(ε)
∥∥∥wh

ε

∥∥∥
B,Ω

≤ max{d, ε}
∥∥∥uε − vh

∥∥∥
B,Ω

+

∣∣aε

(
vh,wh

ε

)
− ah

ε

(
vh,wh

ε

)∣∣
‖wh

ε‖B,Ω

+

+

∣∣f
(
wh

ε

)
− fh

(
wh

ε

)∣∣
‖wh

ε‖B,Ω

.

(4.8)

Combining (4.5), (4.6), (4.7), and (4.8), the assertion is proved, where the constant is as follows:

C9(ε) := max

{
1 +

max{d, ε}
min{C6, ε}

,
1

min{C6, ε}

}
.
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4.1.2 Finite element method

Let Vh be of a finite dimension. Having a base {v1, . . . ,vn} of the space Vh, the problem (W h
ε )

is equivalent to the following system of linear equations

An
ε · un

ε = f n, (4.9)

where the matrix An
ε ∈ Rn×n and the right–hand side vector f n ∈ Rn are as follows:

An
ε :=

(
ah

ε (vi,vj)
)n

i,j=1
, f n :=

(
fh(vi)

)n

i=1
, (4.10)

respectively, and the solution vector un
ε :=

(
un

ε,1, . . . , u
n
ε,n

)
∈ Rn corresponds to the approximate

solution uh
ε in the following way

uh
ε =

n∑

i=1

un
ε,ivi.

The finite element method is a special case of the Galerkin method. The base {v1, . . . ,vn}
of the space Vh is chosen such that the matrix An

ε is sparse. In this case the system (4.9) can be
solved much faster and the matrix An

ε takes less computer memory. The finite element method is
determined as follows:

• The domain Ω ⊂ Rm is decomposed into smaller convex subdomains, e.g., line segments
for m = 1, triangles for m = 2, or tetrahedra for m = 3.

• The base {v1, . . . ,vn} is chosen as simple functions, e.g., polynomials. The space Vh is
called the space of finite elements.

• The basis functions v1, . . . ,vn have small supports, which make the matrix An
ε to be sparse.

4.1.3 Discretization of the domain

We will employ polyhedral elements. To this end, we have to replace the original domain Ω by
a polyhedral subdomain Ωh. We subdivide Ωh into a finite number of polyhedral subdomains
K1, . . . ,Kn

Ωh
, nΩh ∈ N, i.e., into open and connected polyhedral subsets of Ωh such that the

following assumptions are satisfied:

• Ωh =
n

Ωh⋃
i=1

Ki ,

• Ki 6= ∅ for each i = 1, . . . , nΩh ,

• Ki 6= Kj ⇒ Ki ∩ Kj = ∅ for each i, j = 1, . . . , nΩh ,

• any face of any Ki is either a subset of the boundary ∂Ωh or a face of another element Kj ,
where i, j = 1, . . . , nΩh ,

• each Ki has exactly m + 1 faces.

The last assumption means that in the cases of m = 1, m = 2, and m = 3 we deal with line
segments, triangles, and tetrahedra, respectively. This assumption will provide us to introduce a
reference element.
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The set
T h := {Ki | i = 1, . . . , nΩh}

is called a discretization of Ωh. In Fig. 4.1 we can see some discretizations, which were generated
by Netgen, see SCHÖBERL [186]. The block column vector

xh :=
[
xh

1 , . . . ,xh
n
x

h

]
∈ Rmn

x
h , (4.11)

where xh
i :=

(
xh

i,1, . . . , x
h
i,m

)
∈ Ωh for i = 1, . . . , nΩh , contains all the grid nodes xh

i of the

discretization T h, where nxh ∈ N stands for the number of the discretization nodes.

Figure 4.1: Discretization of a circle and cylinder

4.1.4 Space of finite elements

A finite element is a triple e :=
(
Ke,Pe,Σe

)
, where Ke ∈ T h is an element domain, Pe ⊂[

C∞
(
Ke
)]ν1 is an ne–dimensional space of vector functions, the finite element space defined

over Ke, where ne ∈ N is common for all the elements, and where Σe :=
{
σe

1, . . . , σ
e
ne

}
, σe

i ∈([
C
(
Ke
)]ν1

)′
, is a set of ne linearly independent continuous linear functionals. The functionals

σe
i are called local degrees of freedom. The space Pe usually consists of polynomials of a given

order. We denote the set of finite elements by

Eh :=
{

ei =
(
Ki,P

ei ,Σei
) ∣∣ i = 1, . . . , nΩh

}
,

where Ki ≡ Kei stands for the same element domain.
We will introduce global degrees of freedom. Two adjacent elements ei, ej , i.e., i 6= j and

Ki ∩ Kj 6= ∅, have in common some degrees of freedom. Therefore, the total number of degrees
of freedom is n < nΩhne. We denote the set of global degrees of freedom by

Σh :=

{
σh

i ∈
([

C
(
Ωh
)]ν1

)′ ∣∣∣∣ i = 1, . . . , n

}
, (4.12)

where the global degree of freedom σh
i corresponds to a local degree of freedom σe

j , e ∈ Eh, by
means of a mapping Ge : {1, . . . , ne} 7→ {1, . . . , n} defined by

Ge(i) = j if σh
j |([C(Ke)]

ν1)
′ = σe

i , i = 1, . . . , ne, j = 1, . . . , n.
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Since dim(Pe) = ne, ne ∈ N, and σe
1, . . . , σ

e
ne

∈ Σe are linearly independent, then there
exists a basis

{
ξe

1, . . . , ξ
e
ne

}
⊂ Pe such that

σe
i

(
ξe

j

)
= δi,j , i, j = 1, . . . , ne, where δi,j :=

{
1 , i = j

0 , i 6= j
.

These base functions are called shape functions. In the same virtue, we introduce global shape
functions ξh

1 , . . . , ξh
n : Ωh 7→ Rν1 such that

σh
i

(
ξh

j

)
= δi,j, i, j = 1, . . . , n. (4.13)

The global shape functions correspond to the local ones as follows:

ξh
Ge(i)|Ke = ξe

i , e ∈ Eh, i = 1, . . . , ne.

The global shape functions form a basis for the following space

Ph :=

{
vh =

n∑

i=1

viξ
h
i

∣∣∣∣∣ v1, . . . , vn ∈ R

}
. (4.14)

Hence, the space Ph consists of such functions that are elementwise in Pe, i.e.,

∀vh ∈ Ph ∀e ∈ Eh : vh|Ke ∈ Pe

We need Ph to be a subspace of H
(
B; Ωh

)
. This property is called the conformity of the finite

elements. The following lemma gives a sufficient condition on the conformity.

Lemma 4.2. Let vh ∈ Ph. Then vh ∈ H
(
B; Ωh

)
if for any two adjacent elements ei, ej ∈ Eh,

i 6= j, with a common face fi,j := Ki ∩ Kj , the trace γ is continuous over fi,j , i.e.,

γKi

(
vh|Ki

)
|fi,j

= −γKj

(
vh|Kj

)
|fi,j

, (4.15)

where γ is given by (3.23). Note that the minus sign appeared, since the outer unit normal vectors
on fi,j satisfy nKi

= −nKj
.

Proof. Let vh ∈ Ph and let (4.15) holds. Clearly vh ∈
[
L2
(
Ωh
)]ν1 . We will prove that vh ∈

H
(
B; Ωh

)
by means of (3.32). We take zh ∈

[
L2
(
Ωh
)]ν2 such that

zh|Ki
:= B

(
vh|Ki

)
, i = 1, . . . , nΩh .

Let wh ∈
[
C∞

0

(
Ωh
)]ν2 be arbitrary. Then, Corollary 3.3 and (4.15) yield

∫

Ωh

vh ·B∗
(
wh
)

dx =
∑

Ki∈T h

∫

Ki

vh ·B∗
(
wh
)

dx =

=
∑

Ki∈T h

(
−
∫

Ki

zh · wh dx +

∫

∂Ki

γKi

(
vh
)
·wh ds

)
=

= −
∫

Ωh

zh · wh dx +
∑

fi,j

(∫

fi,j

γKi

(
vh
)
·wh ds +

∫

fi,j

γKj

(
vh
)
·wh ds

)
=

= −
∫

Ωh

zh · wh dx,

which completes the proof.
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The next assumption ensures the conformity of the finite elements, i.e., Ph ⊂ H
(
B; Ωh

)
. We

refer to HIPTMAIR [92] for a unified way of the design of conforming finite elements.

Assumption 4.1. Let e ∈ Eh be an element and let f ⊂ ∂Ke denote a face. We assume that
the degrees of freedom connected to the face f are exactly the ones which determine the trace
γKe(ve) |f , where ve ∈ Pe.

Further, we introduce the set of indices of those degrees of freedom which determine the trace
γΩh . Due to (4.14), we can write an arbitrary vh ∈ Ph as

vh =
n∑

i=1

vh
i ξ

h
i ,

where vh
i ∈ R for i = 1, . . . , n and where ξh

i denote the global shape functions. Then,

γΩh

(
vh
)

=
n∑

i=1

vh
i γΩh

(
ξh

i

)
.

Therefore, the trace is determined by the following set of indices

Ih
0 :=

{
i ∈ {1, . . . , n}

∣∣∣ γΩh

(
ξh

i

)
6= 0

}
. (4.16)

Then, the finite element space Vh ≡ H0

(
B; Ωh

)h ⊂ H0

(
B; Ωh

)
is defined by

H0

(
B; Ωh

)h
:=
{

vh ∈ Ph
∣∣∣ ∀i ∈ Ih

0 : σh
i

(
vh
)

= 0
}

. (4.17)

4.1.5 Finite element discretization of the weak formulation

Let Ω ⊂ Rm, Ω ∈ L. We rewrite the problem (Wε) as follows:

Find uε(Ω) ∈ H0(B; Ω):

aε(v,uε(Ω)) = f(v) ∀v ∈ H0(B; Ω)

}
. (Wε(Ω))

As long as Ω ∈ L, the existence of the unique solution uε(Ω) to (Wε(Ω)) is given by Theo-
rem 3.17.

Further, let h > 0 be a discretization parameter and let Ωh ⊂ Ω be a nonempty polyhedral
subdomain. Then, Ωh ∈ L. Let T h be a discretization of Ωh and let Eh be the corresponding set
of finite elements. Concerning the bilinear form ah

ε and the linear functional fh given by (4.1) and
(4.2), respectively, we assume that for each e ∈ Eh there exist a constant matrix De ∈ Rν2×ν2

and vector f e ∈ Rν1 such that

∀x ∈ Ke : Dh(x) = De and fh(x) = f e. (4.18)

The Galerkin approximation of the problem (Wε(Ω
h)) reads as follows:

Find uh
ε

(
Ωh
)
∈ H0

(
B; Ωh

)h
:

ah
ε

(
vh,uh

ε

(
Ωh
))

= fh
(
vh
)

∀vh ∈ H0

(
B; Ωh

)h





, (W h
ε (Ωh))

where ah
ε , fh, and H0

(
B; Ωh

)h
are respectively defined by (4.1), (4.2), and by (4.17). The exis-

tence and uniqueness of the solution uh
ε

(
Ωh
)

to (W h
ε ) follows from Theorem 4.1.
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4.2 Assembling finite elements

In the previous sections, we provided a discretization technique of the weak formulation (Wε(Ω)).
The aim of this section is to build up an algorithm for an efficient assembling of the finite element
matrix An

ε and the right–hand side vector f n, both defined by (4.10).
Let us consider the global shape (base) functions ξh

1 , . . . , ξh
n ∈ Ph. They have small supports,

since the shape function ξh
i is nonzero just for those neighbouring elements which have a degree

of freedom σh
i in common, i.e.,

supp ξh
i ⊂

⋃

e∈Eh
i

Ke, i = 1, . . . , n, (4.19)

where
Eh

i :=
{

e ∈ Eh | ∃j ∈ {1, . . . , ne} : Ge(j) = i
}

, i = 1, . . . , n, (4.20)

is the set of the elements neighbouring with ei. Since ah
ε is a bilinear form and fh is a linear

functional, we assemble the matrix An
ε and the right–hand side vector f n, see (4.10), elementwise.

Due to (4.19), each element contributes only by its ne global degrees of freedom, i.e.,

(An
ε )i,j =

∑

e∈Eh
i ∩Eh

j

ne∑

k,l=1

ae
ε(ξ

e
k, ξ

e
l ) , (f n)i =

∑

e∈Eh
i

ne∑

k=1

f e(ξe
k) , i, j = 1, . . . , n, (4.21)

where the local contributions to the matrix and to the right–hand side vector are

ae
ε(ξ

e
k, ξ

e
l ) :=

∫

Ke

B(ξe
k) · (De · B(ξe

l )) dx + ε

∫

Ke

ξe
k · ξe

l dx, k, l = 1, . . . , ne, (4.22)

f e(ξe
k) :=

∫

Ke

f e · ξe
k dx, k = 1, . . . , ne, (4.23)

respectively. The solution to the problem (W h
ε (Ωh) is then given by

uh
ε

(
Ωh
)

:=
n∑

i=1

un
ε,iξ

h
i , (4.24)

where un
ε :=

(
un

ε,1, . . . , u
n
ε,n

)
∈ Rn denotes the solution to the linear system (4.9).

4.2.1 Reference element

As each element domain Ke is a polyhedron of m + 1 faces, it can be uniquely described by the
following block column vector, which consists of the m + 1 corners

xe :=
[
xe

1, . . . ,x
e
m+1

]
∈ Rm(m+1), (4.25)

where xe
i :=

(
xe

i,1, . . . , x
e
i,m

)
∈ Ke for i = 1, . . . ,m + 1. To each element e ∈ Eh we associate

a mapping He : {1, . . . ,m + 1} 7→ {1, . . . , nxh} which maps the element nodal indices to the
global ones as follows:

He(i) = j if xe
i = xh

j , i = 1, . . . ,m + 1, j = 1, . . . , nxh . (4.26)
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We further introduce a reference element r :=
(
Kr,Pr,Σr

)
such that the polyhedral domain Kr

is determined by the following block column vector consisting of the reference corners

x̂r :=
[
x̂r

1, . . . , x̂
r
m+1

]
∈ Rm(m+1),

where x̂r
i :=

(
x̂r

i,1, . . . , x̂
r
i,m

)
∈ Kr, i = 1, . . . ,m + 1, and where dim(Pr) = dim(Pe) = ne.

To each element e ∈ Eh, we associate a one–to–one linear mapping Re : Kr 7→ Ke defined by

x := Re(x̂) := Re · x̂ + re, x ∈ Ke, x̂ ∈ Kr, (4.27)

where Re ∈ Rm×m is a nonsingular matrix and re ∈ Rm is a vector both of which are uniquely
determined by xe as follows:

Re · x̂r
i + re = xe

i , i = 1, . . . ,m + 1. (4.28)

Obviously, both Re and re are continuously differentiable with respect to each coordinate of the
corners xe.
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Figure 4.2: A transformation between the reference and an element domain
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Figure 4.3: A transformation between the reference and an element shape function

Further, let us denote by ξ̂r
1, . . . , ξ̂

r
ne

the shape functions acting on the reference element r,
i.e.,

σr
i

(
ξ̂r

j

)
= δi,j , i, j = 1, . . . , ne.
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Assumption 4.2. We assume that there exist nonsingular matrices Se ∈ Rν1×ν1 and Se
B ∈

Rν2×ν2 , both of which are continuously differentiable with respect to the corners xe, such that

Se · ξ̂r
i (x̂) = ξe

i (x) , i = 1, . . . , ne,

and
Se

B ·Bbx

(
ξ̂r

i (x̂)
)

= Bx(ξe
i (x)) , i = 1, . . . , ne,

where x := Re(x̂), and where Bx and Bbx, respectively, stand for the differential operator B,
defined by (3.21), with respect to the global coordinates x and with respect to the reference co-
ordinates x̂. We define transformations Se : Pr 7→ Pe and Se

B :
[
L2(Kr)

]ν2 7→
[
L2(Ke)

]ν2

by
Se(v̂ (x̂)) := Se · v̂(x̂) and Se

B(Bbx(v̂ (x̂))) := Se
B · Bbx(v̂(x̂)) ,

where v̂(x̂) ∈ Pr.

The linear transformations Se
B and Se are associated to the differential operator B and to the

identity operator, respectively. In general, the theory of differential forms, cf. HIPTMAIR [91],
can be used in order to derive a canonical transformation, see HIPTMAIR [92], which is related to
some differential operator and to some degrees of freedom.

4.2.2 BDB integrators

Making use of the reference element, the integration in (4.22) and (4.23) can be unified by the
substitutions Re and Se

B in the first term of (4.22), and by the substitutions Re and Se in the
second term of (4.22) and in (4.23), as follows:

ae
ε(ξ

e
k, ξ

e
l ) =

∫

Kr

(
Se

B · Bbx

(
ξ̂r

k

))
·
(
De ·

(
Se

B ·Bbx

(
ξ̂r

l

)))
|det(Re)| dx̂ +

+ ε

∫

Kr

(
Se · ξ̂r

k

)
·
(
Se · ξ̂r

l

)
|det(Re)| dx̂,

(4.29)

f e(ξe
k) =

∫

Kr

f e ·
(
Se · ξ̂r

k

)
|det(Re)| dx̂. (4.30)

Now we employ the Gaussian quadrature method, cf. RALSTON [163], CIARLET AND LI-
ONS [46]. Having a sufficient number of Gaussian integration points, we can calculate the inte-
grals exactly. Then, the matrix and the right–hand side vector in (4.10) are evaluated elementwise,
where the contributions of the elements are

Ae
ε :=

nG∑

i=1

wG
i Be

B

(
x̂G

i

)T
·De · Be

B

(
x̂G

i

)
+ ε

nG∑

i=1

wG
i Be

(
x̂G

i

)T
· I e ·Be

(
x̂G

i

)
,

f e :=

nG∑

i=1

wG
i Be

(
x̂G

i

)T
· g e,

where x̂G
1 , . . . , x̂G

nG
∈ Kr are the Gaussian integration points, wG

1 , . . . , wG
g ∈ R are the Gaussian

integration weights, and where

Be
B(x̂) := Se

B ·
[
Bbx

(
ξ̂r

1(x̂)
)

, . . . ,Bbx

(
ξ̂r

ne
(x̂)
)]

, B e(x̂) := Se ·
[
ξ̂r

1(x̂) , . . . , ξ̂r
ne

(x̂)
]
,
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De := |det(Re)| ·De, I e := |det(Re)| · Ine
,

g e := |det(Re)| · f e,

where Ine
∈ Rne×ne is the unit matrix. Note that we will employ the lowest–order, i.e., linear,

finite elements. In this case, since both Dh and fh are elementwise constant, then all the integrands
are linear over the element, thus, we will employ only one Gaussian point being the mass point of
Kr, and the corresponding weight. These are respectively as follows:

xG
1 :=





1
2 , for m = 1(
1
3 , 1

3

)
, for m = 2(

1
6 , 1

6 , 1
6

)
, for m = 3

, wG
1 := 1.

The name BDB integrators is due to the structure of the contributions to the bilinear form. The
differential operator is involved in the matrix B e while the matrix De or I e provide the material
properties and geometrical parameters of the element domain K e.

4.2.3 The algorithm

The structure of the BDB integrators offers an efficient implementation using the object–oriented
technologies, cf. KUHN, LANGER, AND SCHÖBERL [117]. Algorithm 1 describes assembling the
whole system matrix An

ε and the right–hand side vector f n, which is called postprocessing. When
assembling the matrix and the right–hand side vector, we have to omit those rows and columns
whose corresponding degrees of freedom are connected to the boundary ∂Ωh along which the
zero trace is prescribed. This is done by setting all those rows and columns to zero except for the
diagonal entries in the matrix An

ε .

Algorithm 1 Finite element method: preprocessing
An

ε := 0, f n := 0

for i := 1, . . . , nΩh do
Evaluate Aei

ε , f ei

for j := 1, . . . , ne do
for k := 1, . . . , ne do

if j = k or
(
Gei(j) 6∈ Ih

0 and Gei(k) 6∈ Ih
0

)
then

(An
ε )Gei(j),Gei(k) := (An

ε )Gei(j),Gei(k) + (Aei
ε )j,k

end if
end for
if Gei(j) 6∈ Ih

0 then
(f n)Gei(j) := (f n)Gei(j) + (f ei)j

end if
end for

end for

The approximate solution uh
ε

(
Ωh
)

to the problem (W h
ε (Ωh)), discretized by the finite element

method, is given by (4.24) while we solve the system

An
ε · un

ε = f n

for un
ε :=

(
un

ε,1, . . . , u
n
ε,n

)
∈ Rn. In fact, we rather look for B

(
uh

ε (x)
)
, which is elementwise

constant, since we have employed the lowest, i.e., the first–order finite elements only. Therefore,
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we can describe B
(
uh

ε (x)
)

by the block column vector

Bn
ε :=

[
Bn,e1

ε , . . . ,B
n,en

Ωh

ε

]
∈ Rν2n

Ωh

such that

B
(
uh

ε (x)
)
|Ki

= Bn,ei
ε ,

where

Bn,ei
ε :=

ne∑

j=1

un
ε,Gei(j)S

ei

B ·Bbx

(
ξ̂r

j(x̂)
)
∈ Rν2 for i = 1, . . . , nΩh .

This procedure which assembles the vector Bn
ε is called postprocessing and it is depicted in Al-

gorithm 2.

Algorithm 2 Finite element method: postprocessing
Given un

ε

Bn
ε := 0

for i := 1, . . . , nΩh do
Bn,ei

ε := 0

for j := 1, . . . , ne do
Evaluate Bn,ei

ε := Bn,ei
ε + un

ε,Gei(j)S
ei

B · Bbx

(
ξ̂r

j(x̂)
)

end for
k := ν2(i − 1)
for j := 1, . . . , ν2 do

[Bn
ε ]k+j := [Bn,ei

ε ]j
end for

end for

4.3 Approximation properties

Now, we specify the meaning of the discretization parameter h in the formulation (W h
ε (Ωh)).

To each element domain Ke we associate an element discretization parameter he which is the
maximum edge size of Ke, i.e., the length of the line segment, the maximum side of the triangle,
or the maximum edge of the tetrahedron in the cases of m = 1, m = 2, or m = 3, respectively.
The (global) discretization parameter h is defined by

h := max
e∈Eh

he. (4.31)

Convention 4.1. In what follows, we will assume that there exists h > 0, being, e.g., the minimum
diameter of a sphere (or circle) containing Ω, such that any considered discretization parameter
h fulfills

h ≤ h. (4.32)

The aim of this section is to prove a convergence, in some sense, of the approximate finite
element solutions uh

ε

(
Ωh
)

to the true solution uε(Ω).
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4.3.1 Approximation of the domain by polyhedra

We employ polyhedral elements. Therefore, we have to deal with an approximation of the original
domain Ω by polyhedra and with a convergence of solutions over these polyhedra.

We introduce an extension operator. Let h > 0, ν ∈ N, and let Ωh ⊂ Ω be a nonempty
polyhedral subdomain. We define a linear extension operator Xh

ν :
[
L2
(
Ωh
)]ν 7→

[
L2(Ω)

]ν
by

Xh
ν(v(x)) :=

{
v(x) , x ∈ Ωh

0 , x ∈ Ω \ Ωh
, v(x) ∈

[
L2
(
Ωh
)]ν

. (4.33)

Lemma 4.3. Let Ω ⊂ Rm, Ω ∈ L be a domain, let Ωh ⊂ Ω be its nonempty polyhedral sub-

domain, and let vh ∈ H0

(
B; Ωh

)h
, where H0

(
B; Ωh

)h
is defined by (4.17). Then Xh

ν1

(
vh
)
∈

H0(B; Ω) and the space

X0

(
B; Ω;Ωh

)h
:=

{
Xh

ν1

(
vh
)
∈ H0(B; Ω)

∣∣∣∣ vh ∈ H0

(
B; Ωh

)h
}

(4.34)

is a closed subspace of H0(B; Ω).

Proof. Let vh ∈ H0

(
B; Ωh

)h
be arbitrary. We denote bh := Xh

ν2

(
B
(
vh
))

. Clearly, bh ∈[
L2(Ω)

]ν2 . Let ϕ ∈ [C∞
0 (Ω)]ν2 , then ϕ|Ωh ∈

[
H1
(
Ωh
)]ν2 . Now the definition (4.33), Assump-

tion 3.4, and γΩh

(
vh
)

= 0, which is the trace along ∂Ωh, yield

∫

Ω
bh ·ϕ dx =

∫

Ωh

B
(
vh
)
·ϕ|Ωh dx = −

∫

Ωh

vh · B∗(ϕ|Ωh) dx +
〈
γΩh

(
vh
)

,ϕ|Ωh

〉
∂Ωh

=

= −
∫

Ω
Xh

ν1

(
vh
)
· B∗(ϕ) dx.

The latter implies that bh = B
(
Xh

ν1

(
vh
))

and Xh
ν1

(
vh
)
∈ H(B; Ω). Further, letψ ∈

[
H1(Ω)

]ν2 ,
then ψ|Ωh ∈

[
H1
(
Ωh
)]ν2 . By (4.33), by Assumption 3.4, and since γΩh

(
vh
)

= 0, we get

〈
γΩ

(
Xh

ν1

(
vh
))

,ψ
〉

∂Ω
=

∫

Ω
B
(
Xh

ν1

(
vh
))

· ψ dx +

∫

Ω
Xh

ν1

(
vh
)
· B∗(ψ) dx =

=

∫

Ωh

B
(
vh
)
·ψ|Ωh dx +

∫

Ωh

vh · B∗(ψ|Ωh) dx =

=
〈
γΩh

(
vh
)

,ψ|Ωh

〉
∂Ωh

= 0,

where γΩ : H(B; Ω) 7→
[
H−1/2(∂Ω)

]ν2 stands for the trace operator along ∂Ω. Therefore,

Xh
ν1

(
vh
)

∈ H0(B; Ω). Since H0

(
B; Ωh

)h
is a finite–dimensional Hilbert space (of the di-

mension less than n) and Xh
ν1

: H0

(
B; Ωh

)h 7→ H0(B; Ω) is a linear mapping, then the set

X0

(
B; Ω;Ωh

)h
, defined by (4.34), is obviously a closed subspace of H0(B; Ω), hence, again a

finite–dimensional Hilbert space.

Let Ω ⊂ Rm, Ω ∈ L be a domain and let h > 0 be a discretization parameter. We say that the
class

{
Ωh
}

h>0
, Ωh ⊂ Ω approximates Ω from the inner if the following is satisfied

∀xh ∈ ∂Ωh ∃x ∈ ∂Ω :
∥∥∥xh − x

∥∥∥ ≤ h. (4.35)
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We denote this convergence by Ωh ↗ Ω, as h → 0+. Let us further introduce a function χΩh :
Ω 7→ {0, 1}, which is called the characteristic function of Ωh, by

χΩh(x) :=

{
1 , x ∈ Ωh

0 , x ∈ Ω \ Ωh
. (4.36)

It is obvious that if Ωh ↗ Ω, then

χΩh(x) → 1 a.e. in Ω, as h → 0+.

Assumption 4.3. We assume that Ωh ↗ Ω.

4.3.2 A–priori error estimate

We introduce an interpolation operator πe :
[
C∞

(
Ke
)]ν1 7→ Pe such that

σe
i (π

e(v)) = σe
i (v), i = 1, . . . , ne,

holds for any v ∈
[
C∞

(
Ke
)]ν1 . Further, we introduce a global interpolation operator πh :[

C∞
(
Ωh
)]ν1 7→ Ph such that for any v ∈

[
C∞

(
Ωh
)]ν1

σh
i

(
πh(v)

)
= σh

i (v), i = 1, . . . , n, (4.37)

or we can introduce that equivalently by

πh(v) |Ke := πe(v|Ke) , Ke ∈ T h, (4.38)

where Ph is due to (4.14). Moreover, another global interpolation operator πh
0 :
[
C∞

(
Ωh
)]ν1 7→

H0

(
B; Ωh

)h
is introduced such that for any v ∈

[
C∞

(
Ωh
)]ν1

σh
i

(
πh

0(v)
)

:=

{
σh

i (v) , i 6∈ Ih
0

0 , i ∈ Ih
0

,

where Ih
0 is defined by (4.16).

We suppose that the following a–priori error estimate holds. For more results on a–priori error
estimates see CIARLET [45], KŘÍŽEK AND NEITTAANMÄKI [115], STRANG AND FIX [200].

Assumption 4.4. We assume that there exists a positive constant C10 ≡ C10(K
e) such that

∀v ∈
[
H2(Ke)

]ν1 : ‖v − πe(v)‖B,Ke ≤ C10h
e‖v‖ν1 ,2,Ke.

4.3.3 Regular discretizations

We suppose that T h are regular discretizations in the sense of the following three assumptions.

Assumption 4.5. We assume that there exists a positive constant C11 such that

∀h > 0 ∀Ke ∈ T h : C10(K
e) ≤ C11.
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Assumption 4.6. We assume that for each v ∈ [C∞
0 (Ω)]ν1 there exist positive constants C12 ≡

C12(v) and C13 ≡ C13(v) such that

∀h > 0 ∀Ke ∈ T h : Ke ⊂ ∆hΩh ⇒
∣∣σe

j

(
v|Ke

)∣∣ ‖Se‖ ≤ C12 and
∣∣σe

j

(
v|Ke

)∣∣ ‖Se
B‖ ≤ C13,

where j = 1, . . . , ne and where

∆hΩh :=
{
y ∈ Ωh

∣∣∣ ∃Ke ∈ T h ∃j ∈ {1, . . . , ne} : y ∈ Ke and Ge(j) ∈ Ih
0

}
. (4.39)

is the most outer layer of finite elements.

Assumption 4.7. We assume that for each v ∈ [C∞
0 (Ω)]ν1 there exists a positive constant C14 ≡

C14(v) such that

∀h > 0 ∀Ke ∈ T h ∀x ≡ Re(x̂) ∈ Ke :

∥∥Bx

(
πe
(
v|Ke(x)

))∥∥ =

∥∥∥∥∥
ne∑

i=1

σe
i

(
v|Ke

)
Se

B ·Bbx

(
ξ̂r

i (x̂)
)∥∥∥∥∥ ≤ C14,

where ‖ · ‖ is the Euclidean norm.

Let us note that Assumption 4.5 is replaced, in case of m = 2, by the minimum angle con-
dition, see ZLÁMAL [219, p. 397], or by the maximum angle condition, see K ŘÍŽEK AND NEIT-
TAANMÄKI [115, p. 67], and, in case of m = 3, by either the minimum or maximum angle con-
ditions between the edges as well as between the faces, see K ŘÍŽEK AND NEITTAANMÄKI [115,
p. 83]. For the used kind of elements we will show that Assumptions 4.6 and 4.7 follow from the
angle conditions.

Lemma 4.4. Let Ω ⊂ Rm, Ω ∈ L be a domain and let
{
Ωh
}

h>0
be a class of its nonempty poly-

hedral subdomains such that Ωh ↗ Ω. Let further v ∈ [C∞
0 (Ω)]ν1 . Then, under Assumption 4.6,

the following convergence holds

∥∥∥πh
(
v|

Ωh

)
− πh

0

(
v|

Ωh

)∥∥∥
B,Ωh

=

∥∥∥∥∥∥
∑

i∈Ih
0

σh
i (v|

Ωh)ξh
i

∥∥∥∥∥∥
B,Ωh

→ 0, as h → 0+.

Proof. The proof bases on Theorem 3.6. Let us write the square of the norm

∥∥∥∥∥∥
∑

i∈Ih
0

σh
i (v|

Ωh)ξh
i

∥∥∥∥∥∥

2

B,Ωh

=

∫

Ω

∥∥∥∥∥∥
∑

i∈Ih
0

σh
i (v|

Ωh)ξh
i (x)

∥∥∥∥∥∥

2

dx+

+

∫

Ω

∥∥∥∥∥∥
∑

i∈Ih
0

σh
i (v|

Ωh)Bx

(
ξh

i (x)
)
∥∥∥∥∥∥

2

dx.

(4.40)

Due to (4.19), both ξh
i and Bx(ξh

i ) have small supports. We take an arbitrary x ∈ Ω. Since
Ωh ↗ Ω and ∀Ke ∈ T h : he ≤ h, then due to (4.35) there exists h0 := miny∈∂Ω ‖x−y‖/2 such
that

∀h ≤ h0 : x ∈ Ωh \ ∆hΩh
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holds. Clearly, suppξh
i ⊂ ∆hΩh and for the above x ∈ Ωh \ ∆hΩh we get

∀h ≤ h0 :

∥∥∥∥∥∥
∑

i∈Ih
0

σh
i (v|

Ωh)ξh
i (x)

∥∥∥∥∥∥

2

= 0 and

∥∥∥∥∥∥
∑

i∈Ih
0

σh
i (v|

Ωh)Bx

(
ξh

i (x)
)
∥∥∥∥∥∥

2

= 0, (4.41)

where ‖ · ‖ denotes the Euclidean norm.
Now, we bound the integrands in (4.40). Given a fixed x ∈ Ω, it is either the case of

x ∈ Ω \ ∆hΩh, then the integrands vanish, or the case of x ≡ Re(x̂) ∈ Ke ⊂ ∆hΩh, then
by Assumption 4.6 the squares of the integrands are bounded as follows:

∥∥∥∥∥∥
∑

i∈Ih
0

σh
i (v|

Ωh)ξh
i (x)

∥∥∥∥∥∥
=

∥∥∥∥∥∥

ne∑

j=1

σe
j (v|Ke)S

e · ξ̂r
j(x̂)

∥∥∥∥∥∥
≤ neC12 max

j=1,...,ne

max
bx∈Kr

∥∥∥ξ̂r
j(x̂)

∥∥∥ ,

∥∥∥∥∥∥
∑

i∈Ih
0

σh
i (v|

Ωh)Bx

(
ξh

i (x)
)
∥∥∥∥∥∥

=

∥∥∥∥∥∥

ne∑

j=1

σe
j (v|Ke)S

e
B ·Bbx

(
ξ̂r

j(x̂)
)
∥∥∥∥∥∥
≤

≤ neC13 max
j=1,...,ne

max
bx∈Kr

∥∥∥Bbx

(
ξ̂r

j(x̂)
)∥∥∥ ,

therefore, the integrands themselves are also bounded. Having the boundeness and by (4.41)
having also the convergence of the integrands to zero in Ω, as h → 0+, we now apply Theorem 3.6
to both the integrals in (4.40), which yields

∫

Ω

∥∥∥∥∥∥
∑

i∈Ih
0

σh
i (v|

Ωh)ξh
i (x)

∥∥∥∥∥∥

2

dx → 0 and
∫

Ω

∥∥∥∥∥∥
∑

i∈Ih
0

σh
i (v|

Ωh)Bx

(
ξh

i (x)
)
∥∥∥∥∥∥

2

dx → 0, as h → 0+.

4.3.4 Convergence of the finite element method

The following theorem states the convergence property of the finite element method.

Theorem 4.2. Let Ω ⊂ Rm, Ω ∈ L be a domain, and let
{
Ωh
}

h>0
be a class of its nonempty

polyhedral subdomains such that Ωh ↗ Ω. Further, we assume that

max
i,j

∣∣∣dh
i,j(x) − di,j(x)

∣∣∣→ 0 a.e. in Ω, as h → 0+, (4.42)

where dh
i,j(x) := di,j(x) in Ω \ Ωh, and

∥∥∥fh − f

∥∥∥
ν1,0,Ω

→ 0, as h → 0+, (4.43)

where fh(x) := f(x) in Ω \ Ωh. Then for each ε > 0 the following convergence holds

Xh
ν1

(
uh

ε

(
Ωh
))

→ uε(Ω) in H0(B; Ω), as h → 0+,

where Xh
ν1

:
[
L2
(
Ωh
)]ν1 7→

[
L2(Ω)

]ν1 is the linear extension operator defined by (4.33),

uh
ε

(
Ωh
)
∈ H0

(
B; Ωh

)h
is the solution to (W h

ε (Ωh)), and uε(Ω) ∈ H0(B; Ω) is the solution
to (Wε(Ω)).
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Proof. Let ε > 0 be arbitrary. Let us denote

uε := uε(Ω) and uh
ε := Xh

ν1

(
uh

ε

(
Ωh
))

. (4.44)

From Lemma 4.3 we know that the set X0

(
B; Ω;Ωh

)h
is a closed subspace of H0(B; Ω). There-

fore, the function uh
ε is the Galerkin approximation to the solution uε of (Wε(Ω)) in the space

X0

(
B; Ω;Ωh

)h
and we can employ Lemma 4.1, which for any vh ∈ X0

(
B; Ω;Ωh

)h
yields

∥∥∥uε − uh
ε

∥∥∥
B,Ω

≤ C9(ε)

{∥∥∥uε − vh
∥∥∥
B,Ω

+

∣∣aε

(
vh,uh

ε − vh
)
− ah

ε

(
vh,uh

ε − vh
)∣∣

‖uh
ε − vh‖B,Ω

+

+

∣∣f
(
uh

ε − vh
)
− fh

(
uh

ε − vh
)∣∣

‖uh
ε − vh‖B,Ω

}
.

(4.45)

Now the idea of the proof is like in KŘÍŽEK AND NEITTAANMÄKI [115, Th. 4.16], originally
from DOKTOR [56]. Let τ > 0 be arbitrary. By Assumption 3.3, there exists ũε ∈ [C∞

0 (Ω)]ν1

such that
‖uε(Ω) − ũε‖B,Ω ≤ τ

6C9(ε)
. (4.46)

In the estimate (4.45) we choose

vh := Xh
ν1

(
πh

0

(
ũε|Ωh

))
.

We estimate the first term on the right–hand side of (4.45). By the triangle inequality (3.1),
by Lemma 4.3, and by (4.46), we get

∥∥∥uε − vh
∥∥∥
B,Ω

=
∥∥∥uε − ũε + ũε − vh

∥∥∥
B,Ω

≤ ‖uε − ũε‖B,Ω +
∥∥∥ũε − vh

∥∥∥
B,Ω

≤

≤ τ

6C9(ε)
+
∥∥∥ũε − vh

∥∥∥
B,Ω

.
(4.47)

The second term on the right–hand side of (4.47) reads

∥∥∥ũε − vh
∥∥∥

2

B,Ω
=

∫

Ω
χΩ\Ωh(x)

(
‖ũε(x)‖2 + ‖B (ũε(x))‖2

)
dx +

∥∥∥ũε − πh
0

(
ũε|Ωh

)∥∥∥
2

B,Ωh
=

=

∫

Ω
(1 − χΩh(x))

(
‖ũε(x)‖2 + ‖B (ũε(x))‖2

)
dx +

∥∥∥ũε − πh
0

(
ũε|Ωh

)∥∥∥
2

B,Ωh
,

(4.48)
where ‖ · ‖ denotes the Euclidean norm. Since Ωh ↗ Ω, then (4.35) holds and we get

(1 − χΩh(x))
(
‖ũε(x)‖2 + ‖B(ũε(x))‖2

)
→ 0 a.e. in Ω, as h → 0+.

Moreover, due to (4.36)

∀h > 0 : (1 − χΩh(x))
(
‖ũε(x)‖2 + ‖B(ũε(x))‖2

)
≤ ‖ũε(x)‖2 + ‖B(ũε(x))‖2 a.e. in Ω.

Therefore, Theorem 3.6 yields
∫

Ω

(1 − χΩh(x))
(
‖ũε(x)‖2 + ‖B(ũε(x))‖2

)
dx → 0, as h → 0+.
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Using the triangle inequality (3.1), the second term on the right–hand side of (4.48) is estimated
as follows:

∥∥∥ũε − πh
0

(
ũε|Ωh

)∥∥∥
B,Ωh

=
∥∥∥ũε − πh

(
ũε|Ωh

)
+ πh

(
ũε|Ωh

)
− πh

0

(
ũε|Ωh

)∥∥∥
B,Ωh

≤

≤
∥∥∥ũε − πh

(
ũε|Ωh

)∥∥∥
B,Ωh

+
∥∥∥πh

(
ũε|Ωh

)
− πh

0

(
ũε|Ωh

)∥∥∥
B,Ωh

.

(4.49)
The definition (4.38), Assumption 4.4, and Assumption 4.5, respectively, yield

∥∥∥ũε − πh
(
ũε|Ωh

)∥∥∥
2

B,Ωh
=

∑

Ke∈T h

‖ũε − πe(ũε|Ke)‖2
B,Ke ≤

≤
∑

Ke∈T h

(
C10(K

e)he ‖ũε‖ν1,2,Ke

)2
≤ C2

11h
2 ‖ũε‖2

ν1,2,Ω .

By Lemma 4.4, the second term on the right–hand side of (4.49) tends toward zero. Therefore, the
right–hand side of (4.48) tends to zero, as h → 0+, i.e., there exists h1 > 0 such that

∀h ≤ h1 :
∥∥∥uε − vh

∥∥∥
B,Ω

≤ τ

3C9(ε)
. (4.50)

Further, we estimate the second term on the right–hand side of (4.45). The nominator reads as
follows:
∣∣∣aε

(
vh,uh

ε − vh
)
− ah

ε

(
vh,uh

ε − vh
)∣∣∣ =

=

∣∣∣∣
∫

Ω
B
(
uh

ε − vh
)
·
((

D −Dh
)T

· B
(
vh
))

dx

∣∣∣∣ ≤

≤
∣∣∣uh

ε − vh
∣∣∣
B,Ω

√∫

Ω
max

i,j

∣∣∣dh
i,j(x) − di,j(x)

∣∣∣
2
‖B(vh(x))‖2

dx,

where we used the Cauchy–Schwarz inequality (3.3) in
[
L2(Ω)

]ν2 . After dividing the latter by∥∥uh
ε − vh

∥∥
B,Ω

, we get

∣∣aε

(
vh,uh

ε − vh
)
− ah

ε

(
vh,uh

ε − vh
)∣∣

‖uh
ε − vh‖B,Ω

≤
√∫

Ω
max

i,j

∣∣∣dh
i,j(x) − di,j(x)

∣∣∣
2
‖B(vh(x))‖2

dx.

(4.51)
Now, we use Theorem 3.6 to show that the integral on the right–hand side of (4.51) vanishes, as
h → 0+. First, we prove the boundeness of the integrand. We take an arbitrary x ∈ Ω. If x 6∈ Ωh,
then vh(x) = 0 and the integrand vanishes. If x ∈ K e for some Ke ∈ T h, Ke ⊂ ∆hΩh, then
by (4.3) and Assumption 4.6 the square of the integrand reads

max
i,j

∣∣∣dh
i,j(x) − di,j(x)

∣∣∣
∥∥∥B
(
vh(x)

)∥∥∥ =

= max
i,j

∣∣∣dh
i,j(x) − di,j(x)

∣∣∣

∥∥∥∥∥∥
∑

j:Ge(j)6∈Ih
0

σe
j

(
ũε|Ke

)
Se

B · Bbx

(
ξ̂r

j(x̂)
)
∥∥∥∥∥∥
≤

≤ 2max
i,j

‖di,j‖L∞(Ω) neC13(ũε) max
j=1,...,ne

max
bx∈Kr

∥∥∥Bbx

(
ξ̂r

j(x̂)
)∥∥∥ .
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Otherwise, x ∈ Ke for some Ke ∈ T h, Ke ⊂ Ωh \ ∆hΩh, and the square of the integrand reads

max
i,j

∣∣∣dh
i,j(x) − di,j(x)

∣∣∣
∥∥∥B
(
vh(x)

)∥∥∥ =

= max
i,j

∣∣∣dh
i,j(x) − di,j(x)

∣∣∣

∥∥∥∥∥∥

ne∑

j=1

σe
j

(
ũε|Ke

)
Se

B · Bbx

(
ξ̂r

j(x̂)
)
∥∥∥∥∥∥
≤

≤ 2max
i,j

‖di,j‖L∞(Ω) C14(ũε) ,

where we used (4.3) and Assumption 4.7. Therefore, the integrand on the right–hand side of (4.51)
is bounded by a constant independent of h, and due to the assumption (4.42) it converges to zero
almost everywhere in Ω. Then, by Theorem 3.6

∫

Ω
max

i,j

∣∣∣dh
i,j − di,j

∣∣∣
2 ∥∥∥B

(
vh
)∥∥∥

2
dx → 0, as h → 0+.

Hence, there exists h2 > 0 such that

∀h ≤ h2 :

∣∣aε

(
vh,uh

ε − vh
)
− ah

ε

(
vh,uh

ε − vh
)∣∣

‖uh
ε − vh‖B,Ω

≤ τ

3C9(ε)
. (4.52)

Finally, we estimate the third term on the right–hand side of (4.45). The nominator reads as
follows:

∣∣∣f
(
uh

ε − vh
)
− fh

(
uh

ε − vh
)∣∣∣ =

∣∣∣∣
∫

Ω

(
f − fh

)
·
(
uh

ε − vh
)

dx

∣∣∣∣ ≤

≤
∥∥∥f − fh

∥∥∥
ν1,0,Ω

∥∥∥uh
ε − vh

∥∥∥
ν1,0,Ω

≤

≤
∥∥∥f − fh

∥∥∥
ν1,0,Ω

∥∥∥uh
ε − vh

∥∥∥
B,Ω

,

(4.53)

where we used the Cauchy–Schwarz inequality in
[
L2(Ω)

]ν1 . Dividing (4.53) by
∥∥uh

ε − vh
∥∥
B,Ω

and using the assumption (4.43), it follows that there exists h3 > 0 such that

∀h ≤ h3 :

∣∣f
(
uh

ε − vh
)
− fh

(
uh

ε − vh
)∣∣

‖uh
ε − vh‖B,Ω

≤ τ

3C9(ε)
. (4.54)

At the end, combining (4.45), (4.50), (4.52), and (4.54), and recalling the notation (4.44), we have
proven the statement, i.e., for any τ > 0 there exists h0 := min{h1, h2, h3} such that

∀h ≤ h0 :
∥∥∥uε(Ω) −Xh

ν1

(
uh

ε

(
Ωh
))∥∥∥

B,Ω
≤ τ.

4.4 Finite elements for magnetostatics

In this section, we derive two basic types of finite elements which are used for solving the 2–
dimensional or 3–dimensional magnetostatic problem, respectively. We will validate Assump-
tions 4.1–4.2 and Assumptions 4.4–4.7.



58 CHAPTER 4. FINITE ELEMENT METHOD

4.4.1 Linear Lagrange elements on triangles

These finite elements approximate the space H1(Ω), where Ω ⊂ R2, Ω ∈ L. They are used,
e.g., for solving the 2–dimensional linear magnetostatic problem introduced in Section 3.4.2. The
elements are characterized by triangular domains and by the degrees of freedom that are nodal
values in the corners.

The linear Lagrange element is a triple E :=
(
Ke, P e,Σe

)
, where Ke ⊂ R2 is a triangular

domain,

P e :=
{

p(x) := ae
0 + ae

1x1 + ae
2x2 ∈ C

(
Ke
) ∣∣ ae

0, a
e
1, a

e
2 ∈ R , x := (x1, x2) ∈ Ke

}
,

and the degrees of freedom are

Σe := {σe
1, σ

e
2, σ

e
3} ,

where σe
i : C

(
Ke
)
7→ R is such that for v ∈ C

(
Ke
)

σe
i (v) := v(xe

i ) , i = 1, 2, 3, (4.55)

where xe
1 :=

(
xe

1,1, x
e
1,2

)
, xe

2 :=
(
xe

2,1, x
e
2,2

)
, xe

3 :=
(
xe

3,1, x
e
3,2

)
are the corners of Ke.

We concern the space H1(Ke) with the trace operator γKe(v) := v|∂Ke , v ∈ P e. From (4.55)
it is easy to see that the following couples of degrees of freedom (σe

1, σ
e
2), (σe

2, σ
e
3), and (σe

3, σ
e
1)

for any v ∈ P e determine the traces v|he
3
, v|he

2
, and v|he

1
along the edges he

3 := (xe
1,x

e
2), he

1 :=
(xe

2,x
e
3), and he

2 := (xe
3,x

e
1), respectively, see also Fig. 4.4. Therefore, Assumption 4.1 is fulfilled

and we say that the linear Lagrange elements are H 1(Ke)–conforming.
According to (4.27), (4.28), and Fig. 4.2, we specify the transformation from the reference

element to the element e by

Re :=

(
xe

2,1 − xe
1,1 xe

3,1 − xe
1,1

xe
2,2 − xe

1,2 xe
3,2 − xe

1,2

)
, re :=

(
xe

1,1

xe
1,2

)
, (4.56)

where the corners of the reference triangle K r are

x̂r
1 := (0, 0), x̂r

2 := (1, 0), x̂r
3 := (0, 1). (4.57)

Concerning Assumption 4.2, we specify Se by

Se := 1. (4.58)

It is easy to see that

gradx(v(x)) = (Re)−T · gradbx(v̂(x̂)) , (4.59)

where v(x) := Se · v̂(x̂) and x := Re · x̂ + re. The reference shape functions read as follows:

ξ̂r
1(x̂) := 1 − x̂1 − x̂2, ξ̂r

2(x̂) := x̂1, ξ̂r
3(x̂) := x̂2, where x̂ := (x̂1, x̂2) ∈ Kr (4.60)

and where Kr is the triangle in Fig. 4.2 the corners of which are given by (4.57).
Now we will state the element approximation property such that both Assumption 4.4 and

Assumption 4.5 will be fulfilled. Suppose that we have a discretization T h :=
{
Ke1 , . . . ,K

en
Ωh
}

– a triangulation. The following definition is due to ZLÁMAL [219, p. 397].
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Definition 4.1. A family F :=
{
T h | h > 0

}
of triangulations is said to satisfy the minimum

angle condition if there exists a constant γ0 such that for any T h ∈ F and any Ke ∈ T h we have

0 < γ0 ≤ γKe <
π

2
, (4.61)

where γKe is the minimum angle of the triangle Ke.

The next lemma is due to ZLÁMAL [219] and it replaces both Assumption 4.4 and Assump-
tion 4.5.

Lemma 4.5. Let F be a family of triangulations satisfying the minimum angle condition (4.61).
Then there exists a constant C11 > 0 such that for any T h ∈ F with h ≤ h we have

∀v ∈ H2
(
Ωh
)

:
∥∥∥v − πh(v)

∥∥∥
1,Ωh

≤ C11h |v|2,Ωh ,

where πh : C
(
Ωh
)
7→ H1

(
Ωh
)h

is defined by (4.38), using the degrees of freedom (4.55).

Proof. See ZLÁMAL [219].

The next two lemmas fulfill Assumptions 4.6 and 4.7, respectively.

Lemma 4.6. Let v ∈ C∞
0 (Ω). Then there exist positive constants C12 ≡ C12(v) and C13 ≡

C13(v) such that for any discretization parameter h > 0 satisfying (4.32), for any subdomain
Ωh ⊂ Ω satisfying Assumption 4.3, and for any discretization T h which satisfies the minimum
angle condition (4.61) the following holds

∀Ke ∈ T h : Ke ⊂ ∆hΩh ⇒
∣∣σe

j

(
v|Ke

)∣∣ ‖Se‖ ≤ C12 and
∣∣σe

j

(
v|Ke

)∣∣ ∥∥Se
grad

∥∥ ≤ C13,

where j = 1, 2, 3 and where ∆hΩh is defined by (4.39).

Proof. Let v ∈ C∞
0 (Ω) be an arbitrary function, h > 0 be a discretization parameter satisfy-

ing (4.32), Ωh ⊂ Ω be a polygonal subdomain satisfying Assumption 4.3, and T h be a discretiza-
tion which satisfies the minimum angle condition (4.61).

Let Ke ⊂ Ωh be arbitrary and let x ∈ Ke. Since Se = 1, the first estimate is as follows:
∣∣σe

j

(
v|Ke

)∣∣ ‖Se‖ =
∣∣v
(
xe

j

)∣∣ ≤ max
z∈Ω

|v(z)| , j = 1, 2, 3,

where xe
j ∈ ∂Ke is a corner of Ke. Hence,

C12 := max
z∈Ω

|v(z)| .

Let now Ke ∈ T h be such that Ke ⊂ ∆hΩh and let x ∈ Ke. Then, by Assumption 4.3, there
exist y ∈ ∂Ω and xh ∈ ∂Ωh such that

‖x − y‖ =
∥∥∥x− xh + xh − y

∥∥∥ ≤
∥∥∥x− xh

∥∥∥+
∥∥∥xh − y

∥∥∥ ≤ 2he,

where he is by definition the maximum side of Ke. Since y ∈ ∂Ω, then v(y) = 0. Now, we use
Theorem 3.3

v(x) = v(y) + grad(v(z)) · (x − z) = grad(v(z)) · (x− z), (4.62)



60 CHAPTER 4. FINITE ELEMENT METHOD
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Figure 4.4: A Lagrange triangle Ke

where z ∈ Ke lies on the line between x and y. Therefore,

∀x ∈ Ke : |v(x)| ≤ max
z∈Ω

‖grad(v(z))‖ · 2he. (4.63)

To prove the second estimate, we exploit the structure of the matrix (Re)−T . Using (3.9)
and (3.14), we get

∥∥∥(Re)−T
∥∥∥ = max

i,j

∣∣∣∣
(
(Re)−T

)
i,j

∣∣∣∣ = max
i,j

∣∣∣∣
(
(Re)−1

)
i,j

∣∣∣∣ = max
i,j

∣∣∣∣
xe

j+1,i − xe
1,i

det (Re)

∣∣∣∣ ≤

≤ he

2meas (Ke)
.

(4.64)

From Fig. 4.4, it is clear that

meas (Ke) =
heηe

2
.

Using (4.63), (4.64), Fig. 4.4, and the minimum angle condition (4.61), the second estimate reads
as follows:

∣∣σe
j

(
v|Ke

)∣∣ ‖Se
B‖ =

∣∣v
(
xe

j

)∣∣
∥∥∥(Re)−T

∥∥∥ ≤ max
z∈Ω

‖grad(v(z))‖2he

ηe
≤

≤ max
z∈Ω

‖grad(v(z))‖2 (ζe
1 + ζe

2)

ηe
≤

≤ max
z∈Ω

‖grad(v(z))‖4ζe
2

ηe
= 4max

z∈Ω
‖grad(v(z))‖ 1

tan (γKe)
≤

≤ 4max
z∈Ω

‖grad(v(z))‖ 1

tan (γ0)
,

where γKe denotes the minimum angle of the triangle K e. Hence,

C13 :=
4maxz∈Ω ‖grad(v(z))‖

tan (γ0)
.

Lemma 4.7. Let v ∈ C∞
0 (Ω). Then there exists a positive constant C14 ≡ C14(v) such that for

any discretization parameter h > 0, for any subdomain Ωh ⊂ Ω, and for any discretization T h

which satisfies the minimum angle condition (4.61), the following holds

∀Ke ∈ T h ∀x ≡ Re(x̂) ∈ Ke :

∥∥gradx

(
πe
(
v|Ke(x)

))∥∥ =

∥∥∥∥∥
3∑

i=1

σe
i

(
v|Ke

)
Se

grad · gradbx

(
ξ̂r
i (x̂)

)∥∥∥∥∥ ≤ C14,



4.4. FINITE ELEMENTS FOR MAGNETOSTATICS 61

where ‖ · ‖ denotes the Euclidean norm.

Proof. Let v ∈ C∞
0 (Ω) be an arbitrary function, h > 0 be a discretization parameter, Ωh ⊂

Ω be a polygonal subdomain, T h be a discretization of Ωh which satisfies the minimum angle
condition (4.61), and let Ke ∈ T h be an element domain. The gradients of the reference shape
functions, see (4.60), are constant over Kr

gradbx

(
ξ̂r
1(x̂)

)
= (−1,−1), gradbx

(
ξ̂r
2(x̂)

)
= (1, 0), gradbx

(
ξ̂r
3(x̂)

)
= (0, 1),

where x̂ := (x̂1, x̂2) ∈ Kr. Now, using the latter and the definition of Re, we exploit the structure
of the matrix Se

grad ≡ (Re)−T . It holds that

∥∥∥∥∥
3∑

i=1

σe
i

(
v|Ke

)
Se

grad · gradbx

(
ξ̂r
i (x̂)

)∥∥∥∥∥ ≤

≤
√

2

|det (Re)|

∥∥∥∥
( (

xe
3,2 − xe

1,2

)
(v (xe

2) − v (xe
1)) +

(
xe

2,2 − xe
1,2

)
(v (xe

1) − v (xe
3))(

xe
3,1 − xe

1,1

)
(v (xe

1) − v (xe
2)) +

(
xe

2,1 − xe
1,1

)
(v (xe

3) − v (xe
1))

)∥∥∥∥ ,

(4.65)

where we also used (3.14). Since he is the maximum side, it follows that

∣∣xe
i,j − xe

1,j

∣∣ ≤ he, i = 1, 2, 3, j = 1, 2.

Similarly as in (4.62), Theorem 3.3 yields

|v (xe
i ) − v (xe

1)| ≤ max
z∈Ω

‖grad(v(z))‖ he, i = 2, 3.

Finally, like at the end of the previous proof, from Fig. 4.4 it is clear that

|det (Re)| = 2meas (Ke) = heηe

and, due to the minimum angle condition (4.61) and Fig. 4.4, the estimate (4.65) is as follows:

∥∥∥∥∥
3∑

i=1

σe
i

(
v|Ke

)
Se

grad · gradbx

(
ξ̂r
i (x̂)

)∥∥∥∥∥ ≤
√

2

heηe
2he max

z∈Ω
‖grad(v(z))‖ he ≤

≤ 2
√

2 max
z∈Ω

‖grad(v(z))‖ ζe
1 + ζe

2

ηe
≤ 2

√
2max

z∈Ω
‖grad(v(z))‖ 2ζe

2

ηe
=

= 4
√

2 max
z∈Ω

‖grad(v(z))‖ 1

tan (γKe)
≤ 4

√
2 max

z∈Ω
‖grad(v(z))‖ 1

tan (γ0)
,

where γKe is the minimum angle of the triangle Ke. Hence,

C14 := 4
√

2 max
z∈Ω

‖grad(v(z))‖ 1

tan (γ0)
.
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ĉr
6

Kr

Re

x1

x2

x3

ce
1

ce
2

ce
3

ce
4

ce
5

ce
6

Ke

Figure 4.5: A transformation from the reference Nédélec tetrahedron

4.4.2 Linear Nédélec elements on tetrahedra

Here, we state a type of finite elements, which is frequently used for the approximation of the space
H(curl; Ω), where Ω ⊂ R3, Ω ∈ L. These elements can be used for solving the 3–dimensional
linear magnetostatic problem, which was introduced in Section 3.4.3. The elements are defined
over tetrahedra and the degrees of freedom are calculated as integrals along the edges. The el-
ements were first introduced by NÉDÉLEC [142] and, since then, they have become a standard.

The linear Nédélec element is a triple E :=
(
Ke,Pe,Σe

)
, where Ke ⊂ R3 is a tetrahedral

domain,

Pe :=
{
p(x) := ae × x + be

∣∣ ae,be ∈ R3, x := (x1, x2, x3) ∈ Ke
}

,

and the degrees of freedom are

Σe := {σe
1, σ

e
2, σ

e
3, σ

e
4, σ

e
5, σ

e
6} ,

where σe
i :
[
C
(
Ke
)]3 7→ R is such that for v ∈

[
C
(
Ke
)]3

σe
i (v) :=

∫

ce
i

v · te
i ds, i = 1, . . . , 6,

where ce
i stand for the oriented edges, see Fig. 4.5, and te

i are the related unit tangential vectors.
Now, we concern the space H(curl;Ke) and the corresponding trace operator γKe(v) :=

ne × v on ∂Ke, where v ∈ Pe and ne denotes the unit outer normal vector to ∂K e. By NÉ-
DÉLEC [142, Theorem 1], Assumption 4.1 is fulfilled, thus, the linear Nédélec finite elements are
H(curl;Ke)–conforming.

The transformation Re in Fig. 4.5 is determined by

Re :=




xe
2,1 − xe

1,1 xe
3,1 − xe

1,1 xe
4,1 − xe

1,1

xe
2,2 − xe

1,2 xe
3,2 − xe

1,2 xe
4,2 − xe

1,2

xe
2,3 − xe

1,3 xe
3,3 − xe

1,3 xe
4,3 − xe

1,3


 , re :=




xe
1,1

xe
1,2

xe
1,3


 , (4.66)

where xe
i :=

(
xe

i,1, x
e
i,2, x

e
i,3

)
, i=1,. . . ,4, are the corners of the tetrahedron K e, which correspond

to the following corners of Kr

x̂r
1 := (0, 0, 0), x̂r

2 := (1, 0, 0), x̂r
3 := (0, 1, 0), x̂r

4 := (0, 0, 1). (4.67)
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As far as Assumption 4.2 is considered, we determine Se by

Se := (Re)−T . (4.68)

It can be shown that following Piola’s transformation holds, see RAVIART AND THOMAS [167,
Formula 3.17],

curlx(v(x)) =
1

det(Re)
Re · curlbx(v̂(x̂)) , (4.69)

where v(x) := Se · v̂(x̂) and x := Re · x̂ + re. The reference shape functions read as follows:

ξ̂r
1(x̂) :=




0
−1

1


× x̂ +




1
0
0


 , ξ̂r

2(x̂) :=




1
0

−1


× x̂ +




0
1
0


 ,

ξ̂r
3(x̂) :=




−1
1
0


× x̂ +




0
0
1


 , ξ̂r

4(x̂) :=




0
0
1


× x̂ +




0
0
0


 ,

ξ̂r
5(x̂) :=




1
0
0


× x̂ +




0
0
0


 , ξ̂r

6(x̂) :=




0
1
0


× x̂ +




0
0
0


 ,

(4.70)

where x̂ := (x̂1, x̂2, x̂3) ∈ Kr and Kr is the reference tetrahedron, see Fig. 4.5, the corners of
which are given by (4.67).

Now, we will state the element approximation property such that both Assumption 4.4 and As-
sumption 4.5 will be fulfilled. Suppose that we have a decomposition T h :=

{
Ke1 , . . . ,K

en
Ωh
}

.
The following definition and lemma are due to N ÉDÉLEC [142, p. 327].

Definition 4.2. A family F :=
{
T h | h > 0

}
of decompositions into tetrahedra is said to be

regular if there exists a constant C15 > 0 such that for any T h ∈ F and any Ke ∈ T h we have

he

ρe
≤ C15, (4.71)

where ρe denotes the radius of the largest sphere inscribed in K e.

Lemma 4.8. Let F be a regular family of decompositions into tetrahedra in the sense of Def-
inition 4.2. Then there exists a constant C11 > 0 such that for any T h ∈ F with h ≤ h we
have

∀v ∈
[
H2
(
Ωh
)]ν1

: ‖v − πe(v)‖curl,Ωh ≤ C11h |v|ν1,2,Ωh .

Proof. The assertion is a direct consequence of N ÉDÉLEC [142, Th. 2].

The next two lemmas fulfill Assumptions 4.6 and 4.7, respectively.

Lemma 4.9. Let v ∈ [C∞
0 (Ω)]3. Then there exist positive constants C12 ≡ C12(v) and C13 ≡

C13(v) such that for any discretization parameter h > 0, for any subdomain Ωh ⊂ Ω satisfying
Assumption 4.3, and for any discretization T h which satisfies the regularity condition (4.71) the
following holds

∀Ke ∈ T h : Ke ⊂ ∆hΩh ⇒
∣∣σe

j

(
v|Ke

)∣∣ ‖Se‖ ≤ C12 and
∣∣σe

j

(
v|Ke

)∣∣ ‖Se
curl‖ ≤ C13,

where j = 1, . . . , 6.
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Proof. Let v := (v1, . . . , vν1
) ∈ [C∞

0 (Ω)]ν1 be an arbitrary function, h > 0 be a discretization
parameter satisfying (4.32), Ωh ⊂ Ω be a polygonal subdomain satisfying Assumption 4.3, T h

be a discretization which satisfies the regularity condition (4.71), and let Ke ∈ T h be an element
domain. For j = 1, . . . , 6 we have the estimate

∣∣σe
j

(
v|Ke

)
)
∣∣ =

∣∣∣∣∣

∫

ce
j

v(x) · te
j ds

∣∣∣∣∣ ≤ max
z∈Ω

‖v(z)‖ he, (4.72)

where he stands for the maximum edge size. Since Se := (Re)−T , then, using (3.9) and (3.14), it
follows that

‖Se‖ =
1

|det (Re)|
∥∥∥R̃e

∥∥∥ =
1

6meas (Ke)

∥∥∥R̃e
∥∥∥ ≤ (he)2

3meas (Ke)
. (4.73)

Since ρe denotes the radius of the largest sphere inscribed in K e, from the regularity condi-
tion (4.71) it is obvious that

meas (Ke) ≥ 4

3
π (ρe)3 ≥ 4

3
π

(
he

C15

)3

. (4.74)

Putting the latter into (4.73) and combining that with (4.72), the first estimate reads as follows:

∣∣σe
j

(
v|Ke

)∣∣ ‖Se‖ ≤ max
z∈Ω

‖v(z)‖ (C15)
3

4π
,

hence,

C12 := max
z∈Ω

‖v(z)‖ (C15)
3

4π
.

Similarly as in the proof of Lemma 4.6, let Ke ∈ T h be such that Ke ⊂ ∆hΩh. Then there
exists xh ∈ ∂Ωh and, by Assumption 4.3, there exists y ∈ ∂Ω such that

‖x − y‖ =
∥∥∥x − xh + xh − y

∥∥∥ ≤
∥∥∥x− xh

∥∥∥+
∥∥∥xh − y

∥∥∥ ≤ 2he,

where he is by definition the maximum side of Ke. Since y ∈ ∂Ω, then v(y) = 0. Now we use
Theorem 3.3

vi(x) = vi(y) + grad(vi(z)) · (x − z) = grad(vi(z)) · (x − z) for i = 1, 2, 3

and
‖v(x)‖ ≤ max

i∈{1,2,3}
max
z∈Ω

‖grad(vi(z))‖ 2he for i = 1, 2, 3,

where z ∈ Ke lies on the line between x and y. Therefore,

∣∣σe
j

(
v|Ke

)∣∣ =

∣∣∣∣∣

∫

ce
j

v(x) · te
j ds

∣∣∣∣∣ ≤ max
i∈{1,2,3}

max
z∈Ω

‖grad(vi(z))‖ 2 (he)2 . (4.75)

Concerning the second estimate, we have

‖Se
curl‖ =

1

|det (Re)| ‖R
e‖ ≤

maxi,j

∣∣∣xe
i+1,j − xe

1,j

∣∣∣
6meas (Ke)

≤ he

6meas (Ke)
≤ (C15)

3

8π (he)2
,
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where we used (4.74). Combining the latter with (4.75), the second estimate is as follows:

∣∣σe
j

(
v|Ke

)∣∣ ‖Se
curl‖ ≤ max

i∈{1,2,3}
max
z∈Ω

‖grad(vi(z))‖ 2 (he)2
(C15)

3

8π (he)2
≤

≤ 1

4
max

i∈{1,2,3}
max
z∈Ω

‖grad(vi(z))‖ (C15)
3 ,

(4.76)

hence,

C13 :=
1

4
max

i∈{1,2,3}
max
z∈Ω

‖grad(vi(z))‖ (C15)
3 .

Lemma 4.10. Let v ∈ [C∞
0 (Ω)]3. Then there exists a positive constant C14 ≡ C14(v) such that

for any discretization parameter h > 0, for any subdomain Ωh ⊂ Ω, and for any discretization
T h which satisfy the regularity condition (4.71), the following holds

∀Ke ∈ T h ∀x ≡ Re(x̂) ∈ Ke :

∥∥curlx
(
πe
(
v|Ke

))∥∥ =

∥∥∥∥∥
6∑

i=1

σe
i

(
v|Ke

)
Se

curl · curlbx

(
ξ̂r

i (x̂)
)∥∥∥∥∥ ≤ C14. (4.77)

Proof. The proof is similar to that of Lemma 4.7. Let v ∈ [C∞
0 (Ω)]ν1 be an arbitrary function,

h > 0 be a discretization parameter, Ωh ⊂ Ω be a polygonal subdomain, T h be a discretization of
Ωh which satisfies the regularity condition (4.71), and let Ke ∈ T h be an element domain. The
rotations of the reference shape functions, see (4.70), are constant over Kr

curlbx

(
ξ̂r

1(x̂)
)

= (0,−2, 2), curlbx

(
ξ̂r

2(x̂)
)

= (2, 0,−2), curlbx

(
ξ̂r

3(x̂)
)

= (−2, 2, 0),

curlbx

(
ξ̂r

4(x̂)
)

= (0, 0, 2), curlbx

(
ξ̂r

5(x̂)
)

= (2, 0, 0), curlbx

(
ξ̂r

6(x̂)
)

= (0, 2, 0),

where x̂ := (x̂1, x̂2, x̂3) ∈ Kr. Let us simplify the rest of the proof by the following notation

σe
i := σe

i

(
v|Ke

)
for i = 1, 2, . . . , 6.

Now, we exploit the structure of the matrix Se
curl. It holds that

curlx
(
πe
(
v|Ke(x)

))
=

1

det(Re)

6∑

i=1

σe
i

(
v|Ke

)
Re · curlbx

(
ξ̂r

i (x̂)
)

=

=
2

6meas(Ke)



(
xe

2,1 − xe
1,1

)
(σe

2 − σe
3 + σe

5)+(
xe

2,2 − xe
1,2

)
(σe

2 − σe
3 + σe

5)+(
xe

2,3 − xe
1,3

)
(σe

2 − σe
3 + σe

5)+

+
(
xe

3,1 − xe
1,1

)
(σe

3 − σe
1 + σe

6) +
(
xe

4,1 − xe
1,1

)
(σe

1 − σe
2 + σe

4)

+
(
xe

3,2 − xe
1,2

)
(σe

3 − σe
1 + σe

6) +
(
xe

4,2 − xe
1,2

)
(σe

1 − σe
2 + σe

4)

+
(
xe

3,3 − xe
1,3

)
(σe

3 − σe
1 + σe

6) +
(
xe

4,3 − xe
1,3

)
(σe

1 − σe
2 + σe

4)


 .

Let f e
2 , f e

3 , and f e
4 stand for the faces that are respectively opposite to the nodes xe

2, xe
3, and xe

4.
The following oriented closed curves

(xe
1,x

e
4,x

e
3,x

e
1) , (xe

1,x
e
2,x

e
4,x

e
1) , and (xe

1,x
e
3,x

e
4,x

e
1) ,
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see also Fig. 4.5, are respectively the positively oriented boundaries of the faces f e
2 , f e

3 , and f e
4

with the outer unit normal vectors ne
2, ne

3, and ne
4. Now, using Theorem 3.5, we arrive at

curlx
(
πe
(
v|Ke(x)

))
=

−1

3meas(Ke)
Re ·




∫
fe
2

curlx
(
v|Ke(x)

)
· ne

2(x) dS∫
fe
3

curlx
(
v|Ke(x)

)
· ne

3(x) dS∫
fe
4

curlx
(
v|Ke(x)

)
· ne

4(x) dS


 .

Since for i = 2, 3, 4 and j = 1, 2, 3

∣∣xe
i,j − xe

1,j

∣∣ ≤ he and

∣∣∣∣∣

∫

fe
i

curlx
(
v|Ke(x)

)
· ne

j(x) dS

∣∣∣∣∣ ≤
1

2
max
x∈Ω

‖curlx(v(x))‖ (he)2

and due to (4.71), the relation (4.74) holds and we get

∥∥curlx
(
πe
(
v|Ke(x)

))∥∥ ≤ 3maxx∈Ω ‖curlx(v(x))‖ (C15)
3

8π
,

hence

C14 :=
3maxx∈Ω ‖curlx(v(x))‖ (C15)

3

8π
.



Chapter 5

Abstract optimal shape design problem

In this chapter, we will introduce a shape optimization problem governed by the abstract linear
elliptic boundary vector–value problem, the weak formulation of which was introduced in Sec-
tion 3.4. We will state a continuous setting of the shape optimization problem and prove the
existence of a solution. Further, we will deal with a regularized formulation and with a conver-
gence of the regularized solutions to the true one. Finally, we will introduce a discretized shape
optimization problem and assumptions under which the discretized and regularized solutions con-
verge to the true one. The theory here is very similar to the one presented by HASLINGER AND

NEITTAANMÄKI [85]. The main difference is that we fix the computational domain Ω and the
shapes control the material distribution rather than the boundary ∂Ω, which is usual in mechanics.
Moreover, we will be concerned with a multi–state optimization, where several state problems with
the same bilinear form, but different linear functionals, in our case, different current excitations,
are involved.

Let us recall some basic literature on shape optimization: BEGIS AND GLOWINSKI [19], MU-
RAT AND SIMON [140], PIRONNEAU [159], HASLINGER AND NEITTAANMÄKI [85], HASLIN-
GER AND MÄKINEN [83], BENDØE [21], SOKOLOWSKI AND ZOLESIO [196], BÖRNER [24],
DELFOUR AND ZOLESIO [54], KAWOHL ET AL. [107], MOHAMMADI AND PIRONNEAU [135].
Besides the basic textbooks, one can find a lot of theoretical analysis in BUCUR AND ZOLE-
SIO [35], CHLEBOUN AND MÄKINEN [44], PEICHL AND RING [155, 156], PETERSSON [157],
PETERSSON AND HASLINGER [158]. Papers focused on applications in electromagnetism are, for
example, DI BARBA ET AL. [18], BRANDSTÄTTER ET AL. [30], LUKÁŠ [123], MARROCCO AND

PIRONNEAU [132], TAKAHASHI [206]. An optimization of mechanical components is presented
in HAASE AND LINDNER [76].

5.1 A fundamental theorem

Let us suppose that we have a set U being a subset of a normed linear space V and we have the
cost functional J : U 7→ R. The optimization problem reads as follows:

Find α∗ ∈ U :

J (α∗) ≤ J (α) ∀α ∈ U

}
. (P )

We say that the set U is compact if for any sequence {αn} ⊂ U there exist a subsequence
{αnk

}∞k=1 ⊂ {αn}∞n=1 and α ∈ U such that αnk
→ α in V , as k → ∞.

The next fundamental theorem of functional analysis examine the existence of a solution to
the problem (P ).

67
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Theorem 5.1. Let U be a compact subset of the normed linear space V and let J : U 7→ R be a
continuous functional. Then there exists a solution α∗ to the problem (P ).

Proof. See HASLINGER AND NEITTAANMÄKI [85, p. 6–7].

5.2 Continuous setting

Results of this section are presented in LUKÁŠ [120]. Let us recall that in Assumption 3.1 we
suppose that Ω ⊂ Rm, m ∈ {2, 3}, Ω ∈ L is a computational domain that is forever fixed
independently from any parameter or variable.

5.2.1 Admissible shapes

The symbol α stands for a shape, which is a continuous function, i.e., α ∈ C(ω), where ω ⊂ Rm−1

is a nonempty polyhedral domain, see also Fig. 5.1. We assume that for all the admissible shapes
α there exists a common Lipschitz constant C16 > 0, i.e.,

∀x,y ∈ ω : |α(x) − α(y)| ≤ C16‖x − y‖. (5.1)

We further employ the box constraints, i.e., there exist αl, αu ∈ R such that

∀x ∈ ω : αl ≤ α(x) ≤ αu. (5.2)

Then the set of admissible shapes is as follows:

U := {α ∈ C(ω) | (5.1) and (5.2) hold}, (5.3)

equipped with the uniform convergence, see (3.16),

αn → α in U if αn ⇒ α , as n → ∞. (5.4)

Lemma 5.1. U is compact.

Proof. Let {αn}∞n=1 ⊂ U be an arbitrary sequence of shapes. By (5.2) the sequence is uni-
formly bounded and by (5.1) it is equicontinuous. Then by Theorem 3.2 there exist a subsequence
{αnk

}∞k=1 ⊂ {αn}∞n=1 and α ∈ C(ω) such that

αnk
⇒ α in ω, as k → ∞.

It is easy to see that α satisfies both (5.1) and (5.2), which completes the proof.

In Chapter 7, we will deal with an application where we will be at the end looking for smooth
shapes, e.g., Bézier curves or patches, cf. FARIN [59], rather than for continuous ones. To this
end, being inspired by CHLEBOUN AND MÄKINEN [44], we introduce a parameterization, i.e., a
nonempty compact set of design parameters Υ ⊂ RnΥ , nΥ ∈ N, and a continuous nonsurjective
mapping

F : Υ 7→ U . (5.5)

Finally, without loosing generality we assume that the shape α controls the following decom-
position of Ω into the subdomains Ω0(α) and Ω1(α)

Ω = Ω0(α) ∪ Ω1(α), Ω0(α) ∩ Ω1(α) = ∅
such that graph(α) ⊂ ∂Ω0(α) ∩ ∂Ω1(α), meas (Ω0(α)) > 0, and meas (Ω1(α)) > 0, (5.6)
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as depicted in Fig. 5.1, where the graph is defined by

graph(α) := {(x1, . . . , xm−1, y) ∈ Rm | x := (x1, . . . , xm−1) ∈ ω and y = α(x)} .
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Figure 5.1: Decomposition of Ω

5.2.2 Multistate problem

The shape optimization problem is governed by a state problem that describes the related physical
field. This is in our case the weak formulation (W ) which is controlled by the shape α via the
material distribution D. We restrict ourselves to the case of two materials with spatial constant
physical properties.

Assumption 5.1. We assume that the material function D ≡ Dα is controlled by the shape α ∈ U
as follows:

Dα(x) :=

{
D0 , x ∈ Ω0(α)

D1 , x ∈ Ω1(α)
, (5.7)

where D0,D1 ∈ Rν2×ν2 , ν2 ∈ N, are constant and positive definite matrices which correspond to
the particular materials.

From the positive definiteness of D0 and D1, the relation (3.39) follows. The bilinear form
(3.40) now reads

aα(v,u) :=

∫

Ω0(α)

B(v) · (D0 · B(u)) dx +

∫

Ω1(α)

B(v) · (D1 · B(u)) dx, u,v ∈ H(B; Ω),

(5.8)
where both the operator B and the space H0(B; Ω) were described in Section 3.3.6.

Concerning the linear functional (3.41), we distinguish several right–hand sides f , e.g., several
current excitations in case of magnetostatics. The linear functional (3.41) reads as follows:

fv(v) :=

∫

Ω
fv · v dx, v ∈ H(B; Ω), for v = 1, 2, . . . , nv, (5.9)

where nv ∈ N is a number of the considered right–hand sides f v ∈
[
L2(Ω)

]ν1 , ν1 ∈ N, such that
they fulfill

∀p ∈ Ker(B; Ω) :

∫

Ω
fv · p dx = 0 for each v = 1, 2, . . . , nv,

where Ker(B; Ω) is defined by (3.35).
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Assumption 5.2. We assume that for each v = 1, . . . , nv the right–hand sides f v are independent
from α ∈ U .

Now for each v = 1, 2, . . . , nv the state problem (W ) is rewritten as follows:

Find uv(α) ∈ H0,⊥(B; Ω):

aα(v,uv(α)) = f v(v) ∀v ∈ H0,⊥(B; Ω)

}
, (W v(α))

where the space H0,⊥(B; Ω) is defined by (3.36).

Lemma 5.2. For each α ∈ U and v = 1, 2, . . . , nv there exists exactly one solution uv(α) ∈
H0,⊥(B; Ω) to the problem (W v(α)). Moreover, there exists a positive constant C7 such that

∀α ∈ U : ‖uv(α)‖B,Ω ≤ C7‖fv‖ν1,0,Ω, v = 1, 2, . . . , nv.

Proof. Taking an arbitrary shape α ∈ U and any v = 1, 2, . . . , nv, the proof is the same as the
one of Theorem 3.16, where the symbols a, f , D, and f are replaced by aα, f v , Dα, and f v ,
respectively.

Lemma 5.3. For each v = 1, 2, . . . , nv the mapping uv : U 7→ H0,⊥(B; Ω) is continuous on U .

Proof. Let v = 1, 2, . . . , nv be arbitrary and let {αn}∞n=1 ⊂ U be a sequence such that αn ⇒ α ∈
U . To make it readable, we denote

u := uv(α) and un := uv(αn) . (5.10)

We observe that (3.46) holds independently of α ∈ U . Therefore, by the definitions of (W v(αn))
and (W v(α)), we have a simple case of Lemma 4.1

‖un − u‖2
B,Ω ≤ 1

C7
aαn(un − u,un − u) =

1

C7
(fv(un − u) − aαn(u,un − u)) =

=
1

C7
(aα(u,un − u) − aαn(u,un − u)),

(5.11)

where C7 is the H0,⊥(B; Ω)–ellipticity constant.

Further, we denote the characteristic functions of the sets Ω0(α) and Ω1(α) by χΩ0(α)(x) and
χΩ1(α)(x), respectively. Since αn ⇒ α, the following holds

χΩ0(αn)(x) → χΩ0(α)(x) and χΩ1(αn)(x) → χΩ1(α)(x) a.e. in Ω, as n → ∞ . (5.12)

Now, we write down the right–hand side of (5.11) and using (3.45) and the Cauchy–Schwarz
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inequality in
[
L2(Ω)

]ν2 we get

|aα(u,un − u) − aαn(u,un − u)| =
∣∣∣
∫

Ω0(α)

B(u) · (D0 ·B(un − u)) dx+

+

∫

Ω1(α)

B(u) · (D1 ·B(un − u)) dx −
∫

Ω0(αn)

B(u) · (D0 ·B(un − u)) dx

−
∫

Ω1(αn)

B(u) · (D1 · B(un − u)) dx
∣∣∣ ≤

≤
∣∣∣∣
∫

Ω

{(
χΩ0(α) − χΩ0(αn)

)
B(u)

}
· (D0 ·B(un − u)) dx

∣∣∣∣+

+

∣∣∣∣
∫

Ω

{(
χΩ1(α) − χΩ1(αn)

)
B(u)

}
· (D1 · B(un − u)) dx

∣∣∣∣ ≤

≤ d
( ∥∥(χΩ0(α) − χΩ0(αn)

)
B(u)

∥∥
0,ν2,Ω

+

+
∥∥(χΩ1(α) − χΩ1(αn)

)
B(u)

∥∥
0,ν2,Ω

)
· ‖B(un − u)‖0,ν2,Ω.

(5.13)
For a better clarity, we introduce the symbols

A0(n) :=
∥∥(χΩ0(α) − χΩ0(αn)

)
B(u)

∥∥
0,ν2,Ω

, A1(n) :=
∥∥(χΩ1(α) − χΩ1(αn)

)
B(u)

∥∥
0,ν2,Ω

.

Then, the relation (5.13) reads as follows:

|aα(u,un − u) − aαn(u,un − u)| ≤ d (A0(n) + A1(n)) ‖B(un − u)‖0,ν2,Ω ≤
≤ d (A0(n) + A1(n)) ‖un − u‖B,Ω .

(5.14)

From the relation (5.12), it follows that

∣∣χΩ0(α)(x) − χΩ0(αn)(x)
∣∣2 ‖B(u(x))‖2 → 0∣∣χΩ1(α)(x) − χΩ1(αn)(x)
∣∣2 ‖B(u(x))‖2 → 0

}
a.e. in Ω, as n → ∞ (5.15)

and, since B(u) ∈ [L2(Ω)]ν2 , the functions on the left–hand side of (5.15) are in L1(Ω) and each
bounded by ‖B(u)‖2 ∈ L1(Ω) from above. Now, using Theorem 3.6, we arrive at

A0(n) → 0 and A1(n) → 0, as n → ∞. (5.16)

Combining (5.10), (5.11), (5.14), and (5.16), we have proven the statement

uv(αn) → uv(α) in H(B; Ω), as n → ∞.

5.2.3 Shape optimization problem

Let I : U ×
[[

L2(Ω)
]ν2
]nv 7→ R be a continuous functional. Using (W v(α)), we define the cost

functional J : U 7→ R by

J (α) := I
(
α,B

(
u1(α)

)
,B
(
u2(α)

)
, . . . ,B(unv(α))

)
, α ∈ U .
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The continuous optimization problem then, in accordance with Section 5.1, reads as follows:

Find α∗ ∈ U :

J (α∗) ≤ J (α) ∀α ∈ U

}
. (P )

Theorem 5.2. There exists α∗ ∈ U that is a solution to (P ).

Proof. By Lemma 5.1, U is a compact subset of the normed linear space C(ω). Using the con-
tinuity of I on U ×

[[
L2(Ω)

]ν2
]nv and Lemma 5.3, the continuity of J on U follows. Now,

Theorem 5.1 completes the proof.

Moreover, we use (5.5) to define the cost functional J̃ : Υ 7→ R

J̃ (p) := J (F (p)), p ∈ Υ.

Then, by the compactness of Υ, by the continuity of F on Υ, and by the same arguments as in the
proof of Theorem 5.2, there exists a solution p∗ ∈ Υ to the optimization problem

Find p∗ ∈ Υ:

J̃ (p∗) ≤ J̃ (p) ∀p ∈ Υ

}
. (P̃ )

5.3 Regularized setting

In this section, we will show a convergence of solutions of optimization problems whose state
problems are regularized, as described in Section 3.4.1, to a continuous solution α∗.

Let ε > 0 be a regularization parameter. Due to (3.47) and (5.8), we introduce the regularized
bilinear form controlled by the shape α ∈ U

aε,α(v,u) := aα(v,u) + ε

∫

Ω
v · u dx, u,v ∈ H(B; Ω).

For each v = 1, 2, . . . , nv the regularized weak formulation reads as follows:

Find uv
ε(α) ∈ H0(B; Ω):

aε,α(v,uv
ε(α)) = f v(v) ∀v ∈ H0(B; Ω)

}
. (W v

ε (α))

Lemma 5.4. Let ε > 0, α ∈ U . Then for each v = 1, 2, . . . , nv there exists a unique solution
uv

ε(α) ∈ H0(B; Ω) to the problem (W v
ε (α)). Moreover, there exists a positive constant C8(ε)

such that
‖uv

ε(α)‖B,Ω ≤ C8(ε)‖f v‖ν1,0,Ω for each v = 1, 2, . . . , nv.

Proof. Taking ε > 0, an arbitrary shape α ∈ U , and any v = 1, 2, . . . , nv, the proof is the same as
the one of Theorem 3.17, while the symbols aε, f , D, and f are replaced by aε,α, f v , Dα, and f v ,
respectively.

Lemma 5.5. Let ε > 0. Then for each v = 1, 2, . . . , nv the mapping uv
ε : U 7→ H0(B; Ω) is

continuous on U .

Proof. Taking any ε > 0, the proof is the same as the one of Lemma 5.3, where all the proper
symbols are subscribed with ε.
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Lemma 5.6. Let α ∈ U . Then for each v = 1, 2, . . . , nv the following holds

B(uv
ε(α)) → B(uv(α)) in

[
L2(Ω)

]ν2 , as ε → 0+, (5.17)

where uv
ε(α) ∈ H0(B; Ω) are the solutions to (W v

ε (α)) and uv(α) ∈ H0,⊥(B; Ω) is the solution
to (W v(α)).

Proof. Taking an arbitrary shape α ∈ U and any v = 1, 2, . . . , nv, the proof is the same as the
one of Theorem 3.18, where we replace the symbols related to the problems (W ) and (Wε) by the
corresponding symbols related to (W v(α)) and (W v

ε (α)), respectively.

Now, we return to the shape optimization problem. We introduce the regularized cost func-
tional by

Jε(α) := I
(
α,B

(
u1

ε(α)
)
,B
(
u2

ε(α)
)
, . . . ,B(unv

ε (α))
)
, α ∈ U .

The regularized shape optimization problem then reads as follows:

Find α∗
ε ∈ U :

Jε(α
∗
ε) ≤ Jε(α) ∀α ∈ U

}
. (Pε)

Theorem 5.3. Let ε > 0. Then there exists α∗
ε ∈ U that is a solution to (Pε).

Proof. Taking any ε > 0, the proof is fairly the same as the one of Theorem 5.2, where we use the
symbol Jε instead of J , and Lemma 5.5 instead of Lemma 5.3.

Theorem 5.4. Let {εn}∞n=1 ⊂ R be a sequence of positive regularization parameters such that
εn → 0+, as n → ∞ and let α∗

εn
∈ U be the corresponding solutions to the problems (Pεn). Then

there exist a subsequence {εnk
}∞k=1 ⊂ {εn}∞n=1 and a shape α∗ ∈ U such that

α∗
εnk

→ α∗ in U , as k → ∞

holds and, moreover, α∗ is a solution to the problem (P ).

Proof. By Theorem 5.3, for each εn > 0 there exists α∗
εn

∈ U which is a solution to (Pεn). By
Lemma 5.1 there exists a subsequence of shapes {α∗

εnk
}∞k=1 ⊂

{
α∗

εn

}∞
n=1

and a shape α∗ ∈ U
such that

α∗
εnk

→ α∗ in U , as k → ∞. (5.18)

Let α ∈ U be arbitrary. Then, due to the definition of (Pεnk
), for any k ∈ N we get

Jεnk

(
α∗

εnk

)
≤ Jεnk

(α). (5.19)

Using Lemma 5.6 and the continuity of I , the right–hand side of (5.19) converges as follows:

Jεnk
(α) → J (α), as k → ∞.

Using (5.18), Lemma 5.5, Lemma 5.6, and the continuity of I , the left–hand side of (5.19) also
converges

Jεnk

(
α∗

εnk

)
→ J (α∗), as k → ∞.

Therefore, we have proven that for any α ∈ U

J (α∗) ≤ J (α).
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Finally, we introduce the regularized cost functional J̃ε : Υ 7→ R by

J̃ε(p) := Jε(F (p)), p ∈ Υ.

Then, the regularized optimization problem reads as follows:

Find p∗
ε ∈ Υ:

J̃ε(p
∗
ε) ≤ J̃ε(p) ∀p ∈ Υ

}
. (P̃ε)

In the same fashion as in the case of (Pε), we can derive the existence theory as well as the
approximation property of the problem (P̃ε).

5.4 Discretized setting

In this section, we introduce a setting of the shape optimization problem (Pε) discretized by the
finite element method. We will prove a convergence of the approximate solutions to the true one.

Let ε > 0 be a regularization parameter and let h > 0 be a discretization parameter, see (4.31).
With any h > 0 we associate a nonempty polyhedral computational subdomain Ωh ⊂ Ω such
that (4.35) is satisfied.

5.4.1 Discretized set of admissible shapes

First, we introduce a finite–dimensional approximation of the set U of admissible shapes. Let

T h
ω :=

{
ωh

1 , . . . , ωh
nh

ω

}
, nh

ω ∈ N, be a discretization of the nonempty polyhedral domain ω ⊂
Rm−1. Let P 1

(
T h

ω

)
⊂ C (ω) denote a space of continuous functions that are linear over ωh

i

for each i = 1, . . . , nh
ω . We denote the corners of ωh

i by xh
ωh

i ,1
, . . . ,xh

ωh
i ,m

∈ Rm−1. By

xh
ω,1, . . . ,x

h
ω,n

x
h
ω

∈ Rm−1 we denote all the nodes of the discretization T h
ω .

Now, we discretize the condition (5.1) as follows:
∣∣∣αh
(
xh

ωh
i ,j

)
− αh

(
xh

ωh
i ,k

)∣∣∣ ≤ C16

∥∥∥xh
ωh

i ,j
− xh

ωh
i ,k

∥∥∥ for i = 1, . . . , nh
ω, j, k = 1, . . . ,m, j 6= k,

(5.20)
which in total involves nh

ω or 3nh
ω conditions in case of m = 2 or m = 3, respectively. Discretized

box constraints (5.2) include the following nxh
ω

conditions

αl ≤ αh
(
xh

ω,i

)
≤ αu for i = 1, . . . , nxh

ω
. (5.21)

Then the discretized set of admissible shapes is as follows:

Uh :=
{

αh ∈ P 1
(
T h

ω

) ∣∣∣ (5.20) and (5.21) hold
}

,

equipped with the uniform convergence (5.4). Obviously for each h > 0: Uh ⊂ U and, by the
definition of P 1

(
T h

ω

)
, Uh is finite dimensional.

Lemma 5.7. For any h > 0 the set Uh is compact.

Proof. See the proof of Lemma 5.1.
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We introduce an interpolation operator πh
ω : U 7→ P 1

(
T h

ω

)
such that for each xh

ωh
i ,j

, a corner

of ωh
i , it holds that

∀α ∈ U :
[
πh

ω(α)
](

xh
ωh

i ,j

)
= α

(
xh

ωh
i ,j

)
, i = 1, . . . , nh

ω, j = 1, . . . ,m. (5.22)

Lemma 5.8. Let α ∈ U be an arbitrary shape and let {hn}∞n=1 ⊂ R be a sequence of positive
discretization parameters. Then the following holds

πhn
ω (α) → α in U , as hn → 0+.

Proof. See BEGIS AND GLOWINSKI [19].

Further, let h > 0 be given. Since for any α ∈ U : (5.1) implies (5.20), and (5.2) implies
(5.21), then also α ∈ U implies πh

ω(α) ∈ Uh. Moreover, as F : Υ 7→ U , then for any p ∈ Υ it
follows that πh

ω(F (p)) ∈ Uh. Therefore, we use Υ also for the discretized setting.
Finally, like in the continuous case we assume that a discretized shape αh controls the decom-

position of Ωh into the subdomains Ωh
0(αh) and Ωh

1(αh) as follows:

Ωh = Ωh
0(αh) ∪ Ωh

1(αh), Ωh
0(αh) ∩ Ωh

1(αh) = ∅
such that graph(αh) ⊂ ∂Ωh

0(αh)∩ ∂Ωh
1(αh), meas

(
Ωh

0(αh)
)

> 0, and meas
(
Ωh

1(αh)
)

> 0,

(5.23)

where the boundaries ∂Ωh
0(αh), ∂Ωh

1(αh) are polyhedral, as depicted in Fig. 5.2.
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Figure 5.2: Decomposition of Ωh

5.4.2 Discretized multistate problem

Let ε > 0 be a regularization parameter. For each αh ∈ Uh we provide a discretization T h(αh) :={
K1(α

h), . . . ,Kn
Ωh

(αh)
}

of the computational domain Ωh such that

∀Ki(α
h) ∈ T h(αh) : Ki(α

h) ⊂ Ωh
0(αh) or Ki(α

h) ⊂ Ωh
1(αh). (5.24)
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By Eh :=
{

e1, . . . , en
Ωh

}
we denote the corresponding set of finite elements. For any h > 0 and

αh ∈ Uh we suppose that Assumptions 4.1–4.7 hold. We introduce another assumption, which is
due to HASLINGER AND NEITTAANMÄKI [85, p. 67].

Assumption 5.3. We assume that for any h > 0 fixed the topology of the discretization grid
T h(αh) is independent from αh ∈ Uh, we further assume that the coordinates of x

ei

1 (αh), . . . ,
x

ei

m+1(α
h) ∈ Rm, see (4.25), which are the corners of Ki(α

h) ∈ T h(αh), still form a triangle
(m = 2) or a tetrahedron (m = 3), and they depend continuously on αh ∈ Uh.

The regularized and discretized setting of the multistate problem reads as follows:

Find uv,h
ε

(
αh
)
∈ H0

(
B; Ωh

)h
:

ah
ε,αh

(
vh,uv,h

ε

(
αh
))

= f v,h
(
vh
)

∀vh ∈ H0

(
B; Ωh

)h





, v = 1, . . . , nv, (W v,h
ε (αh))

where the finite element space H0

(
B; Ωh

)h
is defined by (4.17), where further for each vh,wh ∈

H
(
B; Ωh

)
we define

ah
ε,αh

(
vh,wh

)
:=

∫

Ωh

B
(
vh
)
·
(
Dh

αh · B
(
wh
))

dx + ε

∫

Ωh

vh ·wh dx, (5.25)

in which, in virtue of Assumption 5.1,

Dh
αh(x) :=





D0 , x ∈ Ωh
0

(
αh
)

D1 , x ∈ Ωh
1

(
αh
)

0 , x ∈ Ω \ Ωh

, (5.26)

and where for each vh ∈ H
(
B; Ωh

)
we set

fv,h
(
vh
)

:=

∫

Ωh

fv,h · vh dx, v = 1, . . . , nv,

in which, due to (4.18), f v,h ∈
[
L2
(
Ωh
)]ν1 are elementwise constant and such that

∥∥∥fv,h − f v
∥∥∥

ν1,0,Ω
→ 0, as h → 0+, v = 1, . . . , nv, (5.27)

where f v,h(x) := f v(x) in Ω \ Ωh. The following is in virtue of Assumption 5.2.

Assumption 5.4. We assume that for each v = 1, . . . , nv the right–hand side f v,h is independent
of the shape αh ∈ Uh.

The following lemma assures that for any ε > 0, h > 0, and v = 1, . . . , nv fixed the mapping

u
v,h
ε : Uh 7→ H0

(
B; Ωh

)h
is well defined.

Lemma 5.9. For each ε > 0, h > 0, αh ∈ Uh, and v = 1, . . . , nv there exists a unique solution

u
v,h
ε

(
αh
)
∈ H0

(
B; Ωh

)h
to the problem (W v,h

ε (αh)).

Proof. Since Ωh is a polyhedron, then Ωh ∈ L and the statement follows by the same arguments
as in the proof of Theorem 3.17.
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Lemma 5.10. Let ε > 0, h > 0. Then for each v = 1, 2, . . . , nv the mapping u
v,h
ε : Uh 7→

H0

(
B; Ωh

)h
is continuous on Uh.

Proof. We take an arbitrary ε > 0, h > 0, and v = 1, . . . , nv. Note that we cannot use the
same technique as in the proof of Lemma 5.3, since the settings (W v,h

ε (αh)) differ from αh ∈ Uh.
Therefore, the estimate (5.11) cannot be established. We will rather exploit the algebraic structure
of the mapping u

v,h
ε .

In the similar manner as in (4.24), the solution to (W v,h
ε (αh)) reads as follows:

uv,h
ε

(
αh
)

=
n∑

i=1

uv,n
ε,i

(
xh
(
αh
))
ξh

i

(
xh
(
αh
))

, (5.28)

where xh
(
αh
)

denotes a vector of global coordinates of all element domains corners, which are
by Assumption 5.3 continuously dependent on the shape αh ∈ Uh, where further ξh

i

(
xh
)

denotes
the global shape functions, and where we use the same notation for both the functions u

v,n
ε

(
αh
)

and u
v,n
ε

(
xh
(
αh
))

uv,n
ε

(
αh
)
≡ uv,n

ε

(
xh
(
αh
))

:=
(
uv,n

ε,1

(
xh
(
αh
))

, . . . , uv,n
ε,n

(
xh
(
αh
)))

∈ Rn,

which is the solution to the linear system (4.9). In this case, (4.9) reads as follows:

An
ε

(
xh
)
· uv,n

ε

(
xh
)

= f v,n
(
xh
)

. (5.29)

Now, let us take a look into the assembling of the matrix and the right–hand side vector
in (5.29). Due to (4.21), the element contributions to them are

(
An

ε

(
xh
))

i,j
=

∑

e∈Eh
i
∩Eh

j

ne∑

k,l=1

ae
ε,xe(ξe

k(x
e) , ξe

l (x
e)) ,

(
f v,n

(
xh
))

i
=
∑

e∈Eh
i

ne∑

k=1

fv,e(ξe
k(x

e)) ,

(5.30)

for i, j = 1, . . . , n, where Eh
i denotes the set of elements neighbouring with ei, see (4.20), and

xe is the vector of coordinates of the element domain corners, see (4.25). Using the map from
the reference element r, the element contributions to the bilinear form and linear functional, see
also (4.29) and (4.30), respectively are

ae
ε,xe(ξe

k(x
e) , ξe

l (x
e)) =

=

∫

Kr

(
Se

B(xe) · Bbx

(
ξ̂r

k

))
·
(
De

xe ·
(
Se

B(xe) · Bbx

(
ξ̂r

l

)))
|det(Re(xe))| dx̂ +

+ ε

∫

Kr

(
Se(xe) · ξ̂r

k

)
·
(
Se(xe) · ξ̂r

l

)
|det(Re(xe))| dx̂,

fv,e(ξe
k(x

e)) =

∫

Kr

f e ·
(
Se(xe) · ξ̂r

k

)
|det(Re(xe))| dx̂,

(5.31)
where k, l = 1, . . . , ne and where we also used Assumptions 5.1 and 5.4.
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The expressions (5.28)–(5.31) specify the function u
v,h
ε

(
αh
)
. Now, we will prove its continu-

ity. Let αh ∈ Uh be an arbitrary discretized admissible shape and let
{
αh

p

}∞
p=1

⊂ Uh be such a
sequence that

αh
p → αh in Uh, as p → ∞.

Let us denote for each element e ∈ Eh, where Eh stands for the set of finite elements,

xe
p := xe

(
αh

p

)
and xe := xe

(
αh
)

.

By Assumption 5.3, for each element e ∈ Eh we get

xe
p → xe in Rm(m+1), as p → ∞.

Again by Assumption 5.3, for each e ∈ Eh and each p ∈ N the element domains Ke
(
xe

p

)
as

well as Ke(xe) still form a triangle (in case of m = 2) or a tetrahedron (in case of m = 3), and it
follows from the definition (4.28) that the matrices Re

(
xe

p

)
, Re(xe) are nonsingular, and therefore

∣∣det
(
Re
(
xe

p

))∣∣ > 0, |det(Re(xe))| > 0.

Moreover, as both Re and re by (4.28) continuously depend on xe, we get:

det
(
Re
(
xe

p

))
→ det(Re(xe)) in R, as p → ∞. (5.32)

From Assumption 4.2 it follows that

Se
(
xe

p

)
→ Se(xe) in Rν1×ν1 and Se

B

(
xe

p

)
→ Se

B(xe) in Rν2×ν2 , as p → ∞. (5.33)

Now, the only symbols in the integrals (5.31) that depend on the integration variable x̂ are

ξ̂r
k(x̂), ξ̂r

l (x̂), Bbx

(
ξ̂r

k(x̂)
)

, and Bbx

(
ξ̂r

l (x̂)
)

. However, they are each independent from the vector

xe. We can expand the matrix multiplications in the integrands, which leads to the following finite
linear combinations of integrals

ae
ε,xe(ξe

k(x
e) , ξe

l (x
e)) =

N∑

i=1

ce
ε,i(x

e)

∫

Kr

Fi(x̂) dx̂,

fv,e(ξe
k(x

e)) =

M∑

j=1

dv,e
j (xe)

∫

Kr

Gj(x̂) dx̂.

From (5.32) and (5.33) for i = 1, . . . , N , j = 1, . . . ,M it follows that

ce
ε,i

(
xe

p

)
→ ce

ε,i(x
e) and dv,e

j

(
xe

p

)
→ dv,e

j (xe) in R, as p → ∞,

which consequently yields

ae
ε,xe

p

(
ξe

k

(
xe

p

)
, ξe

l

(
xe

p

))
→ ae

ε,xe(ξe
k(x

e) , ξe
l (x

e)) in R, as p → ∞

and
fv,e

(
ξe

k

(
xe

p

))
→ f v,e(ξe

k(x
e)) in R, as p → ∞

for k, l = 1, . . . , ne. By Assumption 5.3 the topology of the mesh T h
(
αh
)

does not change with
any αh ∈ Uh, hence, the sets Eh

i and Eh
j in (5.30) remain unchanged. It follows that

(
An

ε

(
xh
(
αh

p

)))
i,j

→
(
An

ε

(
xh
(
αh
)))

i,j
, as p → ∞,
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and (
f v,n

(
xh
(
αh

p

)))
i
→
(
f v,n

(
xh
(
αh
)))

i
in R, as p → ∞,

for each i, j = 1, . . . , n. From here and (5.29) we get

uv,n
ε

(
xh
(
αh

p

))
→ uv,n

ε

(
xh
(
αh
))

in Rn, as p → ∞. (5.34)

Using the map from the reference element r, the global shape function reads as follows:

ξh
i

(
xh
)

=
∑

e∈Eh
i

∑

j:Ge(j)=i

ξe
j(x

e) =
∑

e∈Eh
i

∑

j:Ge(j)=i

Se(xe) · ξ̂r
j ,

which together with (5.33) and with Assumption 5.3 yield

ξh
i

(
xh
(
αh

p

))
→ ξh

i

(
xh
(
αh
))

in Rn, as p → ∞. (5.35)

Combining (5.28), (5.34), and (5.35), we have completed the proof, i.e.,

uv,h
ε

(
αh

p

)
→ uv,h

ε

(
αh
)

in Uh, as p → ∞.

Lemma 5.11. Let ε > 0 be a regularization parameter. Let {hn}∞n=1 ⊂ R be a sequence of
positive discretization parameters such that hn → 0+, as n → ∞. Let

{
Ωhn

}∞
n=1

, Ωhn ⊂ Ω, be
a sequence of subdomains satisfying Ωhn ↗ Ω, as n → ∞. Further, let α ∈ U be a shape and{
αhn

}∞
n=1

⊂ U , αhn ∈ Uhn , be a sequence of discretized shapes such that

αhn → α in U , as n → ∞.

Then for each v = 1, . . . , nv

Xhn
ν1

(
uv,hn

ε

(
αhn

))
→ uv

ε(α) in H0(B; Ω), as n → ∞,

where u
v,hn
ε

(
αhn

)
is the solution to (W v,hn

ε (αhn)) and uv
ε(α) is the solution to (W v

ε (α)).

Proof. It is enough to prove that the assumption (4.42) is fulfilled and the rest is then fairly the
same as the proof of Theorem 4.2, while (4.43) is replaced by the assumption (5.27).

Given an arbitrary x ∈ Ω \ (∂Ω0(α) ∪ ∂Ω1(α)), it follows from (5.6) that either x ∈ Ω0(α)
or x ∈ Ω1(α). Thus, by (5.7) either

Dα(x) = D0 or Dα(x) = D1,

respectively. Having Ωhn ↗ Ω, αhn ⇒ α, as n → ∞, and due to (5.23), there exists n0(x) ∈ N

such that for each n ∈ N, n ≥ n0(x) either x ∈ Ωhn

0

(
αhn

)
or x ∈ Ωhn

1

(
αhn

)
, respectively.

Therefore, either
Dαhn (x) = D0 or Dαhn (x) = D1,

respectively. Thus, we have verified the assumption (4.42), i.e., for any i, j = 1, . . . , ν2:
∣∣∣dhn

αhn ,i,j
(x) − dα,i,j(x)

∣∣∣→ 0 a.e. in Ω, as n → ∞,

where Dαhn (x) :=
(
dhn

αhn ,i,j
(x)
)

i,j
∈ Rν2×ν2 and Dα(x) := (dα,i,j(x))i,j ∈ Rν2×ν2 .
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5.4.3 Discretized optimization problem

The regularized and discretized cost functional is

J h
ε

(
αh
)

:= I
(
αh,B

(
Xh

ν1

(
u1,h

ε

(
αh
)))

, . . . ,B
(
Xh

ν1

(
unv,h

ε

(
αh
))))

, αh ∈ Uh, (5.36)

where Xh
ν1

: H0

(
B; Ωh

)h 7→ H0(B; Ω) is due to (4.33) and Lemma 4.3. The relevant setting of
the shape optimization problem reads as follows:

Find αh
ε
∗ ∈ Uh:

J h
ε

(
αh

ε
∗
)
≤ J h

ε

(
αh
)

∀αh ∈ Uh



 . (P h

ε )

Theorem 5.5. Let ε > 0 and h > 0. Then there exists αh
ε
∗ ∈ Uh that is a solution to (P h

ε ).

Proof. Taking any ε > 0 and h > 0, the proof is fairly the same as the one of Theorem 5.2, where
we use the symbol J h

ε instead of J , and Lemma 5.10 instead of Lemma 5.3.

Theorem 5.6. Let ε > 0 be a fixed regularization parameter. Let {hn}∞n=1 ⊂ R be a sequence
of positive discretization parameters such that hn → 0+, as n → ∞, and let αhn

ε
∗ ∈ Uhn denote

the corresponding solutions to the problems (P hn
ε ). Then there exist a subsequence {hnk

}∞k=1 ⊂
{hn}∞n=1 and a shape αε

∗ ∈ U such that

α
hnk
ε

∗
→ αε

∗ in U , as k → ∞,

holds and, moreover, αε
∗ is a solution to the problem (Pε).

Proof. By Theorem 5.5, for each ε > 0 and hn > 0 there exists αhn
ε

∗ ∈ Uhn , a solution to (P hn
ε ).

By Lemma 5.1, there exist a subsequence of shapes
{
α

hnk
ε

∗}∞

k=1
⊂
{

αhn
ε

∗
}∞

n=1
and a shape

αε
∗ ∈ U such that

α
hnk
ε

∗
→ αε

∗ in U , as k → ∞. (5.37)

Let α ∈ U be an arbitrary shape. By Lemma 5.8, there exists a sequence
{
αhnk

}∞
k=1

, αhnk ∈ Uhnk

such that
αhnk → α in U , as k → ∞. (5.38)

Then, due to the definition of (P
hnk
ε ) for any k ∈ N we have

J hnk
ε

(
α

hnk
ε

∗)
≤ J hnk

ε

(
αhnk

)
. (5.39)

Using (5.37), (5.38), Lemma 5.11, and the continuity of I , both the left and right–hand side
of (5.39) converge

J hnk
ε

(
α

hnk
ε

∗)
→ J (αε

∗) and J hnk

(
αhnk

)
→ J (α) , as k → ∞.

Therefore, we have proven that for any α ∈ U

J (αε
∗) ≤ J (α).
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Finally, we introduce the regularized and discretized cost functional J̃ h
ε : Υ 7→ R by

J̃ h
ε (p) := J h

ε

(
πh

ω(F (p))
)

, p ∈ Υ.

Then, the regularized and discretized optimization problem reads as follows:

Find ph
ε
∗ ∈ Υ:

J̃ h
ε

(
ph

ε
∗
)
≤ J̃ h

ε (p) ∀p ∈ Υ



 . (P̃ h

ε )

Since Υ is a compact set and πh
ω◦F : Υ 7→ Uh is a continuous mapping, we can state and prove the

existence theorem for (P̃ h
ε ) similarly to Theorem 5.5. We can also state the convergence theorem,

the proof of which is even simpler than the one of Theorem 5.6, as the set of admissible design
parameters Υ is not changed by discretization.

Remark 5.1. In cases of complex geometries, as those in Chapter 7, Assumption 5.3 is a serious
bottleneck of this discretization approach. For small discretization parameters and large changes
in the design we cannot guarantee that the perturbed elements still satisfy some regularity con-
dition. They might be even flipped. In this case, we have to re–mesh the geometry and solve the
optimization problem again, but now on a grid of different topology. Then certainly the cost func-
tional is not continuous any more and the just introduced convergence theory cannot be applied.
Nevertheless, in literature this approach is still the most frequently used one as far as a finite ele-
ment discretization is concerned. In practice, after we get an optimized shape we should compare
the value of a very fine discretized cost functional for the optimized design with that value for the
initial one. If we can see a progress then the optimization surely did a good job. Some solutions to
this obstacle are discussed in Conclusion.
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Chapter 6

Numerical methods for shape
optimization

In this chapter, which is the heart of the thesis, we will focus on the Newton–type algorithms for
smooth discretized shape optimization problems. At the beginning, we will revise the discretized
setting and we will show its smoothness, i.e., the continuity of both the cost and constraint func-
tions up to their second derivatives. Further, we will recall a quasi–Newton algorithm that uses
the first–derivatives only. Then, we will discuss the first–order sensitivity analysis methods. We
will derive a robust, but still efficient, algorithm based on the algebraic approach of the first–order
shape sensitivity analysis, and we will implement it into an object–oriented software framework.
At the end, we will introduce a multilevel optimization approach.

An extensive literature on the gradient– or Newton–type optimization methods has been writ-
ten. Let us refer to NOCEDAL AND WRIGHT [148], FLETCHER AND REEVES [63], FLET-
CHER [61, 62], SVANBERG [203, 204], DENNIS AND SCHNABEL [55], GILL, MURRAY, AND

WRIGHT [66], GROSSMANN AND TERNO [72], CEA [39], CLARKE [48], HAGER, HEARN, AND

PARDALOS [81], HESTENSEN [88, 89], POLAK [161], POLAK AND RIBIÈRE [162], BOGGS AND

TOLLE [23], CONN, GOULD, AND TOINT [49], MÄKELÄ AND NEITTAANMÄKI [130], ZOWE,
KOČVARA, AND BENDSØE [222]. There are many essential monographs and papers dealing with
the sensitivity analysis in shape optimization. Let us mention HAUG, CHOI, AND KOMKOV [86],
HASLINGER AND NEITTAANMÄKI [85], HASLINGER AND MÄKINEN [83], ZOLESIO [220],
SOKOLOWSKI AND ZOLESIO [196], SOKOLOWSKI AND ZOCHOWSKI [195], PETERSSON [157],
SIMON [193], LAPORTE AND TALLEC [118], DELFOUR AND ZOLESIO [54], HANSEN, ZIU,
AND OLHOFF [82], BROCKMAN [34], GRIEWANK [70], MÄKINEN [131], NEITTAANMÄKI AND

SALMENJOKI [145].

6.1 The discretized optimization problem revisited

Throughout this chapter, we will consider the optimization problem (P̃ h
ε ), introduced in Chapter 5.

Recall that for a given ε > 0 and h > 0 the problem reads as follows:

Find ph
ε
∗ ∈ Υ:

J̃ h
ε

(
ph

ε
∗
)
≤ J̃ h

ε (p) ∀p ∈ Υ



 , (P̃ h

ε )

where J̃ h
ε : Υ 7→ R denotes the discretized and regularized cost functional and Υ ⊂ RnΥ ,

nΥ ∈ N, is the set of admissible design parameters.

83
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6.1.1 Constraint function

Let us rewrite the admissible set as follows:

Υ := {p ∈ RnΥ | υ(p) ≤ 0} ,

where υ : RnΥ 7→ Rnυ , nυ ∈ N, is the constraint function.

Assumption 6.1. We assume that υ ∈
[
C2(RnΥ)

]nυ .

6.1.2 Design–to–shape mapping

Let us take a deep look into the structure of the cost functional in order to prove its smoothness
and to derive the first–order derivatives with respect to the design variables. First, we define the

shape parameterization function αh :=
(
αh

1 , . . . , αh
n

αh

)
: RnΥ 7→ Rn

αh , nαh := nxh
ω
∈ N, by

αh
i (p) :=

(
πh

ω ◦ F
)

(p) ≡ [F (p)]
(
xh

ω,i

)
for i = 1, . . . , nαh , (6.1)

where F : Υ 7→ U is due to (5.5) and πh
ω : U 7→ P 1

(
T h

ω

)
is defined by (5.22).

6.1.3 Shape–to–mesh mapping

Here, we revisit the dependence of the discretization grid nodes on the shape control nodes, i.e., we
introduce a function xh : Rn

αh 7→ Rmn
x

h the components of which correspond to the grid nodal
coordinates (4.11), where nxh ∈ N denotes the number of nodes in the discretization T h(αh) of
the domain Ωh. The function xh(·) maps the control shape coordinates onto the remaining grid
nodal coordinates by means of solving an auxiliary discretized linear elasticity problem in terms of
grid displacements 4xh with a nonhomogeneous Dirichlet boundary condition that corresponds
to given shape displacements αh, and with prescribed zero displacements on ∂Ωh and on such
inner interfaces that are not allowed to move. The zero displacements are, for example, prescribed
along the boundary of a subdomain containing nonzero sources f h. The shape–to–mesh mapping
is as follows:

xh
(
αh
)

:= xh
0 + 4xh

(
αh
)

+ Mh · αh, where K h
(
xh

0

)
· 4xh

(
αh
)

= bh
(
αh
)

, (6.2)

in which the vector xh
0 ∈ Rmn

x
h contains the initial grid nodal coordinates and is independent

of αh, where further K h
(
xh

0

)
∈ R(mn

x
h)×(mn

x
h) is a nonsingular symmetric stiffness matrix,

bh
(
αh
)
∈ Rmn

x
h is a right–hand side vector linearly dependent onαh ∈ Rn

αh , and where finally

Mh ∈ R(mn
x

h)×n
αh is a rectangular permutation matrix that identically maps the shape nodal

coordinates onto the corresponding grid nodal coordinates. Both K h and bh arise from the finite
element discretization of the auxiliary linear elasticity problem. For finite elements in elasticity, we
refer to ZIENKIEWICZ [217]. The matrix Mh might also involve some symmetry assumptions on
the geometry, as we will state later in Chapter 7. Solving the equation (6.2) takes approximately
the same computational effort as solving one state problem. Nevertheless, the mapping is very
general, which fits to our intent in developing a robust and efficient numerical method for shape
optimization.
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6.1.4 Multistate problem

Concerning the multistate problem, we recall that we arrive at solving the following nv linear
systems of algebraic equations

An
ε

(
xh
)
· uv,n

ε

(
xh
)

= f v,n
(
xh
)

, v = 1, . . . , nv, (6.3)

where both the system matrix and the right-hand side vectors are assembled by means of Algo-
rithm 1 (

An
ε

(
xh
))

i,j
:=

∑

e∈Eh
i ∩Eh

j

ne∑

k,l=1

ae
ε,xe(ξe

k(x
e) , ξe

l (x
e)) ,

(
f v,n

(
xh
))

i
:=
∑

e∈Eh
i

ne∑

k=1

fv,e(ξe
k(x

e))

(6.4)

for i, j = 1, . . . , n, where Eh
i denotes the set of elements neighbouring with ei, see (4.20), and

xe ∈ Rm(m+1) is the vector of coordinates of the element domain corners, see (4.25), which is
also included in xh by means of the mapping He, see (4.26). Components of the solution to (6.3)
are denoted by

uv,n
ε :=

(
uv,n

ε,1 , . . . , uv,n
ε,n

)
∈ Rn, v = 1, . . . , nv.

Using the map from the reference element r, the element contributions to the bilinear form and
linear functional, respectively, see also (4.29) and (4.30), are

ae
ε,xe(ξe

k(x
e) , ξe

l (x
e)) :=

:=

∫

Kr

(
Se

B(xe) · Bbx

(
ξ̂r

k(x̂)
))

·
(
De ·

(
Se

B(xe) ·Bbx

(
ξ̂r

l (x̂)
)))

|det(Re(xe))| dx̂ +

+ ε

∫

Kr

(
Se(xe) · ξ̂r

k(x̂)
)
·
(
Se(xe) · ξ̂r

l (x̂)
)
|det(Re(xe))| dx̂,

fv,e(ξe
k(x

e)) :=

∫

Kr

fv,e ·
(
Se(xe) · ξ̂r

k(x̂)
)
|det(Re(xe))| dx̂,

(6.5)
where k, l = 1, . . . , ne and where we consider (5.26) and Assumption 5.4. Then,

uv,h
ε

(
xh;x

)
=

n∑

i=1

uv,n
ε,i

(
xh
)
ξh

i

(
xh;x

)
, v = 1, . . . , nv, xh ∈ Rmn

x
h , x ∈ Ωh, (6.6)

is the solution to the state problem (W v,h
ε (αh)), where ξh

i

(
xh;x

)
denote the global shape func-

tions. Moreover, for e ∈ Eh we introduce the element solution vector by

uv,n,e
ε :=

(
uv,n,e

ε,1 , . . . , uv,n,e
ε,ne

)
∈ Rne , where uv,n,e

ε,i := uv,n
ε,Ge(i) for i = 1, . . . , ne.

As we look for B
(
u

v,h
ε

)
rather than for u

v,h
ε , we further elementwise evaluate the following

block column vector

Bv,n
ε

(
xh
)

:=
[
Bv,n,e1

ε

(
xh
)

, . . . ,B
v,n,en

Ωh

ε

(
xh
)]

:= B
(
xh,u v,n

ε

(
xh
))

∈ Rν2n
Ωh (6.7)
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for v = 1, . . . , nv, where for i = 1, . . . , nΩh the corresponding element vector is defined by

Bv,n,ei
ε

(
xh
)

:= B
(
xei ,uv,n,ei

ε

(
xh
))

,

and where xh ∈ Rmn
x

h contains all the grid nodes, xe ∈ Rmne contains the grid nodes related to
the element e ∈ Eh, where further

B
(
xh,uv,n

ε

(
xh
))

|Ki
:= B

(
xei ,u v,n,ei

ε

(
xh
))

:= Bx

(
uv,h

ε

(
xh;x

))
|Ki

=

=

ne∑

j=1

uv,n
ε,Gei(j)(x

ei)Bx

(
ξei

j (xei ;x)
)

=

=

ne∑

j=1

uv,n,ei

ε,j (xei)Sei

B(xei) ·Bbx

(
ξ̂r

j(x̂)
)

for i = 1, . . . , nΩh ,

(6.8)

where x := Rei ·x̂+rei ∈ Ki, and where ei ∈ Eh is the element related to Ki. Recall that since we

employ the lowest, i.e., first–order finite elements, the function Bx

(
u

v,h
ε (xh;x)

)
is elementwise

constant.

6.1.5 Cost functional

Now, we revisit the cost functional (5.36) from the algebraic point of view. In addition, it depends
on the vector of grid nodal coordinates xh as follows:

J̃ h
ε (p) := Ih

(
αh(p),xh

(
αh
)

,B1,n
ε

(
xh
)

, . . . ,Bnv,n
ε

(
xh
))

,

whereαh := αh(p) is a vector of shape control coordinates, where for v = 1, . . . , nv Bv,n
ε

(
xh
)
∈

Rν2n
Ωh is given by (6.7) and (6.8), and where Ih : Rn

αh ×Rmn
x

h ×[Rν2n
Ωh ]nv 7→ R is the revised

cost functional which is for p ∈ Υ and for xh := xh
(
αh(p)

)
defined by

Ih
(
αh(p),xh,B1,n

ε

(
xh
)

, . . . ,Bnv,n
ε

(
xh
))

:=

:= I
(
πh

ω(F (p)) ,Xh
ν1

(
B
(
u1,h

ε

))
, . . . ,Xh

ν1

(
B
(
unv,h

ε

)))
,

in which πh
ω : U 7→ Uh is defined by (5.22), F : Υ 7→ U is due to (5.5), Xh

ν1
: H0

(
B; Ωh

)
7→

H0(B; Ω) is due to (4.33) and Lemma 4.3, and where u
v,h
ε is the solution (6.6).

The complete evaluation of the cost functional proceeds as follows:

p
πh

ω◦F−−−−→ αh
Kh·4xh=bh(α

h)−−−−−−−−−−−→ xh FEM−−−−→ An
ε , f v,n An

ε ·u
v,n
ε =f v,n

−−−−−−−−−→ u
v,n
ε

B(xh,uv,n
ε )−−−−−−−→

B(xh,uv,n
ε )−−−−−−−→ Bv,n

ε

Ih(αh,xh,B1,n
ε ,...,Bnv,n

ε )−−−−−−−−−−−−−−−−→ J̃ h
ε (p).

(6.9)
The cost functional J̃ h

ε is compounded of the following submappings:

• αh which is the discretized shape parameterization,

• K h · 4xh = bh
(
αh
)
, see (6.2), that maps the shape control nodal coordinates αh onto the

remaining nodal coordinates xh in the grid,
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• FEM which assembles the system matrix An
ε and the right–hand side vectors f 1,n, . . . ,

f nv,n by means of the finite element method, as described in Algorithm 1,

• An
ε · uv,n

ε = f v,n that solve the nv linear systems of algebraic equations,

• Bv,n
ε which is a block column vector whose individual vectors represent the elementwise

constant functions Bx

(
u

v,h
ε (x)

)
, see in Algorithm 2, and

• Ih which calculates the cost functional.

6.1.6 Smoothness of the cost functional

To prove the smoothness of J̃ h
ε , we need the smoothness of all the submappings.

Assumption 6.2. We assume that for each h > 0 such that h ≤ h the following hold:

• ∀x ∈ ω : [F (·)] (x) ∈ C2(Υ) ,

• K h ∈ R(mn
x

h)×(mn
x

h) is nonsingular,

• bh
(
αh
)
∈
[
C2(Rn

αh )
]mn

x
h ,

• ∀e ∈ Eh : Re(xe) ∈
[
C2
(
Rm(m+1)

)]m×m
,

• ∀e ∈ Eh : Se
B(xe) ∈

[
C2
(
Rm(m+1)

)]ν2×ν2 ,

• ∀e ∈ Eh : Se(xe) ∈
[
C2
(
Rm(m+1)

)]ν1×ν1 , and

• Ih
(
αh,B1,n

ε , . . . ,Bnv,n
ε

)
∈ C2(Rn

αh × (Rν2n
Ωh )nv) .

Lemma 6.1. Under Assumptions 5.1, 5.3, 5.4, and 6.2, for any h > 0 such that h ≤ h it holds
that

J̃ h
ε ∈ C2(Υ).

Proof. We will step–by–step use Assumption 6.2 and apply Lemma 3.4 to prove the smoothness
of the individual submappings.

Let h > 0 be given such that h ≤ h. By Assumption 6.2, for each i = 1, . . . , nxh
ω

we have

[F (·)]
(
xh

ω,i

)
∈ C2(Υ), therefore,

αh ∈
(
C2(Υ)

)n
αh . (6.10)

Again by Assumption 6.2 and by Lemma 3.3, det
(
K h
)
6= 0 and

[
K h
]−1

:=
1

det
(
K h
)K̃h,

holds, where K̃ h denotes the adjoint matrix, which was defined by (3.13). Then, due to the latter
and by Assumption 6.2, we get

xh
(
αh
)

=
[
K h
]−1

· bh
(
αh
)
∈
[
C2(Rn

αh )
]mn

x
h . (6.11)
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Now, (6.10), (6.11), and Lemma 3.4 yield

xh ◦αh ∈
[
C2(Υ)

]mn
x

h .

Let us further prove the smoothness of the solutions u
v,n
ε

(
xh
)

to the discretized multistate
problem (6.3). Let ε > 0 and v = 1, . . . , nv be arbitrary. By Assumption 6.2, for each e ∈ Eh we
get

Re ∈
[
C2
(
Rm(m+1)

)]m×m
, Se

B ∈
[
C2
(

Rm(m+1)
)]ν2×ν2

, Se ∈
[
C2
(
Rm(m+1)

)]ν1×ν1

.

Then, also due to the definition (3.12), det(Re) ∈ C2
(
Rm(m+1)

)
. From Assumption 5.3 it follows

that the element Ke must not flip, so the determinant does not change its sign, i.e.,

|det(Re)| ∈ C2
(

Rm(m+1)
)

.

Now let us look at the element contributions (6.5). Having Assumptions 5.1 and 5.4, only the ref-
erence shape functions ξ̂r

k and ξ̂r
l depend on the integration variable x̂. After some matrix–vector

multiplications we get the following structure of the element bilinear form and linear functional,
respectively,

ae
ε,xe(ξe

k(x
e) , ξe

l (x
e)) =

N∑

i=1

ce
ε,i(x

e)

∫

Kr

Fi(x̂) dx̂,

fv,e(ξe
k(x

e)) =
M∑

i=1

dv,e
i (xe)

∫

Kr

Gi(x̂) dx̂,

where both ce
ε,i(x

e) , dv,e
i (xe) ∈ C2

(
Rm(m+1)

)
, since they arise as sumations and multiplications

of the entries of Se
B, De, Se, and f v,e multiplied then by |det(Re)|, and where both Fi(x̂) and

Gi(x̂) are common for all e ∈ Eh. Thus, it follows that both the element bilinear form and element
linear functional are smooth, i.e.,

ae
ε,xe(ξe

k(x
e) , ξe

l (x
e)) ∈

[
C2
(
Rm(m+1)

)]ne×ne

, fv,e(ξe
k(x

e)) ∈
[
C2
(
Rm(m+1)

)]ne

. (6.12)

Now we employ Assumption 5.3, which assures that the topology of the discretization T h is fixed.
Hence, neither Eh

i nor Eh
j in (6.3) depends on xh. From (6.12) it follows that

An
ε

(
xh
)
∈
[
C2(Rmn

x
h )
]n×n

and f v,n
(
xh
)
∈
[
C2(Rmn

x
h )
]n

,

a consequence of which is

det
(
An

ε

(
xh
))

∈ C2(Rmn
x

h ) .

Lemma 5.9 provides us the existence of the solution u
v,n
ε

(
xh
)

to (6.3). Hence, there exist the

inverse matrix
[
An

ε

(
xh
)]−1

. Then, by Lemma 3.3, det
(
An

ε

(
xh
))

6= 0 and

[
An

ε

(
xh
)]−1

:=
1

det(An
ε (xh))

Ãn
ε

(
xh
)
∈
[
C2(Rmn

x
h )
]n×n

holds, where Ãn
ε

(
xh
)

denotes the adjoint matrix, which was defined by (3.13). From (3.15) we
get

uv,n
ε

(
xh
)

=
[
An

ε

(
xh
)]−1

· f v,n
(
xh
)
∈
[
C2(Rmn

x
h )
]n

for v = 1, . . . , nv. (6.13)
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The symbol Bv,n
ε is calculated by (6.7) and (6.8). Since there appear only summations and mul-

tiplications of the components of u
v,n,e
ε

(
xh
)

and Se
B(xe) with the constant vectors Bbx

(
ξ̂r

j(x̂)
)

,

we can use (6.13) and Lemma 3.4 which yield

Bv,n
ε

(
xh
)

:= B
(
xh,u v,n

(
xh
))

∈
[
C2(Rmn

x
h )
]ν2n

Ωh for v = 1, . . . , nv. (6.14)

Finally, we compound the submappings αh : Υ 7→ Rn
αh , xh : Rn

αh 7→ Rmn
x

h , Bv,n
ε :

Rmn
x

h 7→ Rν2n
Ωh , and Ih : Rnα × Rmn

x
h × (Rν2n

Ωh )nv 7→ R. First, Assumption 6.2 yields

Ih ∈ C2(Rn
αh × Rmn

x
h × (Rν2n

Ωh )nv) .

Then, using the latter, (6.10), (6.14), and applying Lemma 3.4, we have proven the statement

J̃ h
ε := Ih ◦

[
αh ×

(
xh ◦ αh

)
×
(
B1,n

ε ◦ xh ◦ αh
)
× · · · ×

(
Bnv,n

ε ◦ xh ◦αh
)]

∈ C2(Υ).

Convention 6.1. Just for the purposes of this chapter let us skip in our notation the discretization
parameter h, the superscript n in (6.3), and the regularization parameter ε that will be each
fixed for the moment. If not stated otherwise, all the symbols in the sequel will be considered
as discretized ones, even if they were previously reserved for the continuous setting. Hence, we
consider the following discrete optimization problem with inequality constraints

Find p∗ := arg min
p∈R

nΥ

J̃ (p)

subject to υ(p) ≤ 0



 , (P)

where J̃ : RnΥ 7→ R and υ(p) := (υ1(p), . . . , υnυ (p)) : RnΥ 7→ Rnυ . The problem (P) is
governed by the following multistate problem

A(x) · uv(x) = f v(x) (P v(x))

for v = 1, . . . , nv.

6.2 Newton–type optimization methods

Since we do not usually have any rigorous analysis locating the global solution p∗, it is hardly
possible to solve the problem (P) in a suitable computational time and with a suitable precision at
the same time, when having only some ten design variables. The algorithms looking for a global
minimizer are of an exponential order of complexity with respect to the number nΥ of design
variables. On the other hand, the Newton–type algorithms search for a local minimizer only, but
the computational time is quadratically proportional to the distance of the initial design from the
closest local minimizer. This is due to the fact that we can precisely provide derivatives of the
cost function J̃ as well as of the constraint function υ with respect to the design variables p.
Here, we will restrict ourselves to developing efficient methods that calculate derivatives for shape
optimization. We refer to NOCEDAL AND WRIGHT [148] for a detail overview of optimization
methods for a large variety of problems.
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6.2.1 Quadratic programming subproblem

The Newton–type algorithms are based on an approximation of the original nonlinear optimiza-
tion problem by a quadratic or a sequence of quadratic optimization subproblems, which are also
referred to as quadratic programming subproblems. In general, a quadratic programming problem
reads as follows:

Find p∗ := arg min
p∈R

nΥ

Q(p)

subject to L(p) ≤ 0



 , (QP)

where Q : RnΥ 7→ R denotes a quadratic function and L : RnΥ 7→ Rnυ denotes a linear vector
function.

Basically, there are two approaches to the approximation of the problem (P) by a subproblem
(QP). In both of them the input p0 ∈ RnΥ denotes initial design parameters. The first approach
is called a line search approach where we look for an optimal Newton direction s∗QP being the
solution to the following subproblem

Find s∗QP := arg min
s∈R

nΥ

{[
Q
(
J̃ ,p0

)]
(s)
}

subject to [L (υ,p0)] (s) ≤ 0



 , (QP1(p0))

where s := p − p0 stands for a directional vector from the initial design p0 to the current one

p, Q
(
J̃ ,p0

)
stands for quadratic Taylor’s expansion, see Theorem 3.3, of the function J̃ at the

point p0 while skipping the constant term J̃ (p0)

[
Q
(
J̃ ,p0

)]
(s) := grad

(
J̃ (p0)

)
· s +

1

2
s ·
(
Hess

(
J̃ (p0)

)
· s
)

, s ∈ RnΥ, (6.15)

in which Hess
(
J̃ (p0)

)
∈ RnΥ×nΥ denotes the Hessian matrix whose entries are as follows:

[
Hess

(
J̃ (p0)

)]
i,j

:=
∂2J̃ (p0)

∂pi∂pj
, i, j = 1, . . . , nΥ,

and where L

(
J̃ ,p0

)
denotes linear Taylor’s expansion, see Theorem 3.3, of the vector function

υ at the point p0

[L(υ,p0)] (s) := υ(p0) + Grad(υ(p0)) · s, s ∈ RnΥ, (6.16)

in which the matrix Grad(υ(p0)) ∈ RnΥ×nυ denotes the following gradient matrix

Grad(υ(p0)) := [grad(υ1(p0)) , . . . ,grad(υnυ
(p0))] .

The optimal direction s∗QP is then an input to the following one–dimensional optimization prob-
lem, the line search problem

Find α∗
QP := arg min

α>0

{
J̃
(
p0 + α s∗QP

)}

subject to υ
(
p0 + α s∗QP

)
≤ 0



 , (LS(p0, s

∗
QP))

and
p∗

QP := p0 + α∗
QP s∗QP
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is the solution.
The second approach is called a trust region method. It supposes that the quadratic subproblem

approximates the original problem well, but just in a given neighbourhood of p0. Hence, given an
initial point p0 and a trust region diameter d > 0, we solve the following quadratic subproblem

Find p∗
QP := arg min

p∈R
nΥ

{[
Q
(
J̃ ,p0

)]
(p− p0)

}

subject to [L (υ,p0)] (p − p0) ≤ 0

‖p − p0‖ ≤ d

2





, (QP2(p0, d))

where Q and L are respectively given by (6.15) and (6.16).

6.2.2 Sequential quadratic programming

The problem (QP) is usually solved sequentially such that the optimal solution p∗
QP is used as

an initial design for the next quadratic subproblem. This is also referred to as sequential quadratic
programming (SQP). Its two simplest versions that use the line search or the trust region approach,
respectively, are sketched in Algorithm 3 or in Algorithm 4, cf. NOCEDAL AND WRIGHT [148,
p. 532].

Algorithm 3 Sequential quadratic programming using the line search method
Given p0

k := 0
while a convergence test is not satisfied do

Solve (QP1(pk)) s∗QP

Solve (LS(pk, s
∗
QP)) α∗

QP

p∗
QP := p0 + α∗

QP s∗QP

pk+1 := p∗
QP

k := k + 1
end while
p∗ := pk

Algorithm 4 Sequential quadratic programming using the trust region method
Given p0 and d0 > 0
k := 0
while a convergence test is not satisfied do

Solve (QP2(pk, dk)) p∗
QP

pk+1 := p∗
QP

Update dk  dk+1

k := k + 1
end while
p∗ := pk

Let us note that there are many aspects to deal with, as to find a proper convergence criterion
or to modify the quadratic subproblem when it does not admit a solution, which is the case if
the Hessian matrix or its certain invariant is not positive definite. Here, we want to mention the
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BFGS modification, see FLETCHER [62], named after its authors Broyden, Fletcher, Goldfarb, and
Shanno. It is originally based on the idea of DAVIDON [52, 53]. The method was a revolutionary
improvement of the SQP algorithm. At each iteration, it requires to evaluate only the gradient of
the objective and constraint functions, while the Hessian matrix is iteratively built up by measuring
changes in the gradients. For k ≥ 0, k ∈ N, the BFGS formula is the following, cf. NOCEDAL

AND WRIGHT [148, p. 25],

Hk+1 := Hk −
(Hk · sk) · (Hk · sk)

sk · (Hk · sk)
+

yk · yT
k

yk · sk
, (6.17)

where Hk and Hk+1 are two successive approximations of the Hessian matrices Hess
(
J̃ (pk)

)

and Hess
(
J̃ (pk+1)

)
, respectively, and where

sk := pk+1 − pk and yk := grad
(
J̃ (pk+1)

)
− grad

(
J̃ (pk)

)
.

The SQP method with the BFGS update is classified as a quasi–Newton method.

6.3 The first–order sensitivity analysis methods

Recall that by the first–order sensitivity analysis we mean calculation of gradients of the cost and
constraint functions. There are three kinds of the sensitivity analysis methods, namely, a numerical
differentiation, an automatic differentiation, and semianalytical methods, while others are certain
modifications and/or combinations of them.

The most frequently used is the numerical differentiation. It is usually based on formu-
las for the central difference. Given a function f ∈ C 1

(
Ω
)
, Ω ⊂ Rn, and a point x :=

(x1, . . . , xi, . . . , xn) ∈ Ω, then, using linear Taylor’s expansion, see Theorem 3.3, we can de-
rive the following first central difference formula

∂f(x)

∂xi
≈ f(x1, . . . , xi + δ, . . . , xn) − f(x1, . . . , xi − δ, . . . , xn)

2δ
,

where δ > 0. The approximation error decreases with δ2 until a computer round–off error becomes
significant. Therefore, we have to choose δ such that neither the approximation nor round–off error
is large. Another possibility is using a numerical differentiation formula of a higher m–th order,
m ∈ N, for which the approximation error decreases with δm+1. However, evaluating the gradient
approximation needs 2mn evaluations of f , which is in the case of shape optimization very time
consuming. Hence, we have to balance between the time issue and the precision. The advantages
of the method are robustness and easy implementation.

The automatic differentiation, see GRIEWANK [70], differentiate the function f symbolically.
The input of the method is a routine that evaluates f(x) and the output is again a routine which
now evaluates grad(f(x)). An implementation of the method is very difficult, since it involves a
syntax recognizing, and it relies on the programming language that f is coded in. Nowadays, there
are free software packages available. The method is robust and precise up to the computer round–
off error, but it is too much both time and memory consuming in case of shape optimization, since
the routine for solving the linear system which arises from the finite element discretization is also
differentiated symbolically.



6.3. THE FIRST–ORDER SENSITIVITY ANALYSIS METHODS 93

Here, we will focus on the semianalytical methods, cf. HAUG, CHOI, AND KOMKOV [86],
that bases on the algebraic approach to sensitivity analysis, cf. HASLINGER AND NEITTAANM Ä-
KI [85]. The methods respect the structure of the shape optimization problem, in which solution
to a linear system of algebraic equations is involved. The cost functional is a compound map and
its gradient is then a product of the gradients of the individual submappings. Most difficult to
evaluate is differentiation of the solution to the linear system with respect to nodal coordinates
of the discretization grid. This is performed by solution to other linear systems with the original
but transposed system matrix and with new right–hand side vectors. The method is precise up
to the numerical error of the linear system solver. The computational time roughly corresponds
to the computation of the function f . The method is not robust, as it covers just the shape opti-
mization problems, nevertheless, some other classes of optimization problems, e.g., the topology
optimization, have a similar structure. Thus, an extension of the method is straightforward. The
semianalytical methods might also be combined with both the numerical and automatic differen-
tiation.

6.3.1 Sensitivities of the cost and constraint functions

Consider the discretized shape optimization problem (P). The key point to an efficient imple-
mentation of the method is making use of the structure of the cost function J̃ . Recall that our
constraint function is state–independent, i.e., it does not depend upon the solution to the govern-
ing state problem. Therefore, the evaluation of the gradient of the constraint function with respect
to the design variables is simple. For i = 1, . . . , nυ and j = 1, . . . , nΥ the gradient is as follows:

grad(υi(p)) :=

(
∂υi(p)

∂p1
, . . . ,

∂υi(p)

∂pnΥ

)
∈ RnΥ, (6.18)

where p := (p1, . . . , pnΥ
) ∈ RnΥ stands for a vector of design variables and where the constraint

function is denoted by υ(p) := (υ1(p), . . . , υnυ
(p)) ∈ Rnυ . The evaluation of the cost functional

proceeds as depicted in (6.9). Let us express a partial derivative of the cost functional with respect
to a design variable. Using the chain rule (3.17) for differentiation of a compound function, for
i = 1, . . . , nΥ we get

∂J̃ (p)

∂pi
=

∂I
(
α,x,B1, . . . ,Bnv

)

∂pi
=

=

nα∑

o=1

{
∂I
(
α,x,B1, . . . ,Bnv

)

∂αj
+

nx∑

k=1

m∑

l=1

[
∂I
(
α,x,B1, . . . ,Bnv

)

∂xk,l
+

+

nv∑

v=1

∑

e∈E

ν2∑

j=1

∂I
(
α,B1, . . . ,Bnv

)

∂Bv,e
j

(
∂Bv,e

j (xe,uv,e)

∂xk,l
+

+

ne∑

p=1

∂Bv,e
j (xe,u v,e)

∂uv,e
p

∂uv,e
p (x)

∂xk,l






nα∑

o=1

∂xk,l(α)

∂αo





∂αo(p)

∂pi
,

(6.19)

where

• p := (p1, . . . , pnΥ
) ∈ RnΥ denotes a design vector,

• α(p) := (α1(p), . . . , αnα
(p)) ∈ Rnα denotes control coordinates of the shape and for

o = 1, . . . , nα, i = 1, . . . , nΥ it holds that

∂αo(p)

∂pi
=

∂ [F (p)](xω,o)

∂pi
,
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• x(α) := [x1(α), . . . ,xnx
(α)] ∈ Rmnx denotes a block column vector consisting of all the

grid nodes, where for o = 1, . . . , nα

∂x(α)

∂αo
:=

∂4x(α)

∂αo
+




[M]1,o
...

[M]nx,o


 , where K (x0) ·

∂4x(α)

∂αo
=

∂b(α)

∂αo
,

• xe(α) :=
[
xe

1(α), . . . ,xe
m+1(α)

]
∈ Rm(m+1) denotes a block column vector consisting of

the corners of the element domain Ke, e ∈ E,

• xe
l (α) :=

(
xe

l,1(α), . . . , xe
l,m(α)

)
∈ Rm denotes coordinates of the l–th corner of the

element domain Ke, e ∈ E,

• uv(x) := (uv
1(x), . . . , uv

n(x)) ∈ Rn denotes the solution to v–th state problem, i.e., to the
system of linear algebraic equations (P v(x)),

• uv,e(x) := (uv,e
1 (x), . . . , uv,e

ne
(x)) ∈ Rne denotes the solution of the problem (P v(x))

associated to an element e ∈ E in such a way that

uv,e
j (x) = uv

Ge(j)(x),

• Bv(x) := [Bv,e1(x), . . . ,B v,enΩ (x)] ∈ Rν2nΩ denotes a block column vector resulting
after the application of the operator B to the solution of the problem (P v(x)),

• Bv,e(x) := (Bv,e
1 (x), . . . , Bv,e

ν2
(x)) ∈ Rν2 denotes the value of B(uv(x)) over the element

domain Ke, e ∈ E, such that

Bv,e(x) := B(xe,u v,e) :=

ne∑

j=1

uv,e
j (x)Se

B(xe) · Bbx

(
ξ̂r

j(x̂)
)

,

and

• J̃ (p) := I
(
α,x,B1, . . . ,Bnv

)
∈ R denotes the value of the cost functional.

6.3.2 State sensitivity

The main computational effort in the formula (6.19) is connected with the bracket term, which is
the sensitivity of B(x,u v(x)) with respect to the grid nodal coordinates x, i.e., with the deriva-
tives

∂Bv,e
j (xe,uv,e(x))

∂xk,l
:=

∂Bv,e
j (xe,uv,e)

∂xk,l
+

ne∑

p=1

∂Bv,e
j (xe,uv,e)

∂uv,e
p

∂uv,e
p (x)

∂xk,l
, (6.20)

where for k = 1, . . . , nx, l = 1, . . . ,m, and for p = 1, . . . , ne

∂Bv,e
j (xe,uv,e)

∂xk,l
:= 0, if ∀z ∈ {1, . . . ,m + 1} : He(z) 6= k,

∂Bv,e
j (xe,uv,e)

∂xk,l
:=

ne∑

p=1

uv,e
p (x)

[
∂Se

B(xe)

∂xe
z,l

· Bbx

(
ξ̂r

p(x̂)
)]

j

, if He(z) = k,

∂Bv,e
j (xe,uv,e)

∂uv,e
p

:=
[
Se

B(xe) · Bbx

(
ξ̂r

p(x̂)
)]

j
.
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In (6.20) it remains to express the derivative ∂u v(x)/∂xk,l. To this goal, let us differentiate the
state equation (P v(x)), where v = 1, . . . , nv, with respect to the l–th coordinate of a node xk ∈ Ω,
where k = 1, . . . , nx. We arrive at the following linear system of equations

A(x) · ∂uv(x)

∂xk,l
=

∂f v(x)

∂xk,l
− ∂A(x)

∂xk,l
· uv(x) (6.21)

which is solved for ∂u v(x)/∂xk,l, where

∂A(x)

∂xk,l
:=




∂A1,1(x)
∂xk,l

. . .
∂A1,n(x)

∂xk,l

...
. . .

...
∂An,1(x)

∂xk,l
. . .

∂An,n(x)
∂xk,l


 ,

∂f v(x)

∂xk,l
:=




∂fv
1
(x)

∂xk,l

...
∂fv

n(x)
∂xk,l


 ,

∂u v(x)

∂xk,l
:=




∂uv
1
(x)

∂xk,l

...
∂uv

n(x)
∂xk,l


 ,

and where A(x) := (Ai,j(x))n
i,j=1, f v(x) := (f v

i (x))n
i=1, and uv(x) := (uv

i (x))n
i=1, respec-

tively, are the system matrix, the right–hand side vector, and the solution to the state problem
(P v(x)). Due to Assumption 5.4, we can skip the term ∂f v(x)/∂xk,l. Hence, it remains to
express the term ∂A(x)/∂xk,l. From (6.4) and (6.5) it follows that

∂Ai,j(x)

∂xk,l
=

∑

e∈Ei∩Ej

ne∑

o,p=1

∂ae
xe

(
ξe

o(x
e) , ξe

p(x
e)
)

∂xk,l
,

where

∂ae
xe

(
ξe

o(x
e) , ξe

p(x
e)
)

∂xk,l
= 0, if ∀z ∈ {1, . . . ,m + 1} : He(z) 6= k,

∂ae
xe

(
ξe

o(x
e) , ξe

p(x
e)
)

∂xk,l
=

=

∫

Kr

(
∂Se

B(xe)

∂xe
z,l

·Bbx

(
ξ̂r

o

))
·
(
De ·

(
Se

B(xe) ·Bbx

(
ξ̂r

p

)))
|det(Re(xe))| dx̂ +

+

∫

Kr

(
Se

B(xe) ·Bbx

(
ξ̂r

o

))
·
(

De ·
(

∂Se
B(xe)

∂xe
z,l

· Bbx

(
ξ̂r

p

)))
|det(Re(xe))| dx̂ +

+

∫

Kr

(
Se

B(xe) ·Bbx

(
ξ̂r

o

))
·
(
De ·

(
Se

B(xe) ·Bbx

(
ξ̂r

p

))) ∂ |det(Re(xe))|
∂xe

z,l

dx̂ +

+ ε

∫

Kr

(
∂Se(xe)

∂xe
z,l

· ξ̂r
o

)
·
(
Se(xe) · ξ̂r

p

)
|det(Re(xe))| dx̂ +

+ ε

∫

Kr

(
Se(xe) · ξ̂r

o

)
·
(

∂Se(xe)

∂xe
z,l

· ξ̂r
p

)
|det(Re(xe))| dx̂ +

+ ε

∫

Kr

(
Se(xe) · ξ̂r

o

)
·
(
Se(xe) · ξ̂r

p

) ∂ |det(Re(xe))|
∂xe

z,l

dx̂, if He(z) = k.

(6.22)
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Note that none of ∂A(x)/∂xk,l is evaluated itself. In Section 6.3.4 we will rather assemble the
vector

[G(x,u v(x))]T · v ∈ Rmnx ,

where

G(x,uv(x)) :=

[
−∂A(x)

∂x1,1
· uv(x), . . . ,− ∂A(x)

∂xnx,m+1
· uv(x)

]
∈ Rn×(mnx), (6.23)

and where v ∈ Rn.

6.3.3 Semianalytical methods

We employ matrix notation and, using (6.20), (6.21), (6.23), and the symmetry of A(x), we
rewrite (6.19) as follows:

grad
(
J̃ (p)

)

︸ ︷︷ ︸
nΥ×1

= Grad(α(p))︸ ︷︷ ︸
nΥ×nα

·
{

gradα

(
I
(
α,x,B1, . . . ,Bnv

))
︸ ︷︷ ︸

nα×1

+

+ Grad(x(α))︸ ︷︷ ︸
nα×mnx

·
[
gradx

(
I
(
α,x,B1, . . . ,Bnv

))
︸ ︷︷ ︸

mnx×1

+

nv∑

v=1

(
Gradx(B(x,u v))︸ ︷︷ ︸

(mnx)×(ν2nΩ)

+

+ G(x,uv)T

︸ ︷︷ ︸
(mnx)×n

·A(x)−1

︸ ︷︷ ︸
n×n

·Graduv (B(x,uv))︸ ︷︷ ︸
n×(ν2nΩ)

)
· gradBv

(
I
(
α,x,B1, . . . ,Bnv

))
︸ ︷︷ ︸

(ν2nΩ)×1

]}
,

(6.24)
in which matrix (or vector) size is written under the brackets, and where the gradients are

grad
(
J̃ (p)

)
:=




∂ eJ (p)
∂p1

...
∂ eJ (p)
∂pnΥ


 , gradα

(
I
(
α,x,B1, . . . ,Bnv

))
:=




∂I(α,x,B1,...,Bnv)
∂α1

...
∂I(α,x,B1,...,Bnv)

∂αnα


 ,

Grad(α(p)) := [grad(α1(p)) , . . . ,grad(αnα
(p))] :=




∂α1(p)
p1

. . . ∂αnα (p)
p1

...
...

...
∂α1(p)

pnΥ

. . . ∂αnα (p)
pnΥ


 ,

Grad(x(α)) := [Grad(x1(α)) , . . . ,Grad(xnx
(α))] :=

:=




(
∂x1,1(α)

∂α1
. . .

∂x1,m(α)
∂α1

)
. . .

(
∂xnx,1(α)

∂α1
. . .

∂xnx,1(α)
∂α1

)

...
. . .

...(
∂x1,1(α)

∂αnα

. . .
∂x1,m(α)

∂αnα

)
. . .

(
∂xnx,1(α)

∂αnα

. . .
∂xnx,1(α)

∂αnα

)


 ,

gradx

(
I
(
α,x,B 1, . . . ,Bnv

))
:=




gradx1

(
I
(
α,x,B1, . . . ,Bnv

))
...

gradxnx

(
I
(
α,x,B 1, . . . ,Bnv

))


 ,
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in which for k = q, . . . , nx

gradxk

(
I
(
α,x,B1, . . . ,Bnv

))
:=




∂I(α,x,B1,...,Bnv)
∂xk,1

...
∂I(α,x,B1,...,Bnv)

∂xk,m


 ,

where further

Gradx(B(x,uv)) :=




Gradx1
(B(xe1 ,uv,e1)) . . . Gradx1

(B(xenΩ ,u v,enΩ ))
...

. . .
...

Gradxnx

(B(xe1 ,u v,e1)) . . . Gradxnx

(B(xenΩ ,uv,enΩ ))


 ,

in which for k = 1, . . . , nx

Gradxk
(B(xe1 ,uv,e1)) = 0, if ∀z ∈ {1, . . . ,m + 1} : He(z) 6= k,

Gradxk
(B(xe,u v,e)) =




∂B1(xe,uv,e)
∂xe

z,1
. . .

∂Bν2
(xe,uv,e)
∂xe

z,1

...
...

...
∂B1(xe,uv,e)

∂xe
z,m

. . .
∂Bν2

(xe,uv,e)
∂xe

z,m


 , if He(z) = k,

where further

Graduv (B(x,uv)) := [Graduv(B(xe1 ,uv,e1)) , . . . ,Graduv(B(xenΩ ,uv,enΩ ))] ,

in which for e ∈ E

Graduv(B(xe,uv,e)) := [graduv(B1(x
e,uv,e)) , . . . ,graduv(Bν2

(xe,uv,e))] ,

and where finally

gradBv

(
I
(
α,x,B1, . . . ,Bnv

))
:=




gradBv,e1

(
I
(
α,x,B1, . . . ,Bnv

))
...

gradB
v,enΩ

(
I
(
α,x,B1, . . . ,Bnv

))


 ,

in which for e ∈ E

gradBv,e

(
I
(
α,x,B 1, . . . ,Bnv

))
:=




∂I(α,x,B1,...,Bnv)
∂Bv,e

1

...
∂I(α,x,B1,...,Bnv)

∂Bv,e
ν2


 .

Now, all the art is how to evaluate the expression (6.24) efficiently. Basically, there are two
possibilities. Either we proceed from left to right, then it is called the direct method, or the other
way round, which is called the adjoint method. The main computational effort is in calculating
the state sensitivity. In case of the direct method, we would solve nvnΥ systems consisting of n
linear equations, while, in case of the adjoint method, we have to solve just nv systems of n linear
equations. This is why we prefer the latter. Let us note that if the constraint function υ were state
dependent, the adjoint method would arrive at solving nv(1 + nυ) systems of n linear equations.
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6.3.4 Adjoint method

The method bases on evaluating the expression (6.24) from right to left such that not all the indi-
vidual gradients are calculated but rather so–called adjoint variables are assembled. Algorithm 5
describes the method. There, the symbols γ ∈ RnΥ , τ , τ 1, τ 2 ∈ Rmnx , λ, δ ∈ Rn, and θ ∈ Rnα

stand for the adjoint variables.

Algorithm 5 Adjoint method
Given p, α, x, A(x), u v, and Bv for v = 1, . . . , nv

Evaluate Iα := gradα

(
I
(
α,x,B 1, . . . ,Bnv

))

Evaluate Ix := gradx

(
I
(
α,x,B 1, . . . ,Bnv

))

τ := 0

for v := 1, . . . , nv do
Evaluate IBv := gradBv

(
I
(
α,x,B1, . . . ,Bnv

))

Assemble τ 1 := Gradx(B(x,u v)) · IBv

Assemble λ := Graduv(B(x,uv)) · IBv

Solve A(x) · δ = λ δ

Assemble τ 2 := G(x,uv)T · δ
τ := τ + τ 1 + τ 2

end for
τ := τ + Ix

Assemble θ := Grad(x(α)) · τ
θ := θ + Iα

Assemble γ := Grad(α(p)) · θ
grad

(
J̃ (p)

)
:= γ

Only the gradients of I have to be provided by the user. All the other parts are more or less
independent. The particular assembling procedures are depicted in Algorithms 7–9. On the CD
there are enclosed the corresponding MATLAB [208] routines used for optimal shape design in
2–dimensional magnetostatics.

Algorithm 6 Adjoint method: the shape part (Assemble γ)
Given p, α, and v

γ := 0

for i := 1, . . . , nΥ do
for j := 1, . . . , nα do

γi := γi +
(
∂ [F (p)](xω,j)

/
∂pi

)
· vj

end for
end for

6.3.5 An object–oriented software library

Here, we present an efficient implementation of the adjoint method for optimal shape design in an
object–oriented framework, see Fig. 6.1. Our main aim is a maximal reusability of the individual
components when solving various shape optimization problems. For the details we also refer
to LUKÁŠ, MÜHLHUBER, AND KUHN [125].
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Algorithm 7 Adjoint method: the grid part (Assemble θ)
Given K , α, and τ
Solve K T · β = τ  β

for o := 1, . . . , nα do
θo := β ·

(
∂b(α)

/
∂αo

)

for j := 1, . . . , nx do
θo := θo + Mj,o · τj

end for
end for

Algorithm 8 Adjoint method: FEM preprocessor part (Assemble τ 2)
Given x, uv, and δ
τ 2 := 0

for i := 1, . . . , nΩ do
for z := 1, . . . ,m + 1 do

for l := 1, . . . ,m do
k := m (Hei(z) − 1) + l
for o, p := 1, . . . , ne do

if o = p or
(
Gei(o) 6∈ Ih

0 and Gei(p) 6∈ Ih
0

)
then

Evaluate [τ 2]k := [τ 2]k − δGei(o) ·
(
∂aei

xei

(
ξei

o (xei) , ξei
p (xei)

)/
∂xei

z,l

)
· uv

Gei(p)

end if
end for

end for
end for

end for

The library supports routines for evaluating the cost and constraint functions and their gradi-
ents with respect to the shape design parameters. The library can be used with any gradient– or
Newton–like optimization algorithm, as SQP with BFGS (BFGS–SQP), see (6.17). The library
uses 3 external modules: a mesh generator, a finite element method (FEM) module, and a solver of
linear algebraic systems of equations. The mesh generator runs just once at the very beginning and
it discretizes the domain Ω for the initial design p0. It provides initial grid nodes x0 := x (α(p0))
and the discretization T . Having some grid nodes x, the FEM preprocessor assembles the ma-
trix A(x) and the right–hand side vector f v(x) for each state v = 1, . . . , nv. Then, the solver
of linear systems provides the solution u v to the FEM postprocessor that assembles the solution
Bv . The FEM module is moreover supposed to assemble the corresponding gradient–vector mul-
tiplications in Algorithm 5, namely τ 1, τ 2, and λ. The efficiency of the library strongly depends
on the linear system solver. We have used the software tools developed by KUHN, LANGER,
AND SCHÖBERL [117] at the University Linz in Austria, where the conjugate gradient method,
cf. GOLUB AND VAN LOAN [69], with a multigrid preconditioning, cf. HACKBUSCH [78], is
involved.

Now, let us explain how the optimization proceeds in terms of Fig. 6.1. Given an initial vector
p0 of design parameters and a discretization parameter h, the BFGS–SQP algorithm starts its run
while at the same time the mesh generator provides the initial grid x0 and the grid topological
information T . Then, a quadratic programming subproblem is going to be solved, see also Algo-

rithms 3 and 4, which requires evaluation of J̃ (p0), υ(p0), grad
(
J̃ (p0)

)
, and Grad(υ(p0)).
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Algorithm 9 Adjoint method: FEM postprocessor part (Assemble τ 1, Assemble λ)
Given x, uv , and IBv

τ 1 := 0

λ := 0

for i := 1, . . . , nΩ do
for z := 1, . . . ,m + 1 do

for l := 1, . . . ,m do
k := m (Hei(z)) + l
for p := 1, . . . , ne do

Evaluate c := uv
Gei(p) ·

(
∂S

ei

B(xei)
/
∂xei

z,l

)
·Bbx

(
ξ̂r

p(x̂)
)

Evaluate d := S
ei

B(xei) · Bbx

(
ξ̂r

p(x̂)
)

for j := 1, . . . , ν2 do
t := ν2(i − 1) + j
[τ 1]k := [τ 1]k + cj [IBv ]t
λGei(p) := λGei(p) + dj [IBv ]t

end for
end for

end for
end for

end for

The evaluation of υ(p0) is straightforward. The evaluation of J̃ (p0) proceeds as depicted in (6.9),
where the design–to–shape mapping, shape–to–mesh mapping, FEM preprocessor, solver of lin-
ear systems, FEM postprocessor, and computation of J̃ modules take control of the run consecu-
tively. Computing Grad(υ(p0)) is again quite straightforward, since it is basically an analytical
formula, which is evaluated in the module “Computation of Grad(υ(p0))”, see Fig. 6.1. The
most computationally expensive part is (together with the evaluation of the cost functional) the

evaluation of grad
(
J̃ (p0)

)
. This evaluation follows Algorithms 5–9, where the input data flows

as depicted in Fig. 6.1. Finally, the next iteration of the BFGS–SQP algorithm is performed and the
procedure repeats for a new vector p of design parameters until a terminate criterion is fulfilled.

From the programming point of view, the only part which has always to be coded by the user
is the module that computes the cost functional I

(
α,x,B1, . . . ,Bnv

)
and the constraint function

υ(p). Thus, we have minimized the programming effort that is necessary for solving a new shape
optimization problem just to the specification of the problem itself.

6.3.6 A note on using the automatic differentiation

The semianalytical methods turned out to be most effective for the shape optimization, since they
make much use of the problem structure. Nevertheless, some parts of the algorithm still remain
to be automatized using, e.g., the automatic differentiation (AD) method. We have in mind the
module that calculates the gradients of I and υ with respect to the input variables α, x, B v , and
p, respectively. In fact, the routine calculating these gradients is just an analytical differentiation
of the routine that calculates the functions I and υ. In this case, we avoid the main obstacle of
using AD, namely, differentiation of the linear system solver. Another possible use of AD might
be an automatic generation of routines that calculate sensitivities of the local contributions (6.22)
to the system matrix A.
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Figure 6.1: Structure of the library (data flow diagram)

6.4 Multilevel optimization approach

Here we introduce a rather new optimization approach. It has been inspired by techniques used
in multigrid methods. This research was initiated by Prof. Ulrich Langer whose group at the
University of Linz, Austria, has achieved world–leading results in scientific computing using
multigrid methods, cf. APEL AND SCHÖBERL [10], HAASE ET AL. [73, 75, 76], HAASE AND

LANGER [74], HAASE AND LINDNER [77], JUNG AND LANGER [102], KUHN, LANGER, AND

SCHÖBERL [117], SCHINNERL, LANGER, AND LERCH [183], or SCHINNERL ET AL. [184]. We
want to establish a hierarchy of discretizations to our continuous shape optimization problem (P̃ )
such that the optimized design achieved at a coarse level is used as the initial design at a next finer
discretization level. The first results can be found in LUKÁŠ [123] and in LUKÁŠ [128].

In this section, we employ the full notation with both the regularization parameter ε and the
discretization parameter h

Find ph
ε
∗ ∈ Υ:

J̃ h
ε

(
ph

ε
∗
)
≤ J̃ h

ε (p) ∀p ∈ Υ



 , (P̃ h

ε )
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where J̃ h
ε : Υ 7→ R denotes the discretized and regularized cost functional and

Υ := {p ∈ RnΥ | υ(p) ≤ 0}

is the set of admissible design parameters, where υ : RnΥ 7→ Rnυ , nυ ∈ N.
By the classical optimization approach we mean the standard technique when, given a fixed

regularization parameter ε, a fixed discretization parameter h, both of which are small enough,
given an initial vector p0 of design parameters, the optimization algorithm proceeds just once
ending up with the optimized design ph

ε
∗
, see Algorithm 10.

Algorithm 10 Classical optimization approach
Given ε, h and p0

Discretize (P̃ ) (P̃ h
ε )

Solve (P̃ h
ε ) with the initial design p0  ph

ε
∗

ph
ε
∗

is the optimized design

By the multilevel or hierarchical optimization approach we mean that, given an initial design
p1,0, we first regularize and discretize the problem (P̃ ) at the first level with a rather large values of
ε1 and h1, and the optimization algorithm proceeds ending up with a coarse optimized design ph1

ε1

∗
.

Then, we refine both the regularization and the discretization parameters and run the optimization
algorithm with smaller values of ε2 and h2 while using the design ph1

ε1

∗
as the initial one at this

second level. We end up with a finer optimized design ph2

ε2

∗
, and so further. The approach is

described in Algorithm 11.

Algorithm 11 Hierarchical optimization approach
Given ε1, h1, and p1,0

l := 1
while l > 1 and a terminate criterion is not satisfied do

Discretize (P̃ ) at the level l (P̃ hl
εl

)

Solve (P̃ hl
εl

) with the initial design pl,0 phl
εl

∗

Refine εl, hl  εl+1, hl+1

pl+1,0 := phl
εl

∗

l := l + 1
end while
p

hl−1

εl−1

∗
is the optimized design

The hierarchical approach in shape optimization has turned out to be much more effective than
the classical one whenever the coarse optimized design ph0

ε0

∗
approximates the true one rather well.

The crucial part of the algorithm is the refinement step. The updated values of εl+1 and hl+1 must
not be too smaller than those of εl and hl, since SQP would take many iterations. On the other
hand, if the refinement is rather coarse, i.e., the values of εl+1 and hl+1 are comparable to εl and
hl, there is hardly any progress in the SQP algorithm and the hierarchical approach takes many
iterations. In Section 7.4 we provide some numerical experiments without any use of multigrid
yet. The idea, which we want to investigate in the future, is that the refinement strategy should
benefit from the aposteriori finite element error analysis and from multigrid techniques. The first
papers in this context have appeared just recently, see RAMM, MAUTE, AND SCHWARZ [164],
and SCHLEUPEN, MAUTE, AND RAMM [185]. In the paper by SCHERZER [182] a multilevel
approach is used for solving nonlinear ill–posed problems.
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Another improvement can be done, when applying the multilevel approach on the level of
mathematical modelling. It means that in those application where we can reduce the problem com-
plexity by neglecting a dimension or some physical phenomena we can first solve the discretized
reduced problem and then use the result as the initial design for the more complex problem. A
typical example might be solving a shape optimization problem governed first by 2d linear mag-
netostatic state problem, then, prolong the optimized design dimensionally and use it as the initial
design for shape optimization governed by 3d linear magnetostatics, and finally use the resulting
shape as the initial design for shape optimization governed by 3d nonlinear magnetostatic state
problem. In Section 7.4, we will give a numerical test of the 2d/3d dimensional step.
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Chapter 7

An application and numerical
experiments

At the beginning of this chapter, we will introduce a physical application, being of a practical use,
which will lead to a problem of optimal shape design of electromagnets. Then, we will intro-
duce mathematical settings of the shape optimization problems governed by linear magnetostatic
multistate problems in both two– and three–dimensional cases. We will utilize the abstract theory
introduced in Chapters 3–5 such that we will specify all the symbols introduced in Chapter 5, val-
idate the corresponding assumptions, and the related existence as well as convergence theorems
will then follow. We will also easily check Assumptions 6.1 and 6.2, both introduced in Chapter 6,
which will justify us to use the SQP algorithm. Then, we will present shapes resulting from nu-
merical calculations. We will also present numerical experiments with the multilevel optimization
approach and with the adjoint method, which were both introduced in Chapter 6. We will com-
pare them to the classical optimization approach and to the numerical differentiation, respectively.
Some of the optimized shapes were manufactured and we are provided with physical measure-
ments of the magnetic field. At the end, we will discuss magnetic field improvements in terms of
the cost functional with respect to the original design.

The results of this chapter can be also found in PI ŠTORA, POSTAVA, AND ŠEBESTA [160],
KOPŘIVA ET AL. [111], LUKÁŠ [119, 120, 121, 122, 123, 128], LUKÁŠ ET AL. [124], and
in LUKÁŠ, MÜHLHUBER, AND KUHN [125].

7.1 A physical problem

Let us consider two geometries of electromagnets: the Maltese Cross (MC) geometry and the O–
Ring geometry that are both depicted in Fig. 7.1. Each consists of a ferromagnetic yoke and poles.
There are 4 poles in case of the Maltese Cross and 8 ones in case of the O–Ring electromagnet. The
poles are completed with coils which are pumped with direct electric currents. The electromagnets
are used for measurements of Kerr magnetooptic effects, cf. ZVEDIN [223, p. 40]. They require
the magnetic field as homogeneous, i.e., as constant as possible in a given normal direction. Let us
note that the magnetooptic effects are investigated for applications in high capacity data storage
media, like a development of new media materials for magnetic or compact discs recording. Let us
also note that the electromagnets have been developed at the Institute of Physics, VŠB–Technical
University of Ostrava, Czech Republic in the research group of Prof. Jaromı́r Pištora. Some
instances have been already delivered to the following laboratories:

105
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Figure 7.1: The Maltese Cross and O–Ring electromagnets

• Institute of Physics, Charles University Prague, Czech Republic,

• National Institute of Applied Sciences INSA in Toulouse, France,

• Department of Physics, Simon Fraser University in Vancouver, Canada,

• Department of Chemistry, Simon Fraser University in Vancouver, Canada,

• and University Paris VI., France.

First, we describe how the Kerr magnetooptic effect is measured. Let us consider, for instance,
the Maltese Cross electromagnet, as in Fig. 7.1, and its cross–section, see Fig. 7.2. A sample of
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Figure 7.2: Cross–section of the Maltese Cross electromagnet

a magnetic material is placed into the magnetization area which is located in the middle among
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the pole heads. In this area the magnetic field is homogeneous enough with respect to the normal
vector of some polarization plane, see Fig. 7.2. We pass an optical (light) beam of a given polar-
ization vector to the sample. There it reflects and components of the reflected polarization vector
are measured in terms of the Kerr rotation and ellipticity, respectively. Briefly saying, we measure
the polarization state of the reflected beam. The Kerr rotation means the difference between the
angle of the main ellipticity axis of the reflected beam from that one before the reflection. Typical
measured data is depicted in Fig. 7.3, which was measured by Ing. Igor Kopřiva at the Institute of
Physics, VŠB–Technical University of Ostrava, see also KOPŘIVA ET AL. [111].
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Figure 7.3: Dependence of magnetooptic effects on a sample rotation

From Fig. 7.3 we can see that the Kerr rotation depends on the orientation of the sample in
the magnetic field, which is significant especially for the quadratic Kerr effect. This indicates
anisotropic behaviour of the sample. Therefore, we should measure it in as many directions as
possible. One has either to rotate the sample in the magnetic field, rotate the electromagnet while
the sample is fixed, or rotate the magnetic field itself while both the sample and electromagnet are
fixed. Certainly, the last variant is most preferred. The electromagnets have been developed such
that they are capable to generate magnetic fields homogeneous in step–by–step different directions
just by switching some currents in coils on or off, or by switching their senses. The more coils we
have, the more directions the magnetic field can be oriented in. In case of the Maltese Cross or
the O–Ring electromagnet, one can sequentially generate magnetic fields homogeneous in up to
8 or 16 directions, respectively. This will lead us to a multistate problem where only the current
excitations, i.e., the right–hand sides differ.

Our aim is to improve the current geometries of electromagnets, see Fig. 7.1, in order to
be better suited for measurements of the Kerr effect. The generated magnetic field should be
strong and homogeneous enough in order to admit a magnetooptic effect. Unfortunately, these
assumptions are contradictory and we have to balance them. From physical experience we know
that the homogeneity of the magnetic field depends significantly on the shape of the pole heads.
Hence, we aim at designing shapes of the pole heads in such a way that inhomogeneities of the
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magnetic field are minimized, but the field itself is still strong enough.

7.2 Three–dimensional mathematical setting

Now, we introduce a complete 3d mathematical setting of the shape optimization problem. We
will specify the abstract symbols and assumptions that were introduced in the previous text and
that are also summarized in Section 6.1. As there are no principal differences between the Maltese
Cross and the O–Ring electromagnet, we will describe both at once.

Convention 7.1. In all what follows the dimensions will be given in meters except for Figs. 7.5–7.7
and 7.19, where they are in milimeters.

7.2.1 Geometries of the electromagnets

The computational domain is fixed and in case of the Maltese Cross and the O–Ring it is, respec-
tively, as follows:

Ω :=

(
−d1

2
,
d1

2

)
×
(
−d2

2
,
d2

2

)
×
(
−d3

2
,
d3

2

)

and

Ω :=

{
x := (x1, x2, x3) ∈ R3

∣∣∣∣ (x1)
2 + (x2)

2 < (r)2 and |x3| <
d3

2

}
,

where
d1 := d2 := 0.4 [m], d3 := 0.02 [m], r := 0.2 [m].

The computational domain obviously fulfills Assumption 3.1 and Ω ∈ L.
We describe the geometrical models of the electromagnets. Referring to Fig. 7.4, the green

Figure 7.4: Geometrical models of the Maltese Cross and O–Ring electromagnets

parts are the ferromagnetic yoke and the poles. The blue parts are the coils. In Fig. 7.5 and in
Fig. 7.6 we can see dimensions in milimeters for geometrical models of the Maltese Cross and
of the O–Ring electromagnet, respectively. The symbol Ωyoke stands for the domain occupied by
the ferromagnetic yoke, the symbols Ωwestp, Ωnorthwestp, Ωnorthp, Ωnortheastp, Ωeastp, Ωsoutheastp,
Ωsouthp, and Ωsouthwestp denote the domains occupied by the particular poles, and the symbols
Ωwestc, Ωnorthwestc, Ωnorthc, Ωnortheastc, Ωeastc, Ωsoutheastc, Ωsouthc, and Ωsouthwestc denote the
domains that are occupied by the corresponding coils. In Fig. 7.7 we can see the west pole of
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Figure 7.5: Drawing of the Maltese Cross electromagnet

the O–Ring in detail. The only geometrical parts being changed during the optimization will be
shapes of the pole heads, see Fig. 7.7.

7.2.2 Set of admissible shapes

We assume all the shapes to be same and, moreover, symmetrical with respect to the two corre-
sponding planes, e.g., with respect to x1 = 0 and x3 = 0 in case of the north pole head. Thus,
from now on we will represent the shape of an arbitrary pole head by the shape of the north pole
head. Due to the symmetry we consider only its quarter. Shape is then a continuous function
defined over the domain

ω :=

(
0,

dpole,1

2

)
×
(

0,
dpole,3

2

)
,

where in case of the Maltese Cross electromagnet

dpole,1 := 0.0225 [m], dpole,3 := 0.025 [m],

and in case of the O–Ring

dpole,1 := dpole,3 := 0.02 [m].
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Figure 7.6: Drawing of the O–Ring electromagnet

The Lipschitz constant C16 in (5.1) corresponds to the maximal slope angle. We choose

C16 :=
3π

8
.

The box constraints (5.2) are chosen such that the shape of the west pole head must not be either
higher than the bottom of the north coil or penetrate with the neighbouring pole head. Therefore,
we choose

αl := 0.012 [m], αu := 0.05 [m]

for the Maltese Cross and
αl := 0.028 [m], αu := 0.05 [m]

for the O–Ring. Then, the set U of admissible shapes is given by (5.3) and Lemma 5.1 holds.
Since from the practical point of view we cannot manufacture any shape, we will restrict

ourselves to those that are described by a Bézier patch of a fixed number of design parameters

nΥ := nΥ,1 · nΥ,2, where nΥ,1, nΥ,2 ∈ N

and we choose
nΥ,1 := 4, nΥ,2 := 3.
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Such shapes are by definition smooth enough. We decompose the domain ω into (nΥ,1 − 1) times
(nΥ,2 − 1) regular rectangles whose nΥ,1 times nΥ,2 corners are

xω,i,j :=

(
(i − 1)dpole,1

nΥ,1 − 1
,
(j − 1)dpole,3

nΥ,2 − 1

)
for i = 1, . . . , nΥ,1, j = 1, . . . , nΥ,2.

The set Υ is defined as follows:

Υ :=
{
p :=

(
p1,1, . . . , p1,nΥ,2

, . . . , pnΥ,1,1, . . . , pnΥ,1,nΥ,2

)
∈ RnΥ

∣∣ αl ≤ pi,j ≤ αu

}
.

The mapping F : Υ 7→ U , see also (5.5), is the following (tensor product) Bézier mapping that
involves the symmetry

α(x1, x3) := [F (x1, x3)] (p) :=

:=

nΥ,1∑

i=1

nΥ,2∑

j=1

pi,j

[
β

2nΥ,1−1
i

(−2x1 + dpole,1

2dpole,1

)
+ β

2nΥ,1−1
i

(
2x1 + dpole,1

2dpole,1

)]
·

·
[
β

2nΥ,2−1
j

(−2x3 + dpole,3

2dpole,3

)
+ β

2nΥ,2−1
j

(
2x3 + dpole,3

2dpole,3

)]
, (x1, x3) ∈ ω, (7.1)

where for n ∈ N, i ∈ N, i ≤ n, and t ∈ R such that 0 ≤ t ≤ 1

βn
i (t) :=

(n − 1)!

(i − 1)! (n − i)!
ti−1(1 − t)n−i, (7.2)

which is called the Bernstein polynom. We can easily check that

∀p ∈ Υ : [F (·)](p) ∈ U ,

it means that both the relations (5.1) and (5.2) are fulfilled. An example of the mapping F is
depicted in Fig. 7.8. Concerning (5.6), we perform mirroring of the shape α with respect to the
planes x1 = 0 and x3 = 0 and, moreover, we copy this shape to all the remaining pole heads. In
this way the shape α controls the decomposition of Ω into Ω0(α) that denotes the domain occupied
by the coils or the air and into Ω1(α) which is the domain occupied by yoke and poles.
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Figure 7.8: Bézier design parameters and the corresponding shape of the north pole head

7.2.3 Continuous multistate problem

Here, we are concerned with the 3–dimensional magnetostatics, i.e., with the differential operator

B := curl.

Therefore, Assumptions 3.2–3.5 are satisfied by Lemmas 3.11–3.13 and by (3.31).
Now, we proceed through Section 5.2.2. We specify Assumption 5.1 by

D0 :=
1

µ0
, D1 :=

1

µ1
,

where µ0 := 4π10−7 [H.m−1] and µ1 := 5100µ0 are the permeabilities of the air and the ferro-
magnetic parts, respectively.

Further, we consider
nv := 2 and nv := 3

variations of the current excitations in case of the Maltese Cross and the O–Ring electromagnet,
respectively. In both the cases the right–hand side f v(x) is calculated from the electric current I ,
from the number of turns nI

I := 5 [A] or I := 1.41 [A], nI := 600,

respectively, for the Maltese Cross or the O–Ring, and from the cross–section area through the
coils, see also Figs. 7.5–7.7,

Sc := 0.03 · 0.01 = 3 · 10−4 [m2] or Sc := 0.023 · 0.02 + 0.01075

2
= 4.6125 · 10−4 [m2].

The current densities f v ≡ Jv satisfy (5.2.2), i.e., they are divergence–free. The absolute value of
Jv(x) is nonzero only in the subdomains Ωwestc, . . . , Ωsouthwestc where the direct electric currents
are located

|Jv(x)| =
nII

Sc
.

These subdomains are independent of the shape α, therefore, Assumption 5.2 is satisfied.
Now, we will describe the directions of Jv(x) for both the electromagnets and each variation

v of the current excitation. During the description we will be referring to Fig. 7.7 and to Figs. 7.9–
7.13. We say that two coils are pumped (excited) in the same sense if there is a magnetic circuit
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that goes through both of them. Otherwise, the coils are excited in the opposite sense. In Fig. 7.9
the north and the south coils are excited in the same sense, the other two coils are switched off. In
Fig. 7.10 all the coils are pumped by currents such that the west and the north one are in the same
sense, the south and east one as well, but the west and the south one are in the opposite sense, as
well as the north and the east one are. In Fig. 7.11 the north and the south coils are pumped in the
same sense, the others are switched off. In Fig. 7.12 the situation is similar to Fig. 7.10 while the
north–west, north–east, south–east, and south–west coils are switched off. Finally, in Fig. 7.13 the
following 4 couples of coils are excited in the same sense: the south–west and south, the west and
south–east, the north–west and east, and the north and north–east coil.

Figure 7.9: Magnetic flux lines for the vertical current excitation (v := 1) for the Maltese Cross

7.2.4 Continuous shape optimization problem

Now we shall specify the cost functional. Recall that we want to minimize inhomogeneities in
the magnetic field in the area where the optical beam is magnetized such that the magnetic field
is still strong enough. We will measure the inhomogeneities in the L2–norm which is, from the
mathematical point of view, the most natural one. The magnetic field will not be allowed to
decrease under some minimal magnitude which will be prescribed by a penalty term.

The magnetization area is for both the geometries

Ωm := [−0.005, 0.005] × [−0.005, 0.005] × [−0.005, 0.005] [m].

We choose the cost functional such that it measures differences of the magnetic flux density from
its average value over the domain Ωm. It is as follows:

I
(
B1(x), . . . ,Bnv(x)

)
:=

1

nv

nv∑

v=1

[ϕ (Bv(x)) + ρ · θv(Bv(x))] , (7.3)
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Figure 7.10: Magnetic flux lines for the diagonal current excitation (v := 2) for the Maltese Cross

where
Bv(x) := curlx([uv(α)] (x)) ,

ϕ(Bv(x)) :=
1

meas(Ωm)
(
Bavg,v

min

)2 ·
∫

Ωm

|Bv(x) − Bavg,v(Bv(x)) · nv
m|2 dx, (7.4)

θv(Bv(x)) :=
(
max

{
0, Bavg,v

min − Bavg,v(Bv(x))
})2

, ρ := 106, (7.5)

where uv(α) stands for the solution to (W v(α)) and where the following is the average magnetic
flux density

Bavg,v(Bv(x)) :=
1

meas(Ωm)
·
∫

Ωm

|Bv(x) · nv
m| dx. (7.6)

Concerning the vectors nv
m, they are chosen as follows:

nv
m :=

{
(0, 1, 0) , v = 1

(1/
√

2, 1/
√

2, 0) , v = 2
or nv

m :=





(0, 1, 0) , v = 1

(1/
√

2, 1/
√

2, 0) , v = 2

(cos(π/8),− sin(π/8), 0) , v = 3

in case of the Maltese Cross or the O–Ring, respectively. The minimal average magnetic flux
densities are

Bavg,1
min := 0.1 [T], Bavg,2

min := 0.15 [T]

for both the geometries and, additionally, in case of O–Ring’s super–diagonal excitation it is

Bavg,3
min := 0.3 [T].
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Figure 7.11: Magnetic flux lines for the vertical current excitation (v := 1) for the O–Ring

7.2.5 Regularization and finite element discretization

Once we choose a positive regularization parameter ε > 0, we have nothing more to specify
concerning Section 5.3. Thus, we can proceed throughout Section 5.4. We choose a discretization
parameter h > 0 such that

h ≤ h,

where h is the largest dimension in the geometry

h := 0.4 [m].

To any discretization parameter h we associate a polyhedral domain Ωh that is for the Maltese
Cross Ωh := Ω, while for the O–Ring it is like in Figs. 4.1, 7.11–7.13. Obviously, for both cases
Assumption 4.3 is satisfied. Then we discretize the set of admissible shapes U via a discretization
T h

ω of the domain ω, as described in Section 5.4.1. Further, we discretize the polygonal computa-
tional domain Ωh such that (5.24) holds. We provide the shape–to–mesh mapping by solving the
auxiliary 3d discretized elasticity problem (6.2). Unfortunately, from a lot of numerical experi-
ments we have learned that for slightly large shape deformations some elements flip. In this case
we have to re–mesh the geometry, as noted in Remark 5.1.

We employ linear Nédelec tetrahedral elements that are described in Section 4.4.2. Therefore,
Assumptions 4.1–4.2 and Assumptions 4.4–4.7 are satisfied whenever the discretization T h(αh)
satisfies the regularity condition (4.71).

For each αh ∈ Uh the permeability function is defined by (5.26). For any discretization
parameter h ≤ h the coil domains Ωwestc, . . . , Ωsouthwestc remain unchanged and their discretiza-
tions do not depend on αh. This is guaranteed by the shape–to–mesh (elasticity) mapping (6.2)
where we prescribe the homogeneous Dirichlet boundary condition on ∂Ωwestc, . . . , ∂Ωsouthwestc.
Therefore, Assumption 5.4 is true.
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Figure 7.12: Magnetic flux lines for the diagonal current excitation (v := 2) for the O–Ring

Finally, the discretized (and regularized) cost functional is given by (5.36) and by the relations
(7.3)–(7.6) which arrive at the following expressions

Ih
(
B1,n

ε , . . . ,Bnv,n
ε

)
:=

1

nv

nv∑

v=1

[
ϕh(Bv,n

ε ) + ρ · θv,h(Bv,n
ε )
]
, (7.7)

where B v,n
ε is the elementwise constant magnetic field given by (6.7)–(6.8) and where

ϕh(Bv,n
ε ) :=

1

meas(Ωm)
(
Bavg,v

min

)2 ·
∑

e∈Eh:Ke⊂Ωm

|Bv,n,e
ε − Bavg,v,n(Bv,n,e

ε ) · nv
m|2 ·meas (Ke) ,

(7.8)

θv,h(Bv,n
ε ) :=

(
max

{
0, Bavg,v

min − Bavg,v,n(Bv,n
ε )
})2

, (7.9)

Bavg,v,n(Bv,n
ε ) :=

1

meas(Ωm)
·

∑

e∈Eh:Ke⊂Ωm

|Bv,n,e
ε · nv

m| · meas (Ke) . (7.10)

In order to justify using a Newton–like optimization algorithm, we still have to satisfy As-
sumptions 6.1 and 6.2. Concerning Assumption 6.1, components of the constraint functional
θ : RnΥ 7→ Rnθ , where nθ := 2nΥ = 2nΥ,1nΥ,2, are as follows:

θk(p) :=

{
αl − pi,j , i ≤ nΥ,1, j ≤ nΥ,2

pi−nΥ,1,j−nΥ,2
− αu , i > nΥ,1, j > nΥ,2

for k = inΥ,2 + j = 1, . . . , nθ

Hence, Assumption 6.1 is obviously satisfied. Now, we shall verify Assumption 6.2. The smooth-
ness of the design–to–shape mapping F with respect to p is easy to see from (7.1). Concerning
the smoothness of the shape–to–mesh mapping xh, which is given by (6.2), it is well known that
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Figure 7.13: Magnetic flux lines for the super–diagonal current excitation (v := 3) for the O–Ring

the stiffness matrix K h(x0) is nonsingular as far as we consider a Dirichlet boundary condition
at a certain part of either the boundary ∂Ωh or an interface ∂Ωh

0(αh) ∩ ∂Ωh
1(αh). Since bh

(
αh
)

involves the following nonhomogeneous Dirichlet design interface boundary condition

4xh = Mh ·αh on Γαh ,

where Γαh denotes the design interface, then, xh, see (6.2), is smooth with respect to αh. Fur-
ther, due to (4.66), (4.68), and (4.69) we can see that each of Re(xe), Se(xe), and Se

curl(x
e),

respectively, is smooth as far as Ke does not flip. The last item of Assumption 6.2 easily follows
from (7.7)–(7.10).

7.3 Two–dimensional mathematical setting

Here, we reduce our mathematical model by neglecting the third dimension of the geometry,
as described in Section 2.3. Thus, each 2–dimensional domain, denoted formally by Ω2d, is
created as the intersection of the related 3–dimensional domain Ω with the zero plane Z :={
x ∈ R3 | x3 = 0

}
and by skipping the third component, i.e.,

Ω2d :=
{
x := (x1, x2) ∈ R2 | (x1, x2, 0) ∈ Ω

}
.

We consider

ω :=

(
0,

dpole,1

2

)
.

The Lipschitz constant as well as the box constraints remain. The set of admissible shapes is given
by (5.3).

Concerning Υ, we choose the following number of design parameters

nΥ := nΥ,1 := 4,
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which is the number of control Bézier nodes. The domain ω is decomposed into (nΥ − 1) subin-
tervals with the nΥ nodes

xω,i :=
(i − 1)dpole,1

nΥ − 1
for i = 1, . . . , nΥ.

The set Υ is as follows:

Υ := {p := (p1, . . . , pnΥ
) ∈ RnΥ | αl ≤ pi ≤ αu } .

The mapping F : Υ 7→ U , which again involves the symmetry, reads

α(x1) := [F (x1)] (p) :=

nΥ∑

i=1

pi

[
β2nΥ−1

i

(−2x1 + dpole,1

2dpole,1

)
+ β2nΥ−1

i

(
2x1 + dpole,1

2dpole,1

)]
,

(7.11)
where x1 ∈ ω and βn

i is given by (7.2). The mapping F is depicted in Fig. 7.14, where the red
line connects the design parameters and the blue line is the resulting shape.
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Figure 7.14: Bézier design parameters and the corresponding 2d shape of the north pole head

We concern the 2–dimensional magnetostatics with the differential operator

B := grad.

The space H(grad; Ω2d) is equivalent to the space H1(Ω2d), hence, Assumptions 3.2–3.5 are
satisfied by Theorems 3.7–3.9 and by (3.27). Further, we can proceed throughout the rest of Sec-
tion 7.2.4. We only recall that the compatibility condition (5.2.2) is satisfied, as Ker(grad; Ω2d) =
{0}.

As far as calculation of the 2d continuous cost functional is concerned, the magnetization area
is

Ωm := [−0.005, 0.005] × [−0.005, 0.005] [m]
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and the expressions (7.3)–(7.10) remain, where for v = 1, . . . , nv the vectors nv
m are as follows:

nv
m :=

{
(0, 1) , v = 1

(1/
√

2, 1/
√

2) , v = 2
or nv

m :=





(0, 1) , v = 1

(1/
√

2, 1/
√

2) , v = 2

(cos(π/8),− sin(π/8)) , v = 3

in case of the Maltese Cross or the O–Ring electromagnet, respectively. The values of minimal
magnetic flux densities remain as well.

Now, we do not need to introduce any regularization of the state problem, as the bilinear form
is elliptic on the whole space H0(grad; Ω2d) ≡ H1

0 (Ω2d). Concerning the finite element dis-
cretization with a discretization parameter h > 0 such that h ≤ h, we approximate the domain
Ω2d by a polygonal domain Ωh

2d, while for the Maltese Cross Ωh
2d := Ω2d and for the O–Ring it is

like in Figs. 7.11–7.13. Then, Assumption 4.3 holds. We use linear Lagrange elements that are de-
scribed in Section 4.4.1. The discretization T h(αh) satisfies the minimum angle condition (4.61)
and, therefore, Assumptions 4.1–4.2 and Assumptions 4.4–4.7 are satisfied. The remaining speci-
fication of the 2d discretized shape optimization problem is as in Section 7.2.5. The only difference
is that the smoothness of Re(xe), Se(xe), and Se

grad(xe) is now due to (4.56), (4.58), and (4.59),
respectively.

7.4 Numerical results

In this section, we present numerical results for both 2d and 3d problems. In the optimization
we employed the SQP algorithm with the BFGS update of the Hessian, see Section 6.2.2. For
the calculation of gradients we used the first–order numerical differentiation. Moreover, we used
a multilevel approach at 3 levels. The calculations were done using the scientific software tools
Netgen, see SCHÖBERL [186], and Fepp, see KUHN, LANGER, AND SCHÖBERL [117], with an
extension package for shape optimization, see LUKÁŠ, MÜHLHUBER, AND KUHN [125], which
were all developed in the research project SFB F013 at the University Linz in Austria. All the
calculations were run at the Department of Applied Mathematics, VŠB–Technical University Os-
trava, Czech Republic, on a Linux PC machine with the processor Pentium III (1GHz) and 256MB
of memory.

The optimized pole heads of the Maltese Cross electromagnet are depicted in Fig. 7.15 while
the initial shape was a rectangle such that αinit(x) := αu. The 2d shape is described by 7 design

Figure 7.15: Optimized 2d and 3d pole heads of the Maltese Cross electromagnet

variables including the symmetry. Concerning discretization of the state problem, the discretiza-
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tion parameters are

h := 0.05 [m], h := 0.025 [m], and h := 0.0125 [m]

at the first (coarsest), second, and third (finest) level, respectively. There are 12272 degrees of
freedom at the last (3rd, finest) level. The optimization took 8 SQP iterations at the first (coarsest)
level, 35 ones at the second level, and 25 ones at the third (finest) level, which was all done in 1
hour and 59 minutes, see also Fig. 7.17. The cost functional decreased from 1.97 · 10−6 (1st level)
to 1.49 · 10−6 (3rd level). The 3d shape is determined by 12 design variables with the symmetry
involved. The state problem at the finest level is discretized by 29541 degrees of freedom. Within
the multilevel approach we made a step between the 2d and 3d model such that at the first level we
had a coarse discretization of the 2d problem, at the second level we had a coarse discretization
of the 3d problem, and at the last third level we had a fine discretization of the 3d problem. The
calculation proceeded in 6, 50, and 37 SQP iterations at the respective levels, i.e., 93 SQP iterations
in total, which took 29 hours and 46 minutes, see also Fig. 7.18. The cost functional decreased
from 2.57 · 10−6 (2nd level) to 7.32 · 10−7 (3rd level).

The 2d optimized pole head of the O–Ring electromagnet is depicted in Fig. 7.16 while the
initial shape was again a rectangle. The shape is described by 7 design variables including the

Figure 7.16: Optimized 2d pole head of the O–Ring electromagnet

symmetry. The state problem has 12005 degrees of freedom at the third (finest) level. The opti-
mization took 19, 8, and 37 SQP iterations at the respective levels, which means 64 iterations in
total and it was all done in 3 hours and 41 minutes. The cost functional decreased from 8.14 ·10−4

(1st, coarsest level) to 2.87 · 10−4 (3rd, finest level).

7.4.1 Testing the multilevel approach

Here, we present numerical tests of the multilevel optimization approach that was introduced in
Section 6.4. We refer to Fig. 7.17, where we compare the multilevel approach with the classical
one. We apply them to the 2d Maltese Cross optimization problem. From the last column in
Fig. 7.17, we can see that the multilevel approach is much faster than the classical one. Using the
multilevel approach, the calculation took about 2 hours while it took almost 7 hours, when using
the classical approach.

In Fig. 7.18, a general multilevel approach is presented. It is tested on the 3d optimal shape
design problem of the Maltese Cross electromagnet. At the first level (h := 0.05 [m]), a coarse 2d
optimization proceeds from the initial rectangular shape. The 2d coarse optimized shape from the
first level is used as the initial guess at the second level, where a coarse (h := 0.05 [m]), but now,
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Figure 7.17: Multilevel versus classical optimization approach

3d optimization is employed. This means that we have to prolong the 2d coarse optimized design
into the third dimension by constant. This is the step that goes through the thick line in Fig. 7.18.
Then, we proceed on, as we did in Fig. 7.17. We use the 3d coarse optimized design as the initial
guess at the third level (h := 0.025 [m]). From the last line in Fig. 7.18, we can see that the whole
calculation took almost 30 hours. We tried to compare this general multilevel approach with the
classical one, but the calculation took more than 4 days and several re–meshings of the geometry
had to be done. Unfortunately, in 4 days we were still not able to achieve the optimal solution,
hence, the calculation was stopped.

7.4.2 Testing the adjoint method

Unfortunately, we have not finished the implementation of the adjoint method within the scientific
software tool Fepp, see KUHN, LANGER, AND SCHÖBERL [117], yet. Despite of this fact, we
provide a Matlab implementation, see LUKÁŠ [119], of the method, which is enclosed on the CD.

Let us consider a 2d academic optimization problem governed by linear magnetostatics. Its
geometry is depicted in Fig. 7.19. Due to the symmetry and since we employ only one state
problem, the computational domainis the top–left quarter

Ω2d := (−0.2, 0) × (0, 0.1) [m].
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Figure 7.18: A general multilevel optimization approach

The cost functional reads as follows:

ϕ(B(x)) :=
1

meas(Ωm) ‖Breq‖2 ·
∫

Ωm

‖B(x) −Breq‖2 dx,

where we choose the required magnetic flux density

Breq := (0.025, 0) [T].

The currents are located in the coil domains Ωwestc and Ωeastc and the absolute value of the current
density is

|J(x)| = 106 [Am−2].

The box constraints are
αl := −0.02 [m], αu := 0.01 [m].

We discretize the problem with a discretization parameter

h := 0.01 [m].

The discretized grid and the solution to the state magnetostatic problem for the initial design are
depicted in Fig. 7.20. Those for the optimized design are depicted in Fig. 7.21. The design is
described by 4 variables, the state problem by 221 degrees of freedom. The cost functional has
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Figure 7.19: Geometry of the two–coils problem
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Figure 7.20: Initial design and the magnetic field of the two–coils problem

improved from 0.0077 to 0.0042. In Table 7.1 there is a comparison of the SQP method using the
first–order numerical differentiation with the SQP method using the adjoint method for calculating
gradients. Both the calculations took 4 SQP iterations. We can see that the SQP with the numerical
differentiation needed 21 evaluations of the state problem while only 5 were needed by the adjoint
method plus additional 4 evaluations of the adjoint state problem. In fact, the numerical differenti-
ation took 5 evaluations of the cost functional plus additional 4 (number of design variables) times
4 (number of SQP iterations) evaluations, which give the total 21 evaluations. The cost functional
was evaluated in about 18 seconds while the adjoint state problem in about 5 seconds. Enclosed
there is a CD with the Matlab implementation, see also LUKÁŠ [119], where you can run

> optimization(’n’); % numerical differentiation
> optimization(’a’); % adjoint method

to see this comparison.
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Figure 7.21: Optimized design and the magnetic field of the two–coils problem

numerical differentiation adjoint method
number of cost func. evals. 21 5

number of adjoint problem evals. 0 4
number of SQP iterations 4 4

CPU time 6min 26sec 1min 53sec

Table 7.1: Numerical differentiation versus the adjoint method

7.5 Manufacture and measurements

In my opinion, results of this section are the most highlight in this research. The calculated op-
timized shape was manufactured by the team of Prof. Pištora at the Institute of Physics, VŠB–
Technical University Ostrava in the Czech Republic, and Dr. RNDr. Dalibor Ciprian measured the
magnetic field for both the initial and optimized designs of the pole heads of the Maltese Cross
electromagnet. These pole heads are depicted in Fig. 7.22.

Figure 7.22: Initial and optimized 2d pole heads of the Maltese Cross electromagnet

In Fig. 7.23 there are distributions of the normal component of the magnetic flux density de-
picted. The blue solid line is the normal magnetic flux density along the magnetization plane for
the diagonal excitation, see also Fig. 7.10, of the initial design, see Fig. 7.22. The red solid line
is the normal magnetic flux density for the diagonal excitation of the optimized design. The blue
and red dashed lines, respectively, are the normal magnetic flux densities along the magnetiza-
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tion plane for the vertical excitation, see also Fig. 7.9, of the initial and optimized designs. In
Fig. 7.23 we can see a significant improvement of the homogeneity of the magnetic field. The cost
functional calculated from the measured data shows that it decreases 4.5–times. The cost func-
tional calculated from the computer simulated magnetic field decreases only twice. The relative
differences between the measured and the calculated magnetic fields are about 30%, which might
be caused by saturation of the magnetic field in the corners. Employing a nonlinear governing
magnetostatic state problem should improve also the mismatch of the magnetic fields. Neverthe-
less, the significant improvement of the cost functional shows that the optimization works well, no
matter how big the nonlinearities in the direct magnetic field problem are.
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Figure 7.23: Magnetic field for the initial and optimized design of the MC electromagnet
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Chapter 8

Conclusion

This thesis treated with the shape optimization in both two– and three–dimensional linear magne-
tostatics. The aim was to present a complete picture of the mathematical modelling process. We
dealt with both the theoretical and computational aspects and demonstrated them on an application
being of a practical purpose in the research on magnetooptic effects.

Let us summarize the main results obtained in the thesis.

• In Section 3.4 we developed an abstract theory for weak formulations of linear elliptic
second–order boundary vector–value problems (BVP).

• In Theorem 4.2 we proved the convergence of the solution of the finite element approxi-
mation to our abstract BVP while also dealing with an inner approximation of the original
domain with the Lipschitz boundary by a sequence of domains with polyhedral (or polygo-
nal) boundaries.

• In Sections 4.4.1 and 4.4.2 we concretized the abstract framework for the linear Lagrange
and Nédélec elements on triangles or tetrahedra, respectively.

• In Chapter 5 we introduced an abstract shape optimization problem and its finite element
approximation. We proved both the existence and convergence theorems while they rely on
Lemma 5.3 and Theorem 4.2, respectively.

• In Section 6.3.4 there is the heart of the thesis. There we developed an efficient implementa-
tion of the adjoint method for the first–order sensitivity analysis. We provided also a Matlab
implementation, which is enclosed on the CD.

• In Section 6.4 we introduced a multilevel optimization approach, which is a rather new
technique. It is the first step towards adaptive optimization algorithms, as they have been
recently presented in RAMM, MAUTE, AND SCHWARZ [164] and in SCHLEUPEN, MAUTE,
AND RAMM [185]. The efficiency of our multilevel optimization approach was documented
on numerical tests in Section 7.4.1.

• Finally, in Chapter 7 we presented a real–life application arising from the research on mag-
netooptic effects. We began with the physical description, went through the mathematical
settings, and ended up with the manufacture of the optimized design and with the discussion
of real improvements based on the physical measurements of the magnetic field.

127
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In Chapter 5, we met one serious obstacle, see Remark 5.1, that the standard approximation
theory does not completely cover problems of complex geometries. Namely, it is due to that we
can hardly find a continuous mapping between the shape design nodes and the remaining nodes
in the discretization grid. For fine discretizations and large changes in the design shape some
elements flip. One possible outcome is in the use of the multilevel optimization techniques where
on the fine grids the difference between the initial and optimized shapes is not that big. Another
outcome might be when using composite finite elements that were developed for the treatment with
complicated geometries in the papers by HACKBUSCH AND SAUTER [79, 80]. It is connected to an
idea which was given to me in January 2002 by RNDr. Jan Chleboun, CSc. from the Mathematical
Institute of the Czech Academy of Sciences. The idea is to use a fixed regular grid independent
of the geometry and to resolve the fine details of the geometry within special elements that arise
by the intersection of the geometry and the regular grid. This will move all the programming
effort into the development of such special finite elements instead the shape–to–mesh mapping.
We can also avoid this problem by using a boundary element discretization. From its matter, this
is very suited for optimal shape design, as we need to handle only the boundary discretization.
Nevertheless, construction of efficient multigrid solvers as well as using the method for nonlinear
governing state problems are still topics of the current research.

Finally, let us draw the further directions of this research. They are mainly focused

• on development and rigorous analysis of the adaptive multilevel techniques in the shape
optimization,

• on synergies among the inverse and shape optimization problems, namely, on the regular-
ization techniques and numerical methods, e.g., the homogenization or level–set methods,

• on common aspects in the topology and shape optimization,

• on development of a user–friendly and well–documented scientific computing software tool
for structural (both shape and topology) optimization,

• and on real–life applications in both electromagnetism and mechanics involving complex
geometries and nonlinearities of the state problem, provided correct mathematical settings,
i.e., the existence of a solution at least.
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[117] M. Kuhn, U. Langer, and J. Schöberl, Scientific computing tools for 3d magnetic field prob-
lems, The Mathematics of Finite Elements and Applications (MAFELAP X) (2000), 239–
259.

[118] E. Laporte and P. Le Tallec, Numerical methods in sensitivity analysis and shape opti-
mization, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser,
Boston, 2003.
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[129] J. Lukeš and J. Malý, Measure and integral, MATFYZPRESS, 1995.
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