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Abstract

The thesis focuses on the solution of both coercive and semi–coercive con-
tact problems by using the Boundary Element Tearing and Interconnecting
(BETI) method, which represents a boundary element counterpart of the
Finite Element Tearing and Interconnecting (FETI) method. The BETI ap-
proach, which uses “tearing” the domain into non–overlapping subdomains
and subsequent “gluing” along the artificial interfaces by Lagrange multipli-
ers, is based on the symmetric discretization of the local Steklov–Poincaré
operator and its suitable boundary element approximation. We combine
BETI with the preconditioning by the projectors to the so–called natural
coarse grid and apply recently proposed optimal algorithms for the solution
of bound and equality constrained quadratic programming problems in or-
der to develop a theoretically supported scalable solver for elliptic boundary
variational inequalities.

In the following text, we cover particularly the application of BETI to two
chosen model contact problems. The first one is a 2D semi–coercive multi-
body contact problem described by the Laplace operator and the second one
is a 3D coercive contact problem of linear homogeneous isotropic elastostat-
ics. The theoretical results are validated by the numerical experiments which
demonstrate the scalability of the presented method. Finally, we discuss our
first results obtained for 3D Hertz problem.
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Chapter 1

Introduction

The Boundary Element Tearing and Interconnecting (BETI) method was
originally introduced by Langer and Steinbach [32] as a boundary element
counterpart of the Finite Element Tearing and Interconnecting (FETI) do-
main decomposition method proposed by Farhat and Roux [28, 29] for paral-
lel solution of linear problems described by elliptic partial differential equa-
tions. Both methods are based on decomposition of the original domain into
non–overlapping subdomains and application of the duality. The continuity
of the solution across the subdomain interfaces is then enforced by Lagrange
multipliers and the primal problem is reduced to a small, relatively well–
conditioned, typically equality constrained quadratic programming problem.
An important feature of this approach is that the solution of the system of
such subproblems may be efficiently parallelized.

Generally, the main idea behind non–overlapping domain decomposition
methods is splitting the spatial domain into smaller ones, overlapping only
on their interfaces, and then, instead of the large problem formulated on the
original domain, we solve many smaller problems formulated on subdomains.
These subproblems are linked together by suitable conditions. The idea of
domain decomposition is quite natural, for instance, when different physical
models are needed to be used in different parts of the domain.

Boundary Element Method (BEM) has certainly its significance between
modern numerical methods of mathematical modelling. The main benefit
of this method, comparing to the well–established and widely used Finite
Element Method (FEM), is that the formulation of the problem is reduced
to the boundary which yields an important dimension reduction. Due to the
fact that we handle no mesh inside the body, BEM is very well applicable
to exterior or shape optimization problems. Usage of BEM is quite natu-
ral when dealing with problems formulated on unbounded domains. On the
other hand, application of BEM leads in general to densely populated stiff-
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Chapter 1

ness matrices. This represents a certain drawback in comparison with using
FEM which results in stiffness matrices with the vast majority of entries van-
ished. This disadvantage causing large storage requirements and unwelcome
limitations on the fineness of discretization may be effectively overcome by
the so–called Fast BEMs that have been studied recently. Methods such as
Fast Multipole [39, 40] or hierarchical matrices [3] reduce the solution time
and memory storage requirement significantly.

In this work, we mainly focus on the application of the BETI method to
elliptic variational inequalities, where the resulting quadratic programming
problem is constrained not only by equalities, but also by bound constraints
that are associated with the related contact conditions. We exploit here
the idea of “All Floating” or “Total” variant of the BETI/FETI method in-
troduced independently by Of [38] and Dostál et al. [20], respectively. This
approach enforces the fixation along the Dirichlet part of the boundary by
additional Lagrange multipliers. Although our method is based on that in-
troduced by Langer and Steinbach [32], we cannot use their preconditioning
strategy, since their preconditioner transforms the bound constraints into
more general inequalities, which prevents usage of our in a sense optimal
algorithms. For this reason we employ, instead, preconditioning by the pro-
jectors to the so–called natural coarse grid and develop a scalable algorithm
for the solution of both coercive and semi–coercive contact problems [7]. The
key tool is an observation of Langer and Steinbach [32] that yields a spectral
equivalence of the discrete approximate Steklov–Poincaré operators gener-
ated by the FETI and BETI methods. This way we can use the analysis of
Farhat et al. [27], which gives the upper bound on the spectrum of the precon-
ditioned dual stiffness matrix as CH/h, where C is a constant independent
of discretization and decomposition parameters h and H, respectively.

The thesis is structured as follows. In Chapter 2, we intend to recall
the definition of Sobolev spaces and some basic results about existence and
uniqueness of the solution of abstract variational inequality.

Let us state beforehand that Chapters 3, 4, and 5 are split into two main
parts, where the first one is concerned with the analysis corresponding to the
Laplace operator and the second one focuses on the analysis corresponding
to linear homogeneous isotropic elastostatics. In Chapter 3, we introduce
the representation formula and by application of the interior trace opera-
tor and the associated conormal derivative operator, we obtain a system of
integral equations valid on the boundary. Then we continue with the def-
initions and properties of the well–known single and double layer potential
operators, adjoint double layer potential operator, hypersingular integral op-
erator, and Newton (volume) potential operators. Finally, we introduce the
Dirichlet–Neumann map and define the Steklov–Poincaré operator by the
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Introduction

corresponding boundary integral operators.
In Chapter 4, we formulate our model contact problems. As indicated be-

fore, the first one is a 2D semi–coercive multibody problem described by the
Laplace operator and the second one is a 3D coercive contact problem of lin-
ear homogeneous isotropic elastostatics. Then we apply the non–overlapping
domain decomposition and discuss existence and uniqueness of the solutions
of the resulting boundary variational inequalities.

Chapter 5 focuses firstly on the appropriate boundary element approx-
imations of the Steklov–Poincaré and Newton operators, which are needed
due to implicit definitions of both operators. Then we continue with the
boundary element discretization by using the Ritz method. At the end, we
sketch a possible evaluation of the Newton potential.

Chapter 6 introduces the primal and dual formulations of the discretized
model problems. As discussed briefly above, we employ the natural coarse
grid to obtain a preconditioned bound and equality constrained quadratic
programming problem. An important result is that if we refine the mesh
and increase the number of subdomains so that the ratio H/h is kept fixed,
we have still the same bounds on the spectrum of the preconditioned dual
stiffness matrix. Finally, a few paragraphs are devoted to the description
of stable evaluation of the left generalized inverse of the corresponding local
stiffness matrix.

In Chapter 7, we introduce a pair of algorithms SMALBE and MPRGP
proposed by Dostál [13] and Dostál and Schöberl [25], respectively. The al-
gorithm SMALBE is based on semi–monotonic augmented Lagrangians and
its unique feature is a bound on number of iterations in bounds on the spec-
trum of the preconditioned dual stiffness matrix. The algorithm MPRGP is
a quadratic programming algorithm using classical conjugate gradient steps,
gradient projections, and proportioning. The rate of convergence of this al-
gorithm is also given in bounds on the spectrum of the preconditioned dual
stiffness matrix.

Chapter 8 contains results of our numerical experiments, in which we em-
ployed both algorithms described in Chapter 7. First of all, we demonstrate
the numerical scalability of our method on the solutions of both model con-
tact problems. Finally, we show the numerical results for 3D Hertz problem.

In Conclusion, we summarize achieved results of the thesis and outline
future work connected to this topic.
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Notations

≡ identical equality

≈ approximation

R real axis

N set of all natural numbers

R+ interval (0, ∞)

Ω closure of a set Ω

diam Ω diameter of a set Ω, i.e. diam Ω := sup {‖x− y‖ : x, y ∈ Ω}
∂Ω boundary of a set Ω

meas Γ Lebesgue measure of a set Γ

SpanS linear hull of a set S

C∞(Ω) space of all real functions with continuous derivatives
of all orders on a set Ω

Dv domain of a function v

supp v support of a function v, i.e. supp v := {x ∈ Dv : v(x) 6= 0}
lim inf vn limit inferior of a sequence {vn}, i.e. lim inf vn := sup

n≥0
inf
k≥n

vk

⇀ weak convergence symbol

v|Γ restriction of a function v to a set Γ

I identity mapping

Ker v kernel (null space) of a function v

‖ · ‖ Euclidean norm

(·, ·) Euclidean scalar product

‖ · ‖V norm defined in a vector space V
〈·, ·〉V scalar product defined in a vector space V
△ Laplace’s operator

∇u gradient of a function u

div u divergence of a vector field u

δij Kronecker’s delta

δy Dirac’s δ–distribution at a point y

A |M restriction of a matrix A to a set M

I identity matrix

O zero matrix

Im A range of a matrix A
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σ(A) spectrum of a matrix A

λmin(A) minimum eigenvalue of a real symmetric matrix A

λmax(A) maximum eigenvalue of a real symmetric matrix A

‖A‖ spectral norm of a real symmetric positive semi–definite matrix A,

i.e. ‖A‖ := λmax(A)

κ(A) spectral condition number of a real symmetric positive definite
matrix A, i.e. κ(A) := λmax(A)/λmin(A)

� end of proof

5



6



Chapter 2

Preliminaries

2.1 Sobolev spaces

In this work, we shall deal only with the boundary value problems of the
second order and the introduction of the Sobolev space of the first order shall
be sufficient. In what follows, we shall assume that Ω denotes a non–empty
bounded Lipschitz domain in R

d, d = 2, 3, with the boundary Γ := ∂Ω.
Let us define the Sobolev space

H1(Ω)

as a completion
(C∞(Ω), ‖ · ‖H1(Ω)),

where for all u ∈ C∞(Ω) we define

‖u‖H1(Ω) :=
√
‖u‖2

L2(Ω) + |u|2H1(Ω)

with

|u|2H1(Ω) :=

∫

Ω

‖∇u(x)‖2 dx.

It can be shown that

H1(Ω) =

{
u ∈ L2(Ω) :

∂u

∂xi

∈ L2(Ω) for i = 1, . . . , d

}
,

where the derivatives are considered in the distributional sense. It holds that
H1(Ω) is the Hilbert space with the scalar product

〈u, v〉H1(Ω) := 〈u, v〉L2(Ω) + 〈∇u, ∇v〉L2(Ω) . (2.1)

7



Chapter 2

Let Γu ⊂ Γ satisfy meas Γu > 0. A completion

(C∞
0 (Ω,Γu), ‖ · ‖H1(Ω)),

where C∞
0 (Ω,Γu) contains functions from C∞(Ω) that are zero on Γu, shall

be denoted by
H1

0 (Ω,Γu).

H1
0 (Ω,Γu) is the Hilbert space with the scalar product given by (2.1).

Theorem 2.1 (Friedrichs) Functional |·|H1(Ω) is on H1
0 (Ω,Γu) an equivalent

norm to ‖ · ‖H1(Ω).

Theorem 2.2 Let Ω ⊂ R
d, d = 2, 3, be a bounded Lipschitz domain. Then

there is a unique linear continuous mapping

γ0 : H1(Ω) 7→ L2(Γ)

satisfying
γ0u = u|Γ for all u ∈ C∞(Ω).

We call γ0u ∈ L2(Γ) a trace of a function u ∈ H1(Ω).

We shall denote the trace space of H1(Ω) by H1/2(Γ), i.e.

H1/2(Γ) := γ0(H
1(Ω)).

In H1/2(Γ), we introduce a norm

‖v‖H1/2(Γ) :=
√
‖v‖2

L2(Γ) + |v|2H1/2(Γ),

where

|v|2H1/2(Γ) :=

∫

Γ

∫

Γ

(v(x) − v(y))2

‖x− y‖d
dsx dsy.

Let us note thatH1/2(Γ) is the Hilbert space. Furthermore, it can be observed
that there is a k > 0 such that

‖γ0u‖H1/2(Γ) ≤ k‖u‖H1(Ω) for all u ∈ H1(Ω). (2.2)

The dual space to H1/2(Γ) with respect to the L2(Γ) scalar product shall
be denoted by

H−1/2(Γ)

and the norm in H−1/2(Γ) is given by

‖w‖H−1/2(Γ) := sup
06=v∈H1/2(Γ)

| 〈w, v〉L2(Γ) |
‖v‖H1/2(Γ)

.
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Theorem 2.3 (Green) Let Ω ⊂ R
d, d = 2, 3, be a bounded Lipschitz domain,

u, v ∈ H1(Ω), and i ∈ {1, . . . , d}. Then

〈
∂u

∂xi

, v

〉

L2(Ω)

=

∫

Γ

γ0u(x)γ0v(x)ni(x) dsx −
〈
u,

∂v

∂xi

〉

L2(Ω)

,

where ni(x) is the ith component of the exterior unit normal vector defined
for almost all x ∈ Γ.

2.2 Variational inequalities

Here we intend to recall some well–known results of the analysis of variational
inequalities which we shall use later. First of all, let us introduce notations
and definitions needed in the following theorems.

Let

i) V be a real Hilbert space with scalar product 〈·, ·〉V and norm ‖·‖V ;

ii) K ⊂ V be a closed, convex, nonempty subset that needs not be a
subspace of V ;

iii) F be a continuous linear functional on V ;

iv) A be a bilinear form on V .

Definition 2.1 • A is bounded on K if there is an M > 0 such that

|A(u, v)| ≤M ‖u‖V ‖v‖V for all u, v ∈ K;

• A is symmetric on K if

A(u, v) = A(v, u) for all u, v ∈ K;

• A is semi–elliptic on K if

A(u, u) ≥ 0 for all u ∈ K;

• A is elliptic on K if there is an α > 0 such that

A(u, u) ≥ α‖u‖2
V for all u ∈ K.

Definition 2.2 Functional G : V 7→ R is

9
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• coercive on K if

v ∈ K
‖v‖V → ∞

}
⇒ G(v) → ∞.

• convex on K if

G(tu+ (1 − t)v) ≤ tG(u) + (1 − t)G(v)

for all u, v ∈ K and all t ∈ (0, 1).

Theorem 2.4 Let G : V 7→ R be continuous, coercive, and convex on K.
Then there exists at least one solution of the minimization problem: find
u ∈ K such that

G(u) = min {G(v) : v ∈ K} . (2.3)

Proof. Let BR be a closed–origin–centered ball of radius R ∈ R+, i.e.

BR := {v ∈ V : ‖v‖V ≤ R}.

Then the coercivity of G on K yields existence of a large enough R ∈ R+

such that
inf
v∈K

G(v) = inf
v∈K∩BR

G(v) =: q.

Let us now consider a sequence {un}, un ∈ K ∩ BR, such that

G(un) → q.

Since {un} is bounded and V is the Hilbert space, there is a subsequence
{unk

} of {un} and u ∈ V satisfying

unk
⇀ u.

Let us recall that every closed convex set is weakly closed, i.e. u ∈ K, and
since every continuous convex functional on a closed convex set is weakly
lower semi–continuous, we get

G(u) ≤ lim inf G(unk
) = limG(unk

) = q ≤ G(u).

�

Now we shall be concerned with the variational inequality: find u ∈
K such that

A(u, v − u) ≥ F(v − u) for all v ∈ K. (2.4)

10
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Theorem 2.5 (analogue to the Lax–Milgram theorem for variational in-
equalities) Let A be bounded and elliptic on V. Then there exists a unique
solution u ∈ K of problem (2.4).

Proof. See [30].
�

Moreover, let us define the so–called energy functional J on V by

J (v) :=
1

2
A(v, v) −F(v). (2.5)

Theorem 2.6 If A is bounded, symmetric, and semi–elliptic on V, then the
energy functional J defined by (2.5) is convex on V.

Proof. The aim is to show that

J (tu+ (1 − t)v) ≤ tJ (u) + (1 − t)J (v).

for all u, v ∈ V and all t ∈ (0, 1). Since F is linear on V , it suffices to prove
that

v 7→ A(v, v)

is convex on V . Let u, v ∈ V and t ∈ (0, 1) be arbitrary. From the semi–
ellipticity and symmetry of A on V we obtain

0 ≤ A(u− v, u− v) = A(u, u) − 2A(u, v) + A(v, v). (2.6)

Then, by (2.6), we get

A(tu+ (1 − t)v, tu+ (1 − t)v) =

= t2A(u, u) + 2 t(1 − t)A(u, v) + (1 − t)2A(v, v)

≤ t2A(u, u) + t(1 − t) [A(u, u) + A(v, v)] + (1 − t)2A(v, v)

= tA(u, u) + (1 − t)A(v, v),

which completes the proof.
�

Theorem 2.7 Let A be bounded, symmetric, and semi–elliptic on V. Then
problem (2.4) is equivalent to the minimization problem: find u ∈ K such
that

J (u) = min {J (v) : v ∈ K} .

11
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Proof. Suppose u ∈ K is a solution of variational inequality (2.4). Let
us pick any v ∈ K and put z := v − u ∈ V. Thus we have

A(u, z) ≥ F(z).

Then due to the assumed symmetry and semi–ellipticity of A on V , we obtain

J (v) = J (z + u) =
1

2
A(z + u, z + u) −F(z + u)

=
1

2
A(z, z) + A(u, z) +

1

2
A(u, u) −F(z) −F(u)

≥ J (u).

Conversely, assume u ∈ K minimizes the energy functional J on K. Let
us choose a v ∈ K. Then

φ(t) := J ((1 − t)u+ tv) ≥ J (u) = φ(0) for all t ∈ [0, 1].

Now let us take a look at the function φ. The symmetry of A on V yields

φ(t) =
1

2
(1− t)2A(u, u) + (1− t) tA(u, v) +

1

2
t2A(v, v)− (1− t)F(u)− tF(v)

for all t ∈ [0, 1], and therefore

φ′
+(0) = −A(u, u) + A(u, v) + F(u) −F(v) = A(u, v − u) −F(v − u).

Since φ′
+(0) ≥ 0, the proof is finished.

�
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Chapter 3

The Dirichlet–Neumann map

for elliptic partial differential

operators

3.1 Laplace operator

Let us begin with some notations that we shall use through the following
text.

Let Ω ⊂ R
d, d = 2, 3, be a bounded Lipschitz domain with the boundary

Γ. We shall consider the interior trace operator

γ0 : H1(Ω) 7→ H1/2(Γ)

and the interior conormal derivative operator

γ1 : H1
△(Ω) 7→ H−1/2(Γ),

where

H1
△(Ω) :=

{
v ∈ H1(Ω) : −△v ∈ L2(Ω)

}
,

satisfying

γ1u(x) =
∂u

∂n
(x) for all u ∈ C∞(Ω), x ∈ Γ,

with n(x) denoting the exterior unit normal vector defined for almost all
x ∈ Γ. Let us note that the operator γ1 is a linear and bounded mapping on
H1

△(Ω).

13
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3.1.1 Fundamental solution, Green’s representation for-

mula

Definition 3.1 A function U : R
2 × R

2 7→ R defined by

U(x, y) := − 1

2π
log ‖x− y‖ (3.1)

is called the fundamental solution of the Laplace operator in R
2.

Definition 3.2 A function U : R
3 × R

3 7→ R defined by

U(x, y) :=
1

4π

1

‖x− y‖ (3.2)

is called the fundamental solution of the Laplace operator in R
3.

Indeed, it can be shown [36, 45] that U satisfies (in the distributional
sense)

−△xU(x, y) = δy(x) for x, y ∈ R
d, d = 2, 3.

Here and in what follows, we consider the function U defined by (3.1) or (3.2)
with regard to the dimension d.

Now we shall introduce theorems which are discussed in more detail in
[8].

Theorem 3.1 (First Green’s formula) For any u ∈ H1
△(Ω) and v ∈ H1(Ω)

there holds

−
∫

Ω

△u(x)v(x) dx =

∫

Ω

∇u(x)∇v(x) dx−
∫

Γ

γ1u(x)γ0v(x) dsx. (3.3)

Theorem 3.2 (Second Green’s formula) For any u, v ∈ H1
△(Ω) there holds

∫

Ω

△u(x)v(x) − u(x)△v(x) dx =

∫

Γ

γ1u(x)γ0v(x) − γ0u(x)γ1v(x) dsx.

Theorem 3.3 (Green’s representation formula) Let f ∈ L2(Ω) and u ∈
H1(Ω) be a distributional solution of the Poisson equation

−△u(x) = f(x) for x ∈ Ω.

Then

u(x) =

∫

Ω

f(y)U(x, y) dy +

∫

Γ

γ1u(y)U(x, y) dsy −
∫

Γ

γ0u(y) γ1,y U(x, y) dsy

(3.4)
for x ∈ Ω.

14
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3.1.2 Boundary integral operators

By applying the operators γ0 and γ1 to the representation formula (3.4) [41],
we get the system of integral equations valid on Γ

(
γ0u
γ1u

)
=

(
1
2
I −K V
D 1

2
I +K ′

)(
γ0u
γ1u

)
+

(
N0f
N1f

)
. (3.5)

First, let us focus on the well–known boundary integral operators that appear
in (3.5). We define for x ∈ Γ the single layer potential operator by

(V t)(x) :=

∫

Γ

t(y)U(x, y) dsy, (3.6)

the double layer potential operator by

(Ku)(x) :=

∫

Γ

u(y) γ1,yU(x, y) dsy, (3.7)

the adjoint double layer potential operator by

(K ′t)(x) :=

∫

Γ

t(y) γ1,xU(x, y) dsy, (3.8)

and finally the hypersingular integral operator by

(Du)(x) := −γ1,x

∫

Γ

u(y) γ1,yU(x, y) dsy. (3.9)

The Newton or volume potential operators from (3.5) are given for x ∈ Γ
by

(N0f)(x) :=

∫

Ω

f(y)U(x, y) dy (3.10)

and

(N1f)(x) :=

∫

Ω

f(y) γ1,xU(x, y) dy.

The boundary integral operators have the following properties [8, 41, 45]:

Theorem 3.4 The single layer potential operator

V : H−1/2 (Γ) 7→ H1/2 (Γ)

15
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given by (3.6) is linear, bounded, symmetric, and, for the case of the dimen-
sion d = 2 provided

diam Ω < 1, (3.11)

H−1/2(Γ)–elliptic satisfying

〈V t, t〉L2(Γ) ≥ αV ‖t‖2
H−1/2(Γ) for all t ∈ H−1/2(Γ).

Theorem 3.5 The double layer potential operator

K : H1/2 (Γ) 7→ H1/2 (Γ)

given by (3.7) is linear and bounded. Moreover, there hold the representations

(Kv)(x) =
1

2π

∫

Γ

(x− y, n(y))

‖x− y‖2
v(y) dsy

for x ∈ Γ and d = 2 and

(Kv)(x) =
1

4π

∫

Γ

(x− y, n(y))

‖x− y‖3
v(y) dsy

for x ∈ Γ and d = 3.

Theorem 3.6 The adjoint double layer potential operator

K ′ : H−1/2 (Γ) 7→ H−1/2 (Γ)

given by (3.8) is linear and bounded.

Theorem 3.7 The hypersingular integral operator

D : H1/2 (Γ) 7→ H−1/2 (Γ)

given by (3.9) is linear, bounded, symmetric, and H1/2(Γ)–semi–elliptic sat-
isfying

〈Dv, v〉L2(Γ) ≥ αD |v|2H1/2(Γ) for all v ∈ H1/2(Γ) (3.12)

and

〈Dv, v〉L2(Γ) ≥ αD ‖v‖2
H1/2(Γ) for all v ∈ H1/2(Γ)/Ker D, (3.13)

where H1/2(Γ)/Ker D is the space of all functions from H1/2(Γ) that are or-
thogonal to KerD. Moreover, for d = 2 and u, v ∈ H1/2(Γ) ∩ C(Γ) there
holds the representation

〈Du, v〉L2(Γ) = − 1

2π

∫

Γ

curlΓ v(x)

∫

Γ

log ‖x− y‖ curlΓ u(y) dsy dsx,

16
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where
curlΓ v(x) := (n(x), curl ṽ(x)) for x ∈ Γ

with the rotation

curl ṽ(x) :=

(
∂

∂x2

ṽ(x)

− ∂
∂x1

ṽ(x)

)
.

For d = 3 and u, v ∈ H1/2(Γ) ∩ C(Γ) we have the representation

〈Du, v〉L2(Γ) =
1

4π

∫

Γ

∫

Γ

(curlΓu(y), curlΓv(x))

‖x− y‖ dsy dsx

with the surface curl operator

curlΓv(x) := n(x) ×∇ṽ(x) for x ∈ Γ.

Here, ṽ is some locally defined extension of v into a d–dimensional neigh-
bourhood of Γ.

Theorem 3.8 Let u ≡ 1. Then

u ∈ Ker

(
1

2
I +K

)
and u ∈ KerD.

Moreover,
KerD = Span {1}.

Proof. i) Function u ≡ 1 satisfies the Laplace equation

−△u(x) = 0 for x ∈ Ω,

and therefore it also has to satisfy the system (3.5) with f = 0. Since

γ1u(x) =
∂u

∂n
(x) = 0 for x ∈ Γ,

the first equation gives
(

1

2
I +K

)
u(x) = 0 for x ∈ Γ

and the second one yields

(Du)(x) = 0 for x ∈ Γ.

17
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ii) Let v ∈ KerD. Relation (3.12) yields

0 = 〈Dv, v〉L2(Γ) ≥ αD |v|2H1/2(Γ) = αD

∫

Γ

∫

Γ

(v(x) − v(y))2

‖x− y‖d
dsx dsy ≥ 0,

where αD is a positive constant. Thus

v(x) = v(y) for almost all x, y ∈ Γ.

�

3.1.3 The Steklov–Poincaré operator

Let us assume that the operator V is elliptic on H−1/2(Γ). Then from the
first equation of (3.5) we get the Dirichlet–Neumann map

γ1u(x) = V −1(
1

2
I +K)γ0u(x) − V −1(N0f)(x) (3.14)

for x ∈ Γ. Insertion of (3.14) into the second equation of (3.5) yields another
representation of the Dirichlet–Neumann map

γ1u(x) =

[
(
1

2
I +K ′)V −1(

1

2
I +K) +D

]
γ0u(x) +

[
N1 − (

1

2
I +K ′)V −1N0

]
f(x) (3.15)

for x ∈ Γ. Now let us define the Steklov-Poincaré operator by the equiv-
alent representations

S := V −1(
1

2
I +K) (3.16)

= (
1

2
I +K ′)V −1(

1

2
I +K) +D (3.17)

and the Newton operator by the equivalent representations

−N := −V −1N0 (3.18)

= N1 − (
1

2
I +K ′)V −1N0,

so that we can rewrite the equations (3.14) and (3.15) as

γ1u(x) = (Sγ0u)(x) − (Nf)(x) for x ∈ Γ. (3.19)

18
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At this moment, let us note that the representation (3.16) together with
the Galerkin discretization leads typically to a non–symmetric stiffness ma-
trix. We premise that symmetry of stiffness matrix shall be essential in our
analysis, so that we shall consider only the formally symmetric representation
(3.17).

Let us introduce a mapping P : H1/2(Γ) 7→ H1(Ω) so that for a u ∈
H1/2(Γ) we define Pu ∈ H1(Ω) as a weak solution of the Dirichlet problem

−△v(x) = 0 for x ∈ Ω,

v(x) = u(x) for x ∈ Γ.

Let us note that P is linear and bounded on H1/2(Γ). It can be further shown
that for all u, v ∈ H1/2(Γ) we have

〈Su, v〉L2(Γ) =

∫

Ω

∇(Pu)(x)∇(Pv)(x) dx. (3.20)

Let us define the function space

H
1/2
0 (Γ,Γu) := {v ∈ H1/2(Γ) : v(x) = 0 for x ∈ Γu},

where Γu ⊂ Γ and meas Γu > 0. Let us note that H
1/2
0 (Γ,Γu) is a closed

subspace of H1/2(Γ).

Theorem 3.9 Let the condition (3.11) be satisfied for the case d = 2. Then
the Steklov–Poincaré operator

S : H1/2 (Γ) 7→ H−1/2 (Γ)

is a linear, bounded, symmetric, and semi–elliptic mapping satisfying

〈Sv, v〉L2(Γ) ≥ αD ‖v‖2
H1/2(Γ) for all v ∈ H1/2(Γ)/Ker D, (3.21)

where H1/2(Γ)/Ker D is the space of all functions from H1/2(Γ) that are or-
thogonal to KerD. Note that the positive constant αD is the same as that in
Theorem 3.7.

Moreover, S is elliptic on H
1/2
0 (Γ,Γu).

Proof. i) The linearity and boundedness of the operators V , K, K ′,
and D imply the linearity and boundedness of the operator S.

ii) The symmetry of S follows particularly from the symmetry of V −1

and D on H1/2(Γ) and from the fact that K ′ is adjoint to K. Alternatively,
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we can proceed as follows. Let u, v ∈ H1/2(Γ) be arbitrary. Then, by (3.20),
we get

〈Su, v〉L2(Γ) =

∫

Ω

∇(Pu)(x)∇(Pv)(x) dx = 〈Sv, u〉L2(Γ) .

iii) Let u ∈ H1/2(Γ) be arbitrary. Since the operator 1
2
I +K ′ is adjoint

to the operator 1
2
I +K and

〈
V −1v, v

〉
L2(Γ)

≥ 0 for all v ∈ H1/2(Γ),

we obtain
〈
(1

2
I +K ′)V −1(1

2
I +K)u, u

〉
L2(Γ)

=
〈
V −1(1

2
I +K)u, (1

2
I +K)u

〉
L2(Γ)

≥ 0.

Hence and by (3.13), we immediately get

〈Su, u〉L2(Γ) =
〈
(1

2
I +K ′)V −1(1

2
I +K)u, u

〉
L2(Γ)

+ 〈Du, u〉L2(Γ)

≥ 〈Du, u〉L2(Γ)

≥ αD ‖u‖2
H1/2(Γ)

for all u ∈ H1/2(Γ)/Ker D.

iv) Let u ∈ H
1/2
0 (Γ,Γu) be arbitrary. Then Pu ∈ H1

0 (Ω,Γu) and by using
(3.20), Friedrichs’ theorem 2.1, and inequality (2.2) we get

〈Su, u〉L2(Γ) =

∫

Ω

‖∇(Pu)(x)‖2 dx ≥ c1‖Pu‖2
H1(Ω)

≥ c2‖γ0Pu‖2
H1/2(Γ) = c2‖u‖2

H1/2(Γ).

�

Let us assume that the condition (3.11) is satisfied for the case d = 2 and
let us for a while put u ≡ 1. Then u satisfies

−△u(x) = 0 for x ∈ Ω

γ1u(x) =
∂u

∂n
(x) = 0 for x ∈ Γ

and, by (3.19), we get

(Su)(x) = 0 for all x ∈ Γ. (3.22)
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3.1.4 The Newton operator

We shall be concerned only with the (more simple) representation (3.18) of
the Newton operator.

Lemma 3.1 The Newton potential operator

N0 : L2(Ω) 7→ H1/2(Γ)

given by (3.10) is a linear and bounded mapping.

Proof. See [45].
�

Now the linearity and boundedness of N0 and V imply the following
theorem.

Theorem 3.10 Let the condition (3.11) be satisfied for the case d = 2. Then
the Newton operator

N : L2(Ω) 7→ H−1/2(Γ)

is a linear and bounded mapping.

For future purposes, let us state the following lemma.

Lemma 3.2 Let the condition (3.11) be satisfied for the case d = 2 and
assume f ∈ L2(Ω). Then

〈Nf, 1〉L2(Γ) = 〈f, 1〉L2(Ω) .

Proof. Let u ∈ H1(Ω) be a weak solution of the Dirichlet boundary value
problem

−△u(x) = f(x) for x ∈ Ω,

γ0u(x) = 0 for x ∈ Γ.

Then
〈−△u, 1〉L2(Ω) = 〈f, 1〉L2(Ω)

and also, by (3.19),

γ1u(x) = −(Nf)(x) for x ∈ Γ. (3.23)

From the first Green formula (3.3), we obtain

〈−△u, 1〉L2(Ω) = 〈∇u, ∇1〉L2(Ω) − 〈γ1u, 1〉L2(Γ) = −〈γ1u, 1〉L2(Γ)

and by combining the latter relations with (3.23), we get

〈f, 1〉L2(Ω) = −〈γ1u, 1〉L2(Γ) = 〈Nf, 1〉L2(Γ) .

�
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3.2 Linear homogeneous isotropic elastostat-

ics

Let Ω ⊂ R
3 be a bounded Lipschitz domain with a boundary Γ. We shall

focus on the elliptic partial differential operator L defined by

(Lu)i(x) := −
3∑

j=1

∂

∂xj

σij(u, x) for x ∈ Ω, i = 1, 2, 3, (3.24)

where the matrix operator σ is given by

σij(u, x) :=
Eν

(1 + ν)(1 − 2ν)
δij

3∑

k=1

ekk(u, x)+
E

1 + ν
eij(u, x) for i, j = 1, 2, 3

(3.25)
with the matrix operator e defined by

eij(u, x) :=
1

2

(
∂

∂xi

uj(x) +
∂

∂xj

ui(x)

)
for i, j = 1, 2, 3 (3.26)

and constants E > 0, ν ∈ (0, 1/2).
Let us note that in the context of linear elastostatics, σ denotes the

stress tensor, e is the strain tensor, and E and ν refer to Young’s modulus
and Poisson’s ratio, respectively. The stress–strain relation (3.25) is known
as Hook’s law.

We shall consider the interior trace operator

γ0 : [H1(Ω)]3 7→ [H1/2(Γ)]3

and the interior boundary stress operator

γ1 : [H1
Lamé(Ω)]3 7→ [H−1/2(Γ)]3,

where
[H1

Lamé(Ω)]3 :=
{
v ∈ [H1(Ω)]3 : Lv ∈ [L2(Ω)]3

}
,

satisfying

(γ1u)i (x) :=
3∑

j=1

σij(u, x)nj(x) for all u ∈ [C∞(Ω)]3, x ∈ Γ,

i = 1, 2, 3, with nj(x) denoting jth component of the exterior unit normal
vector n(x) that is defined for almost all x ∈ Γ. Let us note that γ1 is a
linear and bounded mapping on [H1

Lamé(Ω)]3.
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Theorem 3.11 (Korn’s inequality) There is a k > 0 such that

∫

Ω

3∑

i,j=1

(
∂vi

∂xj

(x)

)2

dx ≤ k

∫

Ω

3∑

i,j=1

e2ij(v, x) dx for all v ∈ [H1
0 (Ω, Γu)]

3.

(3.27)

Proof. See [36].
�

3.2.1 Fundamental solution, Somigliana’s identity

Definition 3.3 The matrix function U : R
3 × R

3 7→ R
3×3 defined by

Ukl(x, y) :=
1 + ν

8πE(1 − ν)

(
(3 − 4ν)

δkl

‖x− y‖ +
(xk − yk)(xl − yl)

‖x− y‖3

)

for k, l = 1, 2, 3 is called the fundamental solution of linear homoge-

neous isotropic elastostatics. U is also known as Kelvin’s tensor.

It can be shown that by insertion of σ given by (3.25) into the definition
(3.24), we obtain

(Lu)i(x) = −µ△u(x) − (λ+ µ)∇divu(x) for x ∈ Ω

with the so–called Lamé constants

λ :=
Eν

(1 + ν)(1 − 2ν)
and µ :=

E

2(1 + ν)
.

And indeed, it can be checked [36, 45] that U is a distributional solution of

−µ△xU l(x, y) − (λ+ µ)∇xdivx U l(x, y) = δy(x)el for x, y ∈ R
3

and l = 1, 2, 3, where el denotes a standard R
3 basis vector.

Now we shall state the following theorems which are commented in more
detail in [36, 41].

Theorem 3.12 (First Betti’s formula) For any u ∈ [H1
Lamé

(Ω)]3 and v ∈
[H1(Ω)]3 there holds

∫

Ω

(Lu(x), v(x)) dx =

∫

Ω

W (u(x), v(x)) dx−
∫

Γ

(γ1u(x), γ0v(x)) dsx
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with

W (u(x), v(x)) :=
3∑

i,j=1

σij(u, x)eij(v, x)

= λ div u(x) div v(x) + 2µ
3∑

i,j=1

eij(u, x)eij(v, x). (3.28)

Theorem 3.13 (Second Betti’s formula) For any u, v ∈ [H1
Lamé

(Ω)]3 there
holds
∫

Ω

(Lv(x), u(x))−(v(x), Lu(x)) dx =

∫

Γ

(γ1u(x), γ0v(x))−(γ0u(x), γ1v(x)) dsx.

Theorem 3.14 (Somigliana’s identity) Let f ∈ [L2(Ω)]3 and u ∈ [H1(Ω)]3

be a distributional solution of the equation

Lu(x) = f(x) for x ∈ Ω.

Then

ul(x) =

∫

Ω

(f(y), U l(x, y)) dy +

∫

Γ

(γ1u(y), U l(x, y)) dsy

−
∫

Γ

(γ0u(y), γ1,yU l(x, y)) dsy (3.29)

for x ∈ Ω and l = 1, 2, 3.

3.2.2 Boundary integral operators

By applying the interior trace and boundary stress operators to the Somigliana
identity [41], we can get the following system of integral equations

(
γ0u
γ1u

)
=

(
1
2
I −KLamé V Lamé

DLamé 1
2
I + (KLamé)′

)(
γ0u
γ1u

)
+

(
NLamé

0 f
NLamé

1 f

)

(3.30)
valid on Γ, where we define for x ∈ Γ and i = 1, 2, 3 the single layer

potential operator by

(V Lamét)i(x) :=

∫

Γ

(t(y), U i(x, y)) dsy, (3.31)
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the double layer potential operator by

(KLaméu)i(x) :=

∫

Γ

(u(y), γ1,yU i(x, y)) dsy, (3.32)

the adjoint double layer potential operator by

((KLamé)′t)i(x) :=

∫

Γ

(t(y), γ1,xU i(x, y)) dsy, (3.33)

and finally the hypersingular integral operator by

(DLaméu)i(x) := −γ1,x

∫

Γ

(u(y), γ1,yU i(x, y)) dsy. (3.34)

The Newton or volume potential operators used in (3.30) are given for
x ∈ Γ and i = 1, 2, 3 by

(NLamé
0 f)i(x) :=

∫

Ω

(f(y), U i(x, y)) dy (3.35)

and

(NLamé
1 f)i(x) :=

∫

Ω

(f(y), γ1,xU i(x, y)) dy.

Let us now define the duality coupling of u ∈ [H−1/2(Γ)]3 and v ∈
[H1/2(Γ)]3 as

〈u, v〉Γ :=

∫

Γ

(u(y), v(y)) dsy.

The boundary integral operators have the following properties [41, 43]:

Theorem 3.15 The single layer potential operator

V Lamé : [H−1/2(Γ)]3 7→ [H1/2(Γ)]3

given by (3.31) is linear, bounded, symmetric, and [H−1/2(Γ)]3–elliptic satis-
fying

〈
V Laméw, w

〉
Γ
≥ αV Lamé‖w‖2

[H−1/2(Γ)]3 for all w ∈ [H−1/2(Γ)]3.

Moreover, for w ∈ [L∞(Γ)]3 the operator V Lamé can be represented by

(V Laméw)k(x) =
1 + ν

2E(1 − ν)

(
(3 − 4ν)(V wk)(x) +

3∑

l=1

(Vklwl)(x)

)
,
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where

(V wk)(x) =
1

4π

∫

Γ

wk(y)

‖x− y‖ dsy

is the single layer potential operator of the Laplace operator in R
3 and

(Vklwl)(x) =
1

4π

∫

Γ

(xk − yk)(xl − yl)

‖x− y‖3
wl(y) dsy

for k, l = 1, 2, 3 and x ∈ Γ.

Let

R := Span








1
0
0


 ,




0
1
0


 ,




0
0
1


 ,




−x2

x1

0


 ,




0
−x3

x2


 ,




x3

0
−x1








be the solution space of the homogeneous Neumann boundary value problem

Lu(x) = 0 for x ∈ Ω,

γ1u(x) = 0 for x ∈ Γ.
(3.36)

We call R the space of the rigid body motions: translation and rotation.

Theorem 3.16 The double layer potential operator

KLamé : [H1/2(Γ)]3 7→ [H1/2(Γ)]3

given by (3.32) is linear and bounded and for continuous v there holds the
representation

(KLamév)l(x) = (Kvl)(x) − (V (M(∂, n)v)l)(x) + 2µ(V LaméM(∂, n)v)l(x),
(3.37)

for x ∈ Γ and l = 1, 2, 3, where V and K are the single and double layer
potential operators for the Laplace operator in R

3, in particular,

(Kvl)(x) =
1

4π

∫

Γ

(x− y, n(y))

‖x− y‖3
vl(y) dsy,

and V Lamé is the single layer potential operator of linear elastostatics. The
operator M(∂, n) appearing in (3.37) is the matrix surface curl operator de-
fined by

Mij(∂y, ny) := nj(y)
∂

∂yi

− ni(y)
∂

∂yj

for i, j = 1, 2, 3. (3.38)
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Moreover, it holds
(

1

2
I +KLamé

)
v(x) = 0 for all v ∈ R, x ∈ Γ.

Theorem 3.17 The adjoint double layer potential operator

(KLamé)′ : [H−1/2(Γ)]3 7→ [H−1/2(Γ)]3

given by (3.33) is linear and bounded.

Theorem 3.18 The hypersingular integral operator

DLamé : [H1/2(Γ)]3 7→ [H−1/2(Γ)]3

given by (3.34) is linear, bounded, symmetric, and [H1/2(Γ)]3–semi–elliptic
with
〈
DLaméw, w

〉
Γ
≥ αDLamé‖w‖2

[H1/2(Γ)]3 for all w ∈ [H1/2(Γ)]3/Ker DLamé ,

where [H1/2(Γ)]3
/Ker DLamé is the space of all functions from [H1/2(Γ)]3 that are

orthogonal to KerDLamé and KerDLamé is equal to the trace space of R, i.e.

(DLamév)(x) = 0 for all v ∈ R, x ∈ Γ.

Moreover, for u, v ∈ [H1/2(Γ) ∩ C(Γ)]3 we have the representation
〈
DLaméu, v

〉
Γ

=

µ

4π

∫

Γ

∫

Γ

1

‖x− y‖

3∑

k=1

(
∂

∂Sk(y)
u(y),

∂

∂Sk(y)
v(x)

)
dsy dsx +

µ

2π

∫

Γ

∫

Γ

1

‖x− y‖
(
M(∂x, n(x))v(x), M(∂y, n(y))u(y)

)
dsy dsx −

4µ2

∫

Γ

∫

Γ

(
M(∂x, n(x))v(x), U(x, y)M(∂y, n(y))u(y)

)
dsy dsx +

µ

4π

∫

Γ

∫

Γ

3∑

i,j,k=1

Mkj(∂x, n(x))vi(x)
1

‖x− y‖Mki(∂y, n(y))uj(y) dsy dsx,

where the matrix surface curl operator M(∂, n) is defined by (3.38) and

∂

∂S1(x)
:= M32(∂x, n(x)),
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∂

∂S2(x)
:= M13(∂x, n(x)),

∂

∂S3(x)
:= M21(∂x, n(x)).

3.2.3 The Steklov–Poincaré Operator

Since the single layer potential operator is [H−1/2(Γ)]3– elliptic, its inversion
exists. From the first equation of (3.30) we get the Dirichlet–Neumann map

γ1u(x) = (V Lamé)−1

(
1

2
I +KLamé

)
γ0u(x) − (V Lamé)−1(NLamé

0 f)(x) (3.39)

for x ∈ Γ. By insertion of (3.39) into the second equation of (3.30) we get
another representation of the Dirichlet–Neumann map

γ1u(x) =

[(
1

2
I + (KLamé)′

)
(V Lamé)−1

(
1

2
I +KLamé

)
+DLamé

]
γ0u(x) +

[
NLamé

1 −
(

1

2
I + (KLamé)′

)
(V Lamé)−1NLamé

0

]
f(x) (3.40)

for x ∈ Γ. Now let us define the Steklov-Poincaré operator by the equiv-
alent representations

SLamé := (V Lamé)−1

(
1

2
I +KLamé

)
(3.41)

=

(
1

2
I + (KLamé)′

)
(V Lamé)−1

(
1

2
I +KLamé

)
+DLamé (3.42)

and the Newton operator by the equivalent representations

−NLamé := −(V Lamé)−1NLamé
0 (3.43)

= NLamé
1 −

(
1

2
I + (KLamé)′

)
(V Lamé)−1NLamé

0 ,

so that we can rewrite equations (3.39) and (3.40) as

γ1u(x) = (SLaméγ0u)(x) − (NLaméf)(x) for x ∈ Γ. (3.44)

Similarly to the case of the Laplace operator, the representation (3.41)
together with the Galerkin discretization leads typically to a non–symmetric
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stiffness matrix. As stated before, the symmetry of stiffness matrix shall be
essential in our analysis, so that we shall consider only the formally symmetric
representation (3.42).

Let us introduce a mapping PLamé : [H1/2(Γ)]3 7→ [H1(Ω)]3 so that for
a u ∈ [H1/2(Γ)]3 we define PLaméu ∈ [H1(Ω)]3 as a weak solution of the
Dirichlet problem

Lv(x) = 0 for x ∈ Ω,

v(x) = u(x) for x ∈ Γ.

Let us note that PLamé is linear and bounded on [H1/2(Γ)]3. It can be further
shown that for all u, v ∈ [H1/2(Γ)]3 we have

〈
SLaméu, v

〉
Γ

=

∫

Ω

W (PLaméu(x),PLamév(x)) dx (3.45)

with W given by (3.28).
Furthermore, let us recall the definition of the function space

H
1/2
0 (Γ,Γu) := {v ∈ H1/2(Γ) : v(x) = 0 for x ∈ Γu},

where Γu ⊂ Γ and meas Γu > 0.

Theorem 3.19 The Steklov–Poincaré operator

SLamé : [H1/2(Γ)]3 7→ [H−1/2(Γ)]3

is a linear, bounded, symmetric, and semi–elliptic mapping satisfying

〈
SLaméw, w

〉
Γ
≥ αDLamé‖w‖2

[H1/2(Γ)]3 for all w ∈ [H1/2(Γ)]3/Ker DLamé ,

where [H1/2(Γ)]3
/Ker DLamé is the space of all functions from [H1/2(Γ)]3 that are

orthogonal to KerDLamé. Note that the positive constant αDLamé

is the same
as that in Theorem 3.18.

Moreover, SLamé is elliptic on [H
1/2
0 (Γ,Γu)]

3.

Proof. We proceed analogously to the proof of Theorem (3.9). In partic-

ular, relation (3.45) is useful here and to prove the [H
1/2
0 (Γ,Γu)]

3–ellipticity,
we also have to use the Korn inequality (3.27).

�

Let us for a while put u ∈ R. Then u solves (3.36) and, by (3.44), we
immediately get

(SLaméu)(x) = 0 for all x ∈ Γ. (3.46)
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3.2.4 The Newton operator

Analogously to the case of the Laplace operator, in what follows, we shall
consider only the alternative representation (3.43) of the operator NLamé.

Lemma 3.3 The Newton potential operator

NLamé

0 : [L2(Ω)]3 7→ [H1/2(Γ)]3

given by (3.35) is a linear and bounded mapping.

Proof. See [45].
�

Now from the linearity and boundedness of NLamé
0 and V Lamé we can

easily conclude the following theorem.

Theorem 3.20 The Newton operator

NLamé : [L2(Ω)]3 7→ [H−1/2(Γ)]3

is a linear and bounded mapping.
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Domain decomposition,

Boundary variational inequality

4.1 Laplace operator

4.1.1 Model contact problem

Let us consider the domains

Ω1 := (0, 1)2 and Ω2 := (1, 2) × (0, 1)

with boundaries Γ1 and Γ2, respectively. Moreover, we denote

Γ1
u := {(0, x2) : x2 ∈ [0, 1]} ,

Γc := {(1, x2) : x2 ∈ [0, 1]} ,
Γ1

f := Γ1 \ {Γ1
u ∪ Γc} ,

Γ2
f := Γ2 \ Γc.

For better comprehension, see the whole situation depicted in Figure 4.1.
Furthermore, let a function f ∈ L2(Ω1 ∪ Ω2) satisfy

∫

Ω2

f(x) dx < 0. (4.1)

We shall now be focused on finding a sufficiently smooth (u1, u2) satisfy-
ing

−△um(x) = f(x) for x ∈ Ωm, m = 1, 2,

u1(x) = 0 for x ∈ Γ1
u, (4.2)

tm(x) :=
∂um

∂nm
(x) = 0 for x ∈ Γm

f , m = 1, 2,
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Ω1

Ω2

Γ1
u Γ1

f Γc Γ2
f

1

1

1
1

Figure 4.1: Geometry of the 2D model contact problem

together with the contact conditions

u2(x) − u1(x) ≥ 0

t2(x) ≥ 0

t2(x)(u2(x) − u1(x)) = 0

t1(x) + t2(x) = 0





for x ∈ Γc (4.3)

with nm(x) denoting the exterior unit normal vector of Ωm defined for almost
all x ∈ Γm, m = 1, 2.

Let us further describe the interpretation of the problem (4.2), (4.3). The
functions u1 and u2 represent vertical displacements of two thin membranes
of the shapes Ω1 and Ω2, respectively. Both membranes are stretched by
horizontal forces with the unit density and they are pushed down by a force
with the density f . The left membrane is fixed on the part Γ1

u; both mem-
branes are free on the parts Γm

f . The right membrane floats due to the lack
of the Dirichlet condition. The membranes can eventually be in a contact
on Γc and we assume that the right membrane cannot penetrate the left
one. At contact points, which are a priori unknown, the right membrane can
press the left membrane down. The third contact condition is the so–called
complementarity condition. It says that at points where the membranes do
not touch, the right membrane stays free. “Smoothness of the contact” is
ensured by the last condition.

4.1.2 Domain decomposition

We now decompose each domain Ωm into pm ∈ N non–overlapping subdo-
mains, i.e.

Ωm =

pm⋃

i=1

Ωm
i , Ωm

i ∩ Ωm
j = ∅ for i 6= j.
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Moreover, let us assume that every subdomain Ωm
i is Lipschitz and fulfils the

condition
diam Ωm

i < 1. (4.4)

Let us denote

Γm
i := ∂Ωm

i , Γm
ij := Γm

i ∩ Γm
j for i 6= j, Γm

s :=

pm⋃

i=1

Γm
i

and call Γm
s the skeleton of Ωm. Furthermore, let nm

i (x) denote the exterior
unit normal vector of Ωm

i at the point x ∈ Γm
i .

After we provided both domains with the decompositions, we consider –
instead of the original problem (4.2), (4.3) – the system of local boundary
value problems

−△um
i (x) = f(x) for x ∈ Ωm

i ,

u1
i (x) = 0 for x ∈ Γm

i ∩ Γ1
u, (4.5)

tmi (x) :=
∂um

i

∂nm
i

(x) = 0 for x ∈ Γm
i ∩ Γm

f

together with the local contact conditions

u2
j(x) − u1

i (x) ≥ 0

t2j(x) ≥ 0

t2j(x)(u
2
j(x) − u1

i (x)) = 0

t2j(x) + t1i (x) = 0





for x ∈ Γ1
i ∩ Γ2

j (4.6)

and with the so–called transmission conditions

um
i (x) = um

j (x)

tmi (x) + tmj (x) = 0

}
for x ∈ Γm

ij . (4.7)

The latter conditions link the local problems together. They ensure “smooth-
ness” across the artificial interfaces Γm

ij .

4.1.3 Boundary weak formulation

First, let us define H1/2(Γm
s ) as the trace space of H1(Ωm) restricted to the

skeleton Γm
s equipped with the norm

‖v‖H1/2(Γm
s ) :=

√√√√
pm∑

i=1

∥∥∥v|Γm
i

∥∥∥
2

H1/2(Γm
i )
.
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Moreover,

H
1/2
0 (Γ1

s, Γ1
u) :=

{
v ∈ H1/2(Γ1

s) : v(x) = 0 for x ∈ Γ1
u

}
.

Now we introduce the space

V := H
1/2
0 (Γ1

s, Γ1
u) ×H1/2(Γ2

s) (4.8)

equipped with the norm

∥∥(v1, v2)
∥∥
V

:=

√√√√
2∑

m=1

‖vm‖2
H1/2(Γm

s ).

Let
K :=

{
(v1, v2) ∈ V : v2(x) − v1(x) ≥ 0 for x ∈ Γc

}
(4.9)

and
vm

i := vm|Γm
i

for (v1, v2) ∈ V.

Definition 4.1 Function (u1, u2) ∈ K is a boundary weak solution of
(4.5)–(4.7) if

2∑

m=1

pm∑

i=1

∫

Γm
i

(Sm
i u

m
i )(x)(vm

i − um
i )(x) ds ≥

2∑

m=1

pm∑

i=1

∫

Γm
i

(Nm
i f)(x)(vm

i − um
i )(x) ds

(4.10)
for all (v1, v2) ∈ K.

The operators Sm
i and Nm

i are the local Steklov–Poincaré and Newton op-
erators, respectively, corresponding to the local domains Ωm

i with boundaries
Γm

i .
Now let us make the following ideas and examine the situation thoroughly.

First, let (u1, u2) ∈ K be a smooth solution of (4.10). We further assume
that the function f and all the boundaries Γm and Γm

i are smooth, too.
i) There exists a unique weak solution of the problem

−△ũm
i (x) = f(x) for x ∈ Ωm

i ,

ũm
i (x) = um

i (x) for x ∈ Γm
i

(4.11)

that is also a classical solution of (4.11). Due to (4.4) we get, by (3.19),

tmi (x) =
∂ũm

i

∂nm
i

(x) = (Sm
i u

m
i )(x) − (Nm

i f)(x) for x ∈ Γm
i .
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Hence for all (v1, v2) ∈ K
2∑

m=1

pm∑

i=1

∫

Γm
i

tmi (x)(vm
i − um

i )(x) ds ≥ 0.

ii) Let k ∈ {1, . . . , p1} and l ∈ {1, . . . , p2} be arbitrary such that
Γ1

k ∩ Γ2
l 6= ∅. Let

χ ∈
{
v := ṽ|Γ1

s∪Γ2
s

: ṽ ∈ C∞(Ω1 ∪ Ω2) and supp v ⊂ Γ1
k ∩ Γ2

l

}
.

Then
(v1, v2) :=

(
u1 + χ|Γ1

s
, u2 + χ|Γ2

s

)
∈ K

and thus
∫

Γ1

k∩Γ2

l

t1k(x)χ(x) ds +

∫

Γ1

k∩Γ2

l

t2l (x)χ(x) ds =

∫

Γ1

k∩Γ2

l

(t1k(x) + t2l (x))χ(x) ds ≥ 0.

Since χ may be chosen arbitrarily, we obtain

t1k(x) + t2l (x) = 0 for all x ∈ Γ1
k ∩ Γ2

l

(compare with the fourth condition of (4.6)).
In what follows, we shall need the definition

D(Γ∗) :=
{
v := ṽ|Γ2

s
: ṽ ∈ C∞(Ω2) and supp v ⊂ Γ∗

}

for every Γ∗ ⊂ Γ2
s.

iii) Let k ∈ {1, . . . , p1} and l ∈ {1, . . . , p2} be arbitrary such that
Γ1

k ∩ Γ2
l 6= ∅. Let

χ ∈
{
v ∈ D(Γ1

k ∩ Γ2
l ) : v(x) ≥ 0 for x ∈ supp v

}
.

Then
(v1, v2) := (u1, u2 + χ) ∈ K

and thus ∫

Γ1

k∩Γ2

l

t2l (x)χ(x) ds ≥ 0.

Since χ ≥ 0 may be chosen arbitrarily, we get

t2l (x) ≥ 0 for all x ∈ Γ1
k ∩ Γ2

l
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(compare with the second condition of (4.6)). Furthermore, let x ∈ Γ1
k ∩ Γ2

l

satisfy u2
l (x) − u1

k(x) > 0. Then for a small enough ε > 0 we have

u2
l (x) − u1

k(x) > 0 for all x ∈ Uε(x) :=
{
x ∈ Γ1

k ∩ Γ2
l : ‖x− x‖ < ε

}
.

Let χ ∈ D(Uε(x)). Obviously,

(v1, v2) := (u1, u2 + r χ) ∈ K

for all r ∈ (−δ, δ) if δ > 0 is small enough. Thus

r

∫

Uε(x)

t2l (x)χ(x) ds ≥ 0.

Since χ may be chosen arbitrarily, we obtain

t2l (x) = 0 for all x ∈ Uε(x),

i.e.

t2l (x) = 0 for all x ∈ Γ1
k ∩ Γ2

l such that u2
l (x) − u1

k(x) > 0

(compare with the third condition of (4.6)). The first condition of (4.6) is
clearly satisfied due to the choice of K.

iv) Let l ∈ {1, . . . , p2} be arbitrary such that Γ2
l ∩ Γ2

f 6= ∅. Let χ ∈
D(Γ2

l ∩ Γ2
f ). Then

(v1, v2) := (u1, u2 + χ) ∈ K
and thus ∫

Γ2

l ∩Γ2

f

t2l (x)χ(x) ds ≥ 0.

Since χ may be chosen arbitrarily, we get

t2l (x) = 0 for all x ∈ Γ2
l ∩ Γ2

f

(compare with the third condition of (4.5)). In the case of the left membrane
we proceed analogously. The second condition of (4.5) follows immediately
from the choice of K.

v) Let k, l ∈ {1, . . . , p2} be arbitrary such that k 6= l and Γ2
kl 6= ∅. Let

χ ∈ D(Γ2
kl). Then

(v1, v2) := (u1, u2 + χ) ∈ K
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and thus
∫

Γ2

kl

t2k(x)χ(x) ds +

∫

Γ2

kl

t2l (x)χ(x) ds =

∫

Γ2

kl

(t2k(x) + t2l (x))χ(x) ds ≥ 0.

Since χ may be chosen arbitrarily, we get

t2k(x) + t2l (x) = 0 for all x ∈ Γ2
kl

(compare with the second condition of (4.7)). In the case of the left membrane
we proceed analogously. The first condition of (4.7) follows from the assumed
smoothness of (u1, u2).

We have just checked that if we assume smoothness of the boundary weak
solution (u1, u2) of (4.5)–(4.7), the function f , and all the boundaries Γm and
Γm

i , then the unique solution of the system of the Dirichlet boundary value
problems (4.11) is a classical solution of (4.5)–(4.7).

4.1.4 Minimization of energy functional

Theorem 4.1 Let V and K be given by (4.8) and (4.9), respectively. Then
K is a nonempty, closed, and convex set that is not a subspace of V.

Proof. i) In order to prove the closeness of K, we have to show that

{(v1
n, v

2
n)}∞n=1 ⊂ K

(v1
n, v

2
n) → (v1, v2) in V

}
⇒ (v1, v2) ∈ K.

Since for all n ∈ N we have v2
n − v1

n ≥ 0 on Γc, we obtain

v2(x) − v1(x) = lim(v2
n(x) − v1

n(x)) ≥ 0 for x ∈ Γc,

i.e. (v1, v2) ∈ K.
ii) Let (u1, u2), (v1, v2) ∈ K, t ∈ (0, 1), and x ∈ Γc be arbitrary. To

prove the convexity of K, we have to show that t(u1, u2)+(1−t)(v1, v2) ∈ K.
This is straightforward:

tu2(x) + (1 − t)v2(x) − (tu1(x) + (1 − t)v1(x)) =

t(u2(x) − u1(x)) + (1 − t)(v2(x) − v1(x)) ≥ 0.

iii) Since for (u1, u2) ∈ K satisfying u2(x) − u1(x) > 0 for x ∈ Γc it
holds that −1 · (u1, u2) /∈ K, we get that K is not a subspace of V .

�
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Now let us use the notations

u := (u1, u2) and v := (v1, v2).

Furthermore, let

A(u, v) :=
2∑

m=1

pm∑

i=1

〈Sm
i u

m
i , v

m
i 〉L2(Γm

i ) for u, v ∈ V

and

F(v) :=
2∑

m=1

pm∑

i=1

〈Nm
i f, v

m
i 〉L2(Γm

i ) for v ∈ V.

Theorem 4.2 The variational inequality (4.10), i.e. the problem to find u ∈
K satisfying

A(u, v − u) ≥ F(v − u) for all v ∈ K
is equivalent to the problem: find u ∈ K such that

J (u) = min {J (v) : v ∈ K} , (4.12)

where J is the energy functional (2.5), i.e.

J (v) :=
1

2
A(v, v) −F(v).

Proof. According to Theorems 2.7 and 4.1, it is sufficient to show that
A is a bounded, symmetric, and semi–elliptic bilinear form on V and that F
is a linear, bounded functional on V .

i) Since Sm
i is linear on H1/2(Γm

i ) (see Theorem 3.9), A is indeed a
bilinear form on V . Since Sm

i is bounded on H1/2(Γm
i ) (see Theorem 3.9),

there are constants Mm
i > 0 such that for all u, v ∈ V

|A(u, v)| ≤
2∑

m=1

pm∑
i=1

∣∣∣〈Sm
i u

m
i , v

m
i 〉L2(Γm

i )

∣∣∣

≤
2∑

m=1

pm∑
i=1

Mm
i ‖um

i ‖H1/2(Γm
i ) ‖vm

i ‖H1/2(Γm
i )

≤
2∑

m=1

pm∑
i=1

Mm
i ‖u‖V ‖v‖V

≤ (p1 + p2) max
m = 1, 2

i = 1, . . . , pm

Mm
i ‖u‖V ‖v‖V ,
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and therefore A is bounded on V . The symmetry and semi–ellipticity of A
on V follow immediately from the symmetry and semi–ellipticity of Sm

i on
H1/2(Γm

i ), respectively (see Theorem 3.9).
ii) The linearity of F on V is obvious. Since Nm

i is bounded on L2(Ωm
i )

(see Theorem 3.10), there are constants Lm
i > 0 such that for all v ∈ V

|F(v)| ≤
2∑

m=1

pm∑
i=1

∣∣∣〈Nm
i f, v

m
i 〉L2(Γm

i )

∣∣∣

≤
2∑

m=1

pm∑
i=1

Lm
i ‖f‖L2(Ωm

i ) ‖vm
i ‖H1/2(Γm

i )

≤
2∑

m=1

pm∑
i=1

Lm
i ‖f‖L2(Ω1∪Ω2) ‖v‖V

≤ (p1 + p2) max
m = 1, 2

i = 1, . . . , pm

Lm
i ‖f‖L2(Ω1∪Ω2) ‖v‖V ,

and thus the functional F is bounded on V .
�

Now let us recall assumptions (4.1) and (4.4) which, by Lemma 3.2, give

p2∑

i=1

〈
N2

i f, 1
〉

L2(Γ2

i )
=

p2∑

i=1

〈f, 1〉L2(Ω2

i ) =

∫

Ω2

f(x) dx < 0. (4.13)

Inequality (4.13) shall be useful in the proof of the following theorem.

Theorem 4.3 There is a unique solution of the problem (4.12).

Proof. i) Let us first prove the uniqueness. Let u,w ∈ K be two distinct
solutions of (4.12), i.e. u 6= w. Then for all v ∈ K

A(u, v − u) ≥ F(v − u),

A(w, v − w) ≥ F(v − w).

If we substitute v by w and then by u, we have

A(u, w − u) ≥ F(w − u),

A(w, u− w) ≥ F(u− w)

and by adding these two inequalities and changing the sign, we get

A(w − u, w − u) ≤ 0,
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i.e.
2∑

m=1

pm∑

i=1

〈Sm
i (wm

i − um
i ), wm

i − um
i 〉L2(Γm

i ) ≤ 0.

By Theorem 3.8 and (3.22), we have that

Sm
i v = 0 for all v ∈ KerDm

i , (4.14)

and therefore

〈Sm
i v, v〉L2(Γm

i ) = 0 for all v ∈ KerDm
i .

Now let v ∈ H1/2(Γm
i ) \ KerDm

i be arbitrary. Then we can write v = k +
ṽ, where k ∈ KerDm

i and 0 6= ṽ ∈ H1/2(Γm
i )/Ker Dm

i
. Due to (4.14) and

the symmetry and H1/2(Γm
i )/Ker Dm

i
–ellipticity of Sm

i (see Theorem 3.9), we
obtain

〈Sm
i v, v〉L2(Γm

i ) = 〈Sm
i ṽ, ṽ〉L2(Γm

i ) ≥ αDm
i ‖ṽ‖2

H1/2(Γm
i ) > 0.

Thus we get that
wm

i − um
i ∈ KerDm

i .

Theorem 3.8 yields
KerDm

i = Span {1} ,
and therefore

wm
i (x) = um

i (x) + c for x ∈ Γm
i , c ∈ R.

Hence

(w1, w2) = (u1 + c1, u2 + c2), (c1, c2) ∈ R
2 \ {(0, 0)} .

However, since w1(x) = u1(x) = 0 for x ∈ Γ1
u, we get

(w1, w2) = (u1, u2 + c2), c2 ∈ R \ {0} .

Then

J (u+(0, c2)) = J (u) ⇒ F(u+(0, c2)) = F(u) ⇒
p2∑

i=1

〈
N2

i f, 1
〉

L2(Γ2

i )
= 0

which contradicts (4.13). Thus there is at most one solution of (4.12).
ii) From the boundedness, symmetry, and semi–ellipticity of the bilinear

form A on V and from the boundedness of the linear functional F on V (all
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shown in the proof of the latter theorem), we get, by Theorem 2.6, that J is
continuous and convex on V . By Theorems 2.4 and 4.1, we see that to prove
the existence of a solution of problem (4.12), it is sufficient to show that J
is coercive on K.

Let us at least prove the coercivity of J on K for

p1 = p2 = 1.

We have

J (v) =
2∑

m=1

1

2
〈Smvm, vm〉L2(Γm) − 〈Nmf, vm〉L2(Γm)

︸ ︷︷ ︸
=:Jm(v)

for v := (v1, v2) ∈ K.

Since v1 ∈ H
1/2
0 (Γ1,Γ1

u), we get due to Theorems 3.9 and 3.10

J 1(v) ≥ 1

2
αD1‖v1‖2

H1/2(Γ1) − c1‖v1‖H1/2(Γ1). (4.15)

Let us further put v2 = ṽ + k, where ṽ ∈ H1/2(Γ2)/Ker D2 and k ∈ KerD2 =
Span {1} (see Theorem 3.8). We can write k = k+ − k−, where k+ :=
max {0, k} and k− := max {0,−k}. Theorems 3.9 and 3.10 and observation
(3.22) then yield

J 2(v) ≥ 1

2

〈
S2ṽ, ṽ

〉
L2(Γ2)

− c2‖ṽ‖H1/2(Γ2) − k
〈
N2f, 1

〉
L2(Γ2)

≥ 1

2
αD2‖ṽ‖2

H1/2(Γ2) − c2‖ṽ‖H1/2(Γ2)

−k+
〈
N2f, 1

〉
L2(Γ2)

+ k−
〈
N2f, 1

〉
L2(Γ2)

. (4.16)

For a while, let us assume k ≤ 0. Then, by the definition of K (4.9),

v1(x) ≤ ṽ(x) − k− for all x ∈ Γc,

which implies
k− ≤ ṽ(x) − v1(x) for all x ∈ Γc.

Thus
‖ṽ − v1‖L2(Γc) ≥ k−

√
meas Γc

and we obtain

k− ≤ ‖ṽ‖L2(Γc) + ‖v1‖L2(Γc)√
meas Γc

≤
‖ṽ‖H1/2(Γ2) + ‖v1‖H1/2(Γ1)√

meas Γc

. (4.17)
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Due to (4.13), (4.15), (4.16), and (4.17), we can write

J (v) ≥ 1

2
αD1‖v1‖2

H1/2(Γ1) +

(
〈N2f, 1〉L2(Γ2)√

meas Γc

− c1

)
‖v1‖H1/2(Γ1)

+
1

2
αD2‖ṽ‖2

H1/2(Γ2) +

(
〈N2f, 1〉L2(Γ2)√

meas Γc

− c2

)
‖ṽ‖H1/2(Γ2)

+ k+
∣∣∣
〈
N2f, 1

〉
L2(Γ2)

∣∣∣ . (4.18)

Now let ‖v‖V → ∞. In the following ideas, we shall use the estimate (4.18).
If ‖v1‖H1/2(Γ1) → ∞, then J (v) → ∞. The same holds if ‖ṽ‖H1/2(Γ2) → ∞.
In case ‖v1‖H1/2(Γ1) and ‖ṽ‖H1/2(Γ2) are bounded, so is k− due to (4.17), and
therefore k+ → ∞, which causes (see (4.13)) J (v) blows up.

�

4.2 Linear homogeneous isotropic elastostat-

ics

4.2.1 Model contact problem

Let us consider an elastic body occupying the reference configuration Ω :=
(0, a)3, a > 0, with the boundary denoted by Γ. In addition, we define

Γu := {x ∈ Γ : x2 = 0} ,
Γc := {x ∈ Γ : x3 = 0} ,
Γf := Γ \ {Γu ∪ Γc}

and assume the situation when the body is fixed on Γu, free on Γf and inside
Ω it is loaded by volume forces with the density f . Under the body, there is
a rigid obstacle Pd := {x ∈ R

3 : x3 ≤ d}, d < 0, so that we shall consider
contact conditions prescribed on the part Γc. For better comprehension, we
refer to Figure 4.2.

Let us formulate our model problem in terms of displacements. We shall
pay attention to finding a sufficiently smooth displacement field u such that

−
3∑

j=1

∂
∂xj
σij(u, x) = fi(x) for x ∈ Ω, i = 1, 2, 3,

u(x) = 0 for x ∈ Γu,

ti(x) :=
3∑

j=1

σij(u, x)nj(x) = 0 for x ∈ Γf , i = 1, 2, 3,

(4.19)
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a

a

a

Ω
0

Γu

Γc

d
x1

x2

x3

Pd

Figure 4.2: Geometry of the 3D model contact problem

together with the contact conditions

u3(x) ≥ d

t3(x) ≥ 0

(u3(x) − d) t3(x) = 0





for x ∈ Γc (4.20)

with nj(x) denoting jth component of the exterior unit normal vector n(x)
of Ω that is defined for almost all x ∈ Γ.

We shall assume that the body is made of homogeneous isotropic material,
i.e. the stress tensor {σij(u, x)}3

i,j=1 complies with the Hook law (3.25), where

the strain tensor {eij(u, x)}3
i,j=1 is given by (3.26) and E and ν are material

constants, to be specific, E > 0 is the Young modulus and ν ∈ (0, 1/2) is
the Poisson ratio. Since we assume ν is bounded away from 1/2, we deal
here with the case of compressible elastostatics. Furthermore, we consider
the density f of internal forces belonging to [L2(Ω)]3.

Due to the first contact condition, the body is not allowed to penetrate
the obstacle. Furthermore, at points, where contact occurs, we allow positive
normal boundary stress, while at points, where the cube does not touch the
obstacle, the normal stress has to be zero. Let us note that the contact points
are a priori unknown.
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4.2.2 Domain decomposition

Now let us decompose Ω into p ∈ N non–overlapping Lipschitz subdomains:

Ω =

p⋃

m=1

Ωm, Ωm ∩ Ωn = ∅ for m 6= n.

Furthermore, let us denote

Γm := ∂Ωm, Γmn := Γm ∩ Γn for m 6= n, Γs :=

p⋃

m=1

Γm

and call Γs a skeleton of Ω. Moreover, let nm(x) := (nm,1(x), nm,2(x), nm,3(x))
denote the exterior unit normal vector of Ωm at the point x ∈ Γm.

Now instead of (4.19), (4.20) we consider the system of local boundary
value problems

−
3∑

j=1

∂

∂xj

σij(um, x) = fi(x) for x ∈ Ωm, i = 1, 2, 3,

um(x) = 0 for x ∈ Γu ∩ Γm, (4.21)

tm,i(x) :=
3∑

j=1

σij(um, x)nm,j(x) = 0 for x ∈ Γf ∩ Γm, i = 1, 2, 3,

together with the local contact conditions

um,3(x) ≥ d

tm,3(x) ≥ 0

(um,3(x) − d) tm,3(x) = 0





for x ∈ Γc ∩ Γm (4.22)

and with the so–called transmission conditions

um(x) = un(x)

tm(x) + tn(x) = 0

}
for x ∈ Γmn, (4.23)

which link the local problems together and ensure “smoothness” across arti-
ficial interfaces Γmn.

4.2.3 Boundary weak formulation

First, let us recall that H1/2(Γs) is the trace space of H1(Ω) restricted to the
skeleton Γm

s equipped with the norm

‖v‖H1/2(Γs)
:=

√√√√
p∑

m=1

∥∥v|Γm

∥∥2

H1/2(Γm)
.
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Moreover,

H
1/2
0 (Γs, Γu) :=

{
v ∈ H1/2(Γs) : v(x) = 0 for x ∈ Γu

}
.

Now let

K :=
{
v ∈ [H

1/2
0 (Γs,Γu)]

3 : v3(x) ≥ d for x ∈ Γc

}
(4.24)

and

vm := v|Γm
for v ∈ K.

Definition 4.2 Function u ∈ K is a boundary weak solution of (4.21)–
(4.23) if

p∑

m=1

〈
SLamé

m um, vm − um

〉
Γm

≥
p∑

m=1

〈
NLamé

m f, vm − um

〉
Γm

for all v ∈ K

(4.25)
with

〈u, v〉Γm
:=

3∑

i=1

〈ui, vi〉L2(Γm) .

The operators SLamé
m and NLamé

m are the local Steklov–Poincaré and New-
ton operators, respectively, corresponding to the local domains Ωm with
boundaries Γm.

By using analogous ideas presented after Definition 4.1, we can check
that if the boundary weak solution u of (4.21)–(4.23), the function f , and all
the local boundaries Γm and the boundary Γ are smooth, then the unique
solution of the system of the Dirichlet boundary value problems

−
3∑

j=1

∂
∂xj
σij(ũm, x) = fi(x) for x ∈ Ωm, i = 1, 2, 3,

ũm(x) = um(x) for x ∈ Γm

is a classical solution of (4.21)–(4.23).

4.2.4 Minimization of energy functional

Theorem 4.4 Assume K is given by (4.24). Then K is a closed, convex,

nonempty set that is not a subspace of [H
1/2
0 (Γs, Γu)]

3.
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Proof. The proof is analogous to that of Theorem 4.1.
�

Now let us introduce the following notations

A(u, v) :=

p∑

m=1

〈
SLamé

m um, vm

〉
Γm

for u, v ∈ [H
1/2
0 (Γs, Γu)]

3

and

F(v) :=

p∑

m=1

〈
NLamé

m f, vm

〉
Γm

for v ∈ [H
1/2
0 (Γs, Γu)]

3.

Theorem 4.5 The variational inequality (4.25), i.e. the problem to find u ∈
K satisfying

A(u, v − u) ≥ F(v − u) for all v ∈ K
has a unique solution.

Proof. Due to Theorems 2.5 and 4.4, it suffices to prove that A is a
bilinear form that is bounded and elliptic on [H

1/2
0 (Γs, Γu)]

3 and F is a

bounded linear functional on [H
1/2
0 (Γs, Γu)]

3.
i) Since SLamé

m is linear on [H1/2(Γm)]3 (see Theorem 3.19), A is indeed

a bilinear form on [H
1/2
0 (Γs, Γu)]

3. The linearity of F on [H
1/2
0 (Γs, Γu)]

3

is obvious. By Theorems 3.19 and 3.20, there are constants Mm > 0 and
Lm > 0 such that for all u, v ∈ [H

1/2
0 (Γs, Γu)]

3

|A(u, v)| ≤
p∑

m=1

∣∣∣
〈
SLamé

m um, vm

〉
Γm

∣∣∣

≤
p∑

m=1

Mm ‖um‖[H1/2(Γm)]3 ‖vm‖[H1/2(Γm)]3

≤ p max
m = 1, . . . , p

Mm ‖u‖[H1/2(Γs)]3
‖v‖[H1/2(Γs)]3

and

|F(v)| ≤
p∑

m=1

∣∣∣
〈
NLamé

m f, vm

〉
Γm

∣∣∣

≤
p∑

m=1

Lm ‖f‖[L2(Ωm)]3 ‖vm‖[H1/2(Γm)]3

≤ p max
m = 1, . . . , p

Lm ‖f‖[L2(Ω)]3 ‖v‖[H1/2(Γs)]3
.

ii) Now the task will be to show the ellipticity of A on [H
1/2
0 (Γs, Γu)]

3.

Let u ∈ [H
1/2
0 (Γs, Γu)]

3 and um := u|Γm
. Let v ∈ [H1

0 (Ω, Γu)]
3 be such that
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for m = 1, 2, . . . , p the function vm := v|Ωm
is the weak solution of

−
3∑

j=1

∂
∂xj
σij(vm, x) = 0 for x ∈ Ωm, i = 1, 2, 3,

γ0vm(x) = um(x) for x ∈ Γm.

Then for m = 1, 2, . . . , p we get, by (3.45),

〈
SLamé

m um, um

〉
Γm

=

∫

Ωm

W (vm(x), vm(x)) dx.

Due to

W (u(x), u(x)) = λ

(
3∑

i=1

eii(u, x)

)2

+ 2µ
3∑

i,j=1

e2ij(u, x)

(see (3.28)) with the positive Lamé constants λ and µ and Korn’s inequality
(3.27), we obtain

A(u, u) =

p∑

m=1

∫

Ωm

W (vm(x), vm(x)) dx =

∫

Ω

W (v(x), v(x)) dx

≥ k1

∫

Ω

3∑

i,j=1

e2ij(v, x) dx

≥ k2

∫

Ω

3∑

i,j=1

(
∂vi

∂xj

(x)

)2

dx = k2

3∑

i=1

∫

Ω

‖∇vi(x)‖2 dx.

Furthermore, we shall use the Friedrichs theorem 2.1 and estimate (2.2) to
get

3∑

i=1

∫

Ω

‖∇vi(x)‖2 dx ≥ k3

3∑

i=1

‖vi‖2
H1(Ω) = k3‖v‖2

[H1(Ω)]3 = k3

p∑

m=1

‖vm‖2
[H1(Ωm)]3

≥ k4

p∑

m=1

‖um‖2
[H1/2(Γm)]3 = k4‖u‖2

[H1/2(Γs)]3
,

which completes the proof.
�

Due to the symmetry of the bilinear form A (following by Theorem 3.19),
the proof of the latter theorem, and Theorem 2.7, the following proposition
is straightforward.
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Theorem 4.6 The variational inequality (4.25), i.e. the problem to find u ∈
K satisfying

A(u, v − u) ≥ F(v − u) for all v ∈ K
is equivalent to the problem: find u ∈ K such that

J (u) = min {J (v) : v ∈ K} , (4.26)

where J is the energy functional (2.5), i.e.

J (v) :=
1

2
A(v, v) −F(v).
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Approximation by boundary

elements

Our further analysis covers particularly the model contact problems intro-
duced in Chapter 4. To stay lucid, we shall keep the analyses for the Laplace
operator and for the linear homogeneous isotropic elastostatics separate,
though, we proceed quite similarly in both cases.

5.1 Basis functions

Let Ω ⊂ R
d, d = 2, 3, be a bounded Lipschitz domain with the boundary Γ.

We consider an admissible boundary element mesh

ΓN =
N⋃

l=1

τl, N ∈ N,

where τl is either a line segment (for d = 2) or a triangle (for d = 3). The
set of all nodes, i.e. either end points of the line segments or vertices of the
triangles, and the set of all elements’ mid points shall be denoted by

{xj}M
j=1 and {x∗k}N

k=1 ,

respectively. In what follows, we shall use the piecewise constant shape
functions defined by

ψl(x) :=

{
1 x ∈ τl,
0 elsewhere

for l = 1, . . . , N and the continuous piecewise linear shape functions defined
by

ϕk(xj) := δkj, ϕk is linear on every τl
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ϕkψl

τl xk

ΓΓ ΩΩ

Figure 5.1: Piecewise constant (left) and continuous piecewise linear (right)
shape function corresponding to 2D

ϕk
ψl

τl
xk

ΓΓ

Figure 5.2: Piecewise constant (left) and continuous piecewise linear (right)
shape function corresponding to 3D

for k, j = 1, . . . , M , l = 1, . . . , N . Both types of the shape functions
corresponding to 2D and 3D are depicted in Figures 5.1 and 5.2, respectively.

5.2 Laplace operator

5.2.1 Approximation of the Steklov–Poincaré and New-

ton operator

In order to avoid implicit representations of the Steklov–Poincaré and Newton
operators, we shall introduce their suitable approximations.

Let Ω ⊂ R
d, d = 2, 3, be a bounded Lipschitz domain with the boundary

Γ. Moreover, let (3.11) be satisfied for the case d = 2. Then for u ∈ H1/2(Γ)
we have

(Su)(x) = (Du)(x) + (
1

2
I +K ′)w(x) for x ∈ Γ,

50



Approximation by boundary elements

where w ∈ H−1/2(Γ) is the unique solution of the problem

〈V w, v〉L2(Γ) =

〈
(
1

2
I +K)u, v

〉

L2(Γ)

for all v ∈ H−1/2(Γ). (5.1)

Let
Zh := Span {ψk}N

k=1 ⊂ H−1/2(Γ)

be a finite–dimensional space of shape functions. Then the Galerkin formu-
lation of (5.1) reads: find wh ∈ Zh such that

〈V wh, vh〉L2(Γ) =

〈
(
1

2
I +K)u, vh

〉

L2(Γ)

for all vh ∈ Zh. (5.2)

Now we define the approximation S̃ of S by

(S̃u)(x) := (Du)(x) + (
1

2
I +K ′)wh(x) for x ∈ Γ, (5.3)

where wh is the unique solution of (5.2).
For f ∈ L2(Ω) we consider a problem to find y ∈ H−1/2(Γ) such that

〈V y, v〉L2(Γ) = 〈N0f, v〉L2(Γ) for all v ∈ H−1/2(Γ).

The Galerkin formulation of the latter problem reads: find yh ∈ Zh such that

〈V yh, vh〉L2(Γ) = 〈N0f, vh〉L2(Γ) for all vh ∈ Zh. (5.4)

Thus we can define the approximation Ñ of N as

(Ñf)(x) := yh(x) for x ∈ Γ, (5.5)

where yh solves uniquely (5.4).
Now let us give some properties of such approximations.

Theorem 5.1 The approximate Steklov–Poincaré operator S̃ defined by (5.3)

is linear, bounded, symmetric, and semi–elliptic on H1/2(Γ). Moreover, S̃ is

elliptic on H
1/2
0 (Γ,Γu) and satisfies the estimate

‖(S − S̃)u‖H−1/2(Γ) ≤ c inf
vh∈Zh

‖Su− vh‖H−1/2(Γ).

The approximate Newton operator Ñ given by (5.5) is linear and bounded
on L2(Ω) and satisfies the estimate

‖(N − Ñ)f‖H−1/2(Γ) ≤ k inf
vh∈Zh

‖Nf − vh‖H−1/2(Γ).
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Proof. All the properties except the symmetry of S̃ are discussed in
detail in [44]. The proof of the symmetry of S̃ proceeds as follows. For any
u ∈ H1/2(Γ), we have

(S̃u)(x) = (Du)(x) + (
1

2
I +K ′)wu

h(x) for x ∈ Γ,

where wu
h ∈ Zh solves uniquely

〈V wu
h, vh〉L2(Γ) =

〈
(
1

2
I +K)u, vh

〉

L2(Γ)

for all vh ∈ Zh. (5.6)

Now let u, v ∈ H1/2(Γ) be arbitrary and wu
h, w

v
h ∈ Zh be the corresponding

unique solutions of (5.6). We get
〈

(
1

2
I +K ′)wu

h, v

〉

L2(Γ)

=

〈
(
1

2
I +K)v, wu

h

〉

L2(Γ)

= 〈V wv
h, w

u
h〉L2(Γ)

= 〈V wu
h, w

v
h〉L2(Γ) =

〈
(
1

2
I +K)u, wv

h

〉

L2(Γ)

=

〈
(
1

2
I +K ′)wv

h, u

〉

L2(Γ)

Hence and from the symmetry of D on H1/2(Γ), we conclude that S̃ is sym-
metric on H1/2(Γ).

�

Now we shall return to our model contact problem with the Laplace
operator and, until otherwise stated, restrict ourselves to the case d = 2.
Instead of (4.12), we shall consider the following problem: find u ∈ K such
that

J̃ (u) = min
{
J̃ (v) : v ∈ K

}
, (5.7)

where

J̃ (v) :=
1

2
Ã(v, v) − F̃(v)

with

Ã(u, v) :=
2∑

m=1

pm∑

i=1

〈
S̃m

i u
m
i , v

m
i

〉
L2(Γm

i )
for u, v ∈ V

and

F̃(v) :=
2∑

m=1

pm∑

i=1

〈
Ñm

i f, v
m
i

〉
L2(Γm

i )
for v ∈ V.

Let us note that due to Theorem 5.1, Ã is a bounded, symmetric, and semi–
elliptic bilinear form on V and F̃ is a bounded linear functional on V .
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5.2.2 Application of the Ritz method

Let
Wm

h := Span {ϕm
k }Mm

k=1 ⊂ H1/2(Γm
s )

be a global finite–dimensional trial space on the skeleton Γm
s , where the

trial functions ϕm
k are the analogues to the continuous piecewise linear test

functions introduced in Section 5.1 corresponding to the meshes considered
on Γm

s . We shall assume that the grids on Γ1
s and Γ2

s match across Γc. Then
the Ritz formulation of (5.7) reads: find uh ∈ Kh such that

J̃ (uh) = min
{
J̃ (vh) : vh ∈ Kh

}
, (5.8)

where

Kh :=
{
vh := (v1

h, v
2
h) ∈ W 1

h ×W 2
h : v2

h(x
2
j) − v1

h(x
1
i ) ≥ 0 for all

matching nodes x1
i , x

2
j across Γc and

v1
h(x

1
k) = 0 for all nodes x1

k ∈ Γ1
u

}
.

Let
Wm

i,h := Span
{
ϕm,i

k

}Mm
i

k=1

be the restriction of Wm
h onto Γm

i . Clearly, for any ϕm,i
k ∈ Wm

i,h there exists

a unique ϕm
l ∈ Wm

h satisfying ϕm,i
k = ϕm

l |Γm
i
. For any vm

h ∈ Wm
h and its re-

striction vm
i,h ∈ Wm

i,h we can compute the connectivity matrix A
m
i ∈ R

Mm
i ×Mm

such that
vm

i = A
m
i vm, (5.9)

where vm
i and vm are the vectors of coordinates of vm

i,h and vm
h in the bases

{ϕm,i
k }Mm

i
k=1 and {ϕm

k }Mm

k=1 , respectively. Problem (5.8) is further equivalent to
the problem: find u ∈ K such that

J0(u) = min {J0(v) : v ∈ K} , (5.10)

where

J0(v) :=
2∑

m=1

pm∑

i=1

[
1

2

(
S̃

m

i,hA
m
i vm, A

m
i vm

)
−
(
R̃

m

i,h, A
m
i vm

)]
(5.11)

and

K :=
{
v := (v1,v2) ∈ R

M1 × R
M2

: v2[j] − v1[i] ≥ 0 for all i, j

corresponding to the matching nodes x1
i , x

2
j across Γc and

v1[k] = 0 for all k corresponding to the nodes x1
k ∈ Γ1

u

}
.
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Here, S̃
m

i,h ∈ R
Mm

i ×Mm
i is the discrete approximate local Steklov–Poincaré

operator

S̃
m

i,h := D
m
i,h + (

1

2
M

m
i,h + K

m
i,h)

⊤(Vm
i,h)

−1(
1

2
M

m
i,h + K

m
i,h)

and R̃
m

i,h ∈ R
Mm

i is the discrete approximate local Newton operator

R̃
m

i,h := (Mm
i,h)

⊤(Vm
i,h)

−1Nm
0,i,h.

The local boundary element matrices V
m
i,h, K

m
i,h, and D

m
i,h are fully populated.

Matrix V
m
i,h is symmetric positive definite and matrix D

m
i,h is symmetric pos-

itive semi–definite.
The discrete local single layer potential operator V

m
i,h ∈ R

Nm
i ×Nm

i is defined
by

V
m
i,h[k, l] :=

〈
V m

i ψm,i
l , ψm,i

k

〉
L2(Γm

i )

= − 1

2π

∫

τm,i
k

∫

τm,i
l

log ‖x− y‖ dsy dsx,

for k, l = 1, . . . , Nm
i .

For the discrete local double layer potential operator K
m
i,h ∈ R

Nm
i ×Mm

i we
have, by Theorem 3.5, the representation

K
m
i,h[k, j] :=

〈
Km

i ϕ
m,i
j , ψm,i

k

〉
L2(Γm

i )

=
1

2π

∫

τm,i
k

∫

Γm
i

(x− y, nm
i (y))

‖x− y‖2 ϕm,i
j (y) dsy dsx

for k = 1, . . . , Nm
i , j = 1, . . . , Mm

i .
Both matrices V

m
i,h and K

m
i,h may be evaluated by using analytical integra-

tion in combination with the numerical integration schemes [31, 42].
For the discrete local hypersingular integral operator D

m
i,h ∈ R

Mm
i ×Mm

i

there is, by Theorem 3.7, the representation

D
m
i,h[n, j] :=

〈
Dm

i ϕ
m,i
j , ϕm,i

n

〉
L2(Γm

i )

= − 1

2π

∫

Γm
i

curlΓm
i
ϕm,i

j (x)

∫

Γm
i

log ‖x− y‖ curlΓm
i
ϕm,i

n (y) dsy dsx

for n, j = 1, . . . , Mm
i with

curlΓm
i
ϕm,i

j (x) := nm
i,1(x)

∂

∂x2

ϕ̃m,i
j (x) − nm

i,2(x)
∂

∂x1

ϕ̃m,i
j (x),
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where ϕ̃m,i
j is some locally defined extension of ϕm,i

j into the neighbourhood

of Γm
i . If we define the extension ϕ̃m,i

j so that it is constant along nm
i , we

get, due to the fact that ϕm,i
j is linear on every element τm,i

k , curlΓm
i
ϕm,i

j to

be constant on every τm,i
k . Thus we can avoid the direct evaluation of the

matrix D
m
i,h and derive

D
m
i,h = (Tm

i )⊤ V
m
i,hT

m
i

with the local transformation matrix T
m
i ∈ R

Nm
i ×Mm

i that is given by

T
m
i [k, j] := curlΓm

i
ϕm,i

j (x), x ∈ τm,i
k ,

for k = 1, . . . , Nm
i , j = 1, . . . , Mm

i .

The local mass matrix M
m
i,h ∈ R

Nm
i ×Mm

i is given by

M
m
i,h[k, j] :=

∫

τm,i
k

ϕm,i
j (x) dsx

for k = 1, . . . , Nm
i , j = 1, . . . , Mm

i .

The vector Nm
0,i,h ∈ R

Nm
i is defined by

Nm
0,i,h[l] :=

〈
Nm

0,if, ψ
m,i
l

〉
L2(Γm

i )

for l = 1, . . . , Nm
i .

5.2.3 Evaluation of the Newton potential

For evaluation of the vector Nm
0,i,h it is necessary to compute the local Newton

potential Nm
0,i f . We follow an indirect approach that is introduced, e.g., in

[43, 44].

Let Ω ⊂ R
d, d = 2, 3, be a bounded Lipschitz domain with the boundary

Γ and let f be a smooth function defined on Ω. Let u be a particular solution
of the Poisson equation

−△u(x) = f(x) for x ∈ Ω

that is smooth to the boundary Γ. The function u satisfies also the first
equation of (3.5), so that

(N0f)(x) = (
1

2
I +K)u(x) − (V t)(x) for x ∈ Γ
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with t := ∂u
∂n

. We shall now approximate u and t by the functions uh and th
defined for x ∈ Γ as

uh(x) :=
M∑

j=1

u(xj)ϕj(x) and th(x) :=
N∑

k=1

t(x∗k)ψk(x).

Thus

〈N0f, ψl〉L2(Γ) =
M∑

j=1

(
1

2
〈ϕj, ψl〉L2(Γ) + 〈Kϕj, ψl〉L2(Γ)

)
u(xj) −

N∑

k=1

〈V ψk, ψl〉L2(Γ) t(x
∗
k).

Returning back to our model contact problem, for a smooth f we get

Nm
0,i,h ≈

(
1

2
M

m
i,h + K

m
i,h

)
um

i − V
m
i,ht

m
i ,

where um
i and tm

i are vectors of the interpolation points, i.e.

um
i [j] := um

i (xj) and tm
i [k] := tmi (x∗k)

for j = 1, . . . , Mm
i , k = 1, . . . , Nm

i . The function um
i is a particular solution

of
−△um

i (x) = f(x) for x ∈ Ωm
i (5.12)

smooth to the boundary Γm
i and tmi :=

∂um
i

∂nm
i

.

Let us note that if the particular solution of (5.12) can be calculated ana-
lytically, the situation is quite easy. In the opposite case, one can employ the
finite element method to compute an approximation of um

i on some fictitious
domain Ωm

0,i ⊃ Ωm
i .

5.3 Linear homogeneous isotropic elastostat-

ics

5.3.1 Approximation of the Steklov–Poincaré and New-

ton operator

Let Ω ⊂ R
3 be a bounded Lipschitz domain with the boundary Γ. For

u ∈ [H1/2(Γ)]3 we have

(SLaméu)(x) = (DLaméu)(x) +

(
1

2
I + (KLamé)′

)
w(x) for all x ∈ Γ,
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Approximation by boundary elements

where w ∈ [H−1/2(Γ)]3 is the unique solution of the problem

〈
V Laméw, v

〉
Γ

=

〈(
1

2
I +KLamé

)
u, v

〉

Γ

for all v ∈ [H−1/2(Γ)]3.

(5.13)
Let

Zh :=
[
Span {ψk}N

k=1

]3
⊂ [H−1/2(Γ)]3

be a finite–dimensional space of shape functions. Then the Galerkin formu-
lation of (5.13) reads: find wh ∈ Zh such that

〈
V Laméwh, vh

〉
Γ

=

〈(
1

2
I +KLamé

)
u, vh

〉

Γ

for all vh ∈ Zh. (5.14)

Now we define the approximation S̃Lamé of SLamé by

(S̃Laméu)(x) := (DLaméu)(x) +

(
1

2
I + (KLamé)′

)
wh(x) for x ∈ Γ, (5.15)

where wh is the unique solution of (5.14).
For f ∈ [L2(Ω)]3 we consider a problem to find y ∈ [H−1/2(Γ)]3 such that

〈
V Laméy, v

〉
Γ

=
〈
NLamé

0 f, v
〉
Γ

for all v ∈ [H−1/2(Γ)]3.

The Galerkin formulation of the latter problem reads: find yh ∈ Zh such that
〈
V Laméyh, vh

〉
Γ

=
〈
NLamé

0 f, vh

〉
Γ

for all vh ∈ Zh. (5.16)

Thus we can define the approximation ÑLamé of NLamé as

(ÑLaméf)(x) := yh(x) for x ∈ Γ, (5.17)

where yh solves uniquely (5.16).
Now let us give the following properties of such approximations.

Theorem 5.2 The approximate Steklov–Poincaré operator S̃Lamé defined by
(5.15) is linear, bounded, symmetric, and semi–elliptic on [H1/2(Γ)]3. More-

over, S̃Lamé is elliptic on [H
1/2
0 (Γ,Γu)]

3 and satisfies the estimate

‖(SLamé − S̃Lamé)u‖[H−1/2(Γ)]3 ≤ c inf
vh∈Zh

‖SLaméu− vh‖[H−1/2(Γ)]3 .

The approximate Newton operator ÑLamé given by (5.17) is linear and
bounded on [L2(Ω)]3 and satisfies the estimate

‖(NLamé − ÑLamé)f‖[H−1/2(Γ)]3 ≤ k inf
vh∈Zh

‖NLaméf − vh‖[H−1/2(Γ)]3 .
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Proof. Derivation of these properties follows that for the case of the
Laplace operator, which is discussed in [44]. The proof of the symmetry of

S̃Lamé on [H1/2(Γ)]3 is analogous that of Theorem 5.1.
�

Now we shall return to our model contact problem of linear homogeneous
isotropic elastostatics and, instead of (4.26), consider the following problem:
find u ∈ K such that

J̃ (u) = min
{
J̃ (v) : v ∈ K

}
, (5.18)

where

J̃ (v) :=
1

2
Ã(v, v) − F̃(v)

with

Ã(u, v) :=

p∑

m=1

〈
S̃Lamé

m um, vm

〉
Γm

for u, v ∈ [H
1/2
0 (Γs, Γu)]

3

and

F̃(v) :=

p∑

m=1

〈
ÑLamé

m f, vm

〉
Γm

for v ∈ [H
1/2
0 (Γs, Γu)]

3.

Let us note that due to Theorem 5.2, Ã is a bounded, symmetric, and
semi–elliptic bilinear form on [H

1/2
0 (Γs, Γu)]

3 and F̃ is a bounded linear func-

tional on [H
1/2
0 (Γs, Γu)]

3.

5.3.2 Application of the Ritz method

Let

Wh :=
[
Span {ϕk}M

k=1

]3
⊂ [H1/2(Γs)]

3

be the global finite–dimensional trial space on the skeleton Γs, where the
trial functions ϕk are the analogues to the continuous piecewise linear test
functions introduced in Section 5.1 corresponding to the mesh considered on
Γs. Then the Ritz formulation of (5.18) reads: find uh ∈ Kh such that

J̃ (uh) = min
{
J̃ (vh) : vh ∈ Kh

}
, (5.19)

where

Kh :=
{
vh ∈ Wh : (vh)3(xj) ≥ d for all nodes xj ∈ Γc and

vh(xk) = 0 for all nodes xk ∈ Γu

}
.

58



Approximation by boundary elements

Let

Wm,h :=
[
Span {ϕm

k }Mm

k=1

]3

be the restriction of Wh onto Γm. Clearly, for any ϕm
k there exists a unique

ϕl satisfying ϕm
k = ϕl|Γm

. For any vh ∈ Wh and its restriction vm,h ∈ Wm,h

we can compute the connectivity matrix Am ∈ R
Mm×M such that

vm = A
Lamé
m v, (5.20)

A
Lamé
m :=




Am O O

O Am O

O O Am


 , vm :=




vm,1

vm,2

vm,3


 , v :=




v1

v2

v3


 ,

where vm,i and vi are the vectors of coordinates of (vm,h)i and (vh)i in the

bases {ϕm
k }Mm

k=1 and {ϕk}M
k=1, respectively. Problem (5.19) is further equiva-

lent to the problem: find u ∈ K such that

J0(u) = min {J0(v) : v ∈ K} , (5.21)

where

J0(v) :=

p∑

m=1

[
1

2

(
S̃

Lamé

m,h A
Lamé
m v, A

Lamé
m v

)
−
(
R̃

Lamé

m,h , A
Lamé
m v

)]
(5.22)

and

K :=
{
v ∈ R

3M : v[2M + j] ≥ d for all indices j corresponding to the

nodes xj ∈ Γc and v[iM + k] = 0 for i = 0, 1, 2 and

all indices k corresponding to the nodes xk ∈ Γu

}
.

Here, S̃
Lamé

m,h ∈ R
3Mm×3Mm is the discrete approximate local Steklov–Poincaré

operator

S̃
Lamé

m,h := D
Lamé
m,h + (

1

2
M

Lamé
m,h + K

Lamé
m,h )⊤(VLamé

m,h )−1(
1

2
M

Lamé
m,h + K

Lamé
m,h )

and R̃
Lamé

m,h ∈ R
3Mm is the discrete approximate local Newton operator

R̃
Lamé

m,h := (MLamé
m,h )⊤(VLamé

m,h )−1NLamé
0,m,h.

The local boundary element matrices V
Lamé
m,h , K

Lamé
m,h , and D

Lamé
m,h are all fully

populated. Matrix V
Lamé
m,h is symmetric positive definite and matrix D

Lamé
m,h is

symmetric positive semi–definite.
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For the discrete local single layer potential operator we have, by Theorem
3.15, the representation

V
Lamé
m,h =

1 + ν

2E(1 − ν)
·


(3 − 4ν)




Vm,h O O

O Vm,h O

O O Vm,h


+




V11,m,h V12,m,h V13,m,h

V12,m,h V22,m,h V23,m,h

V13,m,h V23,m,h V33,m,h







with the discrete local single layer potential operator for the Laplace operator
Vm,h ∈ R

Nm×Nm defined by

Vm,h[k, l] :=
1

4π

∫

τm
k

∫

τm
l

1

‖x− y‖ dsy dsx

and the matrices Vij,m,h ∈ R
Nm×Nm defined by

Vij,m,h[k, l] :=
1

4π

∫

τm
k

∫

τm
l

(xi − yi)(xj − yj)

‖x− y‖3 dsy dsx

for k, l = 1, . . . , Nm, i, j = 1, 2, 3, i ≤ j.
For the discrete local double layer potential operator we have, by Theorem

3.16, the representation

K
Lamé
m,h =




Km,h O O

O Km,h O

O O Km,h


−




Vm,h O O

O Vm,h O

O O Vm,h


Tm +

E

1 + ν
V

Lamé
m,h Tm

with the discrete local double layer potential operator for the Laplace oper-
ator Km,h ∈ R

Nm×Mm defined by

Km,h[k, n] :=
1

4π

∫

τm
k

∫

Γm

(x− y, nm(y))

‖x− y‖3 ϕm
n (y) dsy dsx

and the local transformation matrix

Tm :=




O T12,m T13,m

−T12,m O T23,m

−T13,m −T23,m O


 ,
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where the blocks Tij,m ∈ R
Nm×Mm are given by

Tij,m[k, n] := Mij(∂x, nm(x))ϕm
n (x), x ∈ τm

k ,

for k = 1, . . . , Nm, n = 1, . . . , Mm, i, j = 1, 2, 3, i < j.
In computations, we exploit the symmetry of Vm,h and Vij,m,h. Entries

of the matrices Vm,h, Vij,m,h, and Km,h may be calculated so that the inner
integral is evaluated analytically and the outer one is approximated by using
suitable numerical scheme. The detailed description of this procedure may
be found in [41].

Analogously to the case of the Laplace operator, one can derive, by The-
orem 3.18, the following representation for the discrete local hypersingular
integral operator which is based on the local transformation matrix Tm and
the matrices Vm,h and V

Lamé
m,h :

D
Lamé
m,h = µ




Xm O O

O Xm O

O O Xm


+ 2µT

⊤
m




Vm,h O O

O Vm,h O

O O Vm,h


Tm −

4µ2 T
⊤
m V

Lamé
m,h Tm +

µ




Y1,m T
⊤
23,mVm,hT13,m −T

⊤
23,mVm,hT12,m

T
⊤
13,mVm,hT23,m Y2,m T

⊤
13,mVm,hT12,m

−T
⊤
12,mVm,hT23,m T

⊤
12,mVm,hT13,m Y3,m




with the blocks

Xm := T
⊤
23,mVm,hT23,m + T

⊤
13,mVm,hT13,m + T

⊤
12,mVm,hT12,m

and
Y1,m := T

⊤
12,mVm,hT12,m + T

⊤
13,mVm,hT13,m,

Y2,m := T
⊤
12,mVm,hT12,m + T

⊤
23,mVm,hT23,m,

Y3,m := T
⊤
13,mVm,hT13,m + T

⊤
23,mVm,hT23,m.

The last matrix which remains to describe is the local mass matrix M
Lamé
m,h .

It has a form of

M
Lamé
m,h =




Mm,h O O

O Mm,h O

O O Mm,h




61



Chapter 5

with the local mass matrix Mm,h ∈ R
Nm×Mm defined by

Mm,h[k, n] :=

∫

τm
k

ϕm
n (x) dsx

for k = 1, . . . , Nm and n = 1, . . . , Mm.
The vector NLamé

0,m,h ∈ R
3Nm is given by

NLamé
0,m,h[(i− 1)Nm + k] :=

〈
(NLamé

0,m f)i, ψ
m
k

〉
L2(Γm)

for k = 1, . . . , Nm and i = 1, 2, 3.

5.3.3 Evaluation of the Newton potential

For evaluation of the vector NLamé
0,m,h it is necessary to compute the local New-

ton potential NLamé
0,m f . Similarly to the Laplace operator, we shall follow an

indirect approach that is introduced, e.g., in [43, 44].
Let Ω ⊂ R

3 be a bounded Lipschitz domain with the boundary Γ and let
f be a smooth function defined on Ω. Let u be a particular solution of the
equilibrium system

−
3∑

j=1

∂

∂xj

σij(u, x) = fi(x) for x ∈ Ω, i = 1, 2, 3,

that is smooth to the boundary Γ. The function u satisfies also the first
equation of (3.30), so that

(NLamé
0 f)(x) = (

1

2
I +KLamé)u(x) − (V Lamét)(x) for x ∈ Γ

with ti(x) :=
3∑

j=1

σij(u, x)nj(x).

We shall now approximate u and t by the functions uh and th defined for
x ∈ Γ as

uh,i(x) :=
M∑

j=1

ui(xj)ϕj(x) and th,i(x) :=
N∑

k=1

ti(x
∗
k)ψk(x),

i = 1, 2, 3.
Returning back to our model contact problem, for a smooth f we get

NLamé
0,m,h ≈

(
1

2
M

Lamé
m,h + K

Lamé
m,h

)


um,1

um,2

um,3


− V

Lamé
m,h




tm,1

tm,2

tm,3


 ,
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where um,i and tm,i are vectors of the interpolation points, i.e.

um,i[j] := um,i(xj) and tm,i[k] := tm,i(x
∗
k)

for j = 1, . . . , Mm, k = 1, . . . , Nm, and i = 1, 2, 3. The function um is a
particular solution of

−
3∑

j=1

∂

∂xj

σij(um, x) = fi(x) for x ∈ Ωm, i = 1, 2, 3, (5.23)

smooth to the boundary Γm and tm,i(x) :=
3∑

j=1

σij(um, x)nm,j(x).

Let us note that if the particular solution of the system (5.23) can be
calculated analytically, the situation is quite easy. Otherwise one can em-
ploy the finite element method to compute an approximation of um on some
fictitious domain Ω0,m ⊃ Ωm.
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Duality principle,

Preconditioning by the natural

coarse grid

6.1 Primal quadratic programming problem

In order to satisfy the boundary condition of the Dirichlet type which occurs
in the both considered contact problems, one could modify the corresponding
stiffness matrix and right hand side appropriately. Here we shall follow, in-
stead, the recently proposed Total FETI domain decomposition method [20]
and define additional equality constraints to satisfy the Dirichlet boundary
condition. Such an analogue to Total FETI shall be called Total BETI and
it was introduced by Of [38] as All floating BETI. This approach is advanta-
geous for two reasons. Firstly, all the subdomains can be treated in the same
way, and secondly, we enrich the kernel of the stiffness matrix which shall be
used in construction of our preconditioner.

6.1.1 Laplace operator

Now considering (5.9), we can read the energy functional (5.11) as a function
of the variables vm

i , where m = 1, 2 and i = 1, . . . , pm. Moreover, let us use
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Ωm
k

Ωm
r

Ωm
l

Ωm
s

Figure 6.1: Matrix BC : continuity condition across artificial interfaces

the notation

v :=




v1
1
...

v1
p1

v2
1
...

v2
p2




.

To satisfy the prescribed continuity condition across all artificial interfaces
Γm

ij , we define the equality constraints on the vector v by

BCv = 0,

where every row of BC is associated with a pair of matching nodes on Γm
ij (see

Figure 6.1). Each row consists of a single 1 and single −1 at the appropriate
positions and zeros elsewhere.

To describe the non–penetration condition across the interface Γc, we
introduce the inequality constraints

BIv ≤ 0 =: cI ,

where, similarly to BC , every row of BI is associated with a pair of matching
nodes on Γc (see Figure 6.2). Each row consists of a single 1 and single −1
at the appropriate positions and zeros elsewhere.

In order to satisfy the Dirichlet condition on Γ1
u, let us define another

equality constraints
BDv = 0,
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Ω2
k

Ω2
r

Ω1
l

Ω1
s

Figure 6.2: Matrix BI : contact condition across Γc

Ω1
k

Ω1
l

Figure 6.3: Matrix BD: Dirichlet condition along Γ1
u
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where the rows of the matrix BD are related to the nodes on Γ1
u (see Fig-

ure 6.3). Entries of each row are equal to zero except a single 1 at the position
corresponding to the node with prescribed zero displacement.

At this moment, we can reformulate (5.10) as the primal quadratic pro-
gramming problem:

minimize J(v) subject to BIv ≤ cI and BEv = 0, (6.1)

where

J(v) :=
1

2
v⊤S̃v − R̃

⊤
v,

S̃ :=




S̃
1

1,h O · · · · · · · · · O

O
. . . O · · · · · · O

O O S̃
1

p1,h O · · · O

O · · · O S̃
2

1,h O O

O · · · · · · O
. . . O

O · · · · · · · · · O S̃
2

p2,h




, R̃ :=




R̃
1

1,h
...

R̃
1

p1,h

R̃
2

1,h
...

R̃
2

p2,h




, (6.2)

and

BE :=

(
BC

BD

)
.

Note that we allow here some redundancy when constructing matrices
BI and BD. This increase in number of the rows of BI and BD is, however,
insignificant comparing to the total number of constraints. Moreover, let us
state beforehand that our algorithm for the solution of the resulting problem
allows linearly dependent rows of the matrix of all constraints B (see (6.6)).
If we prefer to get rid of these redundancies, we can do it either geometrically
or by subsequent elimination of the dependent rows from the matrix B.

6.1.2 Linear homogeneous isotropic elastostatics

Considering (5.20), we can understand the energy functional (5.22) as a func-
tion of the variables vm, where m = 1, . . . , p. Moreover, let us use the
notation

v :=




v1
...
vp


 .

In the similar way as it is described in Subsection 6.1.1, we shall now
define constraints on the vector v. Constructions of all matrices are analogous
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Ωm

Figure 6.4: Matrix BD: Dirichlet condition along Γu

to those described in Subsection 6.1.1. The only difference is we have to take
into account that every vm has three blocks corresponding to displacements
in the coordinate axes directions.

“Gluing” across the interfaces Γmn and “fixation” along the part Γu are
enforced by the equality constraints

BCv = 0 and BDv = 0,

respectively. Every row of BC consists of a single 1 and single −1 at the
appropriate positions and zeros elsewhere. The construction of BC is slightly
more difficult than in Subsection 6.1.1 (for example, for an “interior” cor-
ner node we have seven equalities prescribed for each coordinate direction).
Every row of BD consists of a single 1 at the appropriate position and zeros
elsewhere (see Figure 6.4). When constructing the matrices BC and BD, we
constrain all three coordinate directions.

To avoid penetration into obstacle, we introduce the inequality constraints

BIv ≤ cI ,

where we constrain only the corresponding parts of the third blocks of the
corresponding vectors vm. Every row of BI consists of a single −1 at the
appropriate position and zeros elsewhere (see Figure 6.5), while every entry
of cI equals to −d.

Now we can reformulate (5.21) as the primal quadratic programming
problem:

minimize J(v) subject to BIv ≤ cI and BEv = 0, (6.3)
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Ωm

Figure 6.5: Matrix BI : contact condition across Γc (Γm ∩ Γc 6= ∅)

where

J(v) :=
1

2
v⊤S̃v − R̃

⊤
v,

S̃ :=




S̃
Lamé

1,h O O

O
. . . O

O O S̃
Lamé

p,h


 , R̃ :=




R̃
Lamé

1,h
...

R̃
Lamé

p,h


 , (6.4)

and

BE :=

(
BC

BD

)
.

Finally, let us refer to the last paragraph of Subsection 6.1.1, which holds
also for this case.

6.2 Dual quadratic programming problem

Since the primal formulations (6.1) and (6.3) of the considered contact prob-
lems are of the same type, we shall, from now on, join the further analyses
of our model problems together.

Now the intention is to reduce the dimension, simplify the structure, and
improve the conditioning of our problem. We shall use the duality theory,
so that we shall eliminate primal variables and replace the general inequality
constraints in the primal formulations (6.1) and (6.3) by the bound con-
straints in the dual formulation.
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Let us recall that for a square real matrix A and a vector b ∈ Im A we
define a left generalized inverse A

+ by AA
+
A = A. Indeed, x := A

+b satisfies
Ax = b since there is a y such that

Ax = AA
+b = AA

+
Ay = Ay = b.

The concept of ‘generalized inverse’ comes from the fact that A
+ behaves on

Im A like the inverse matrix A
−1.

Let us now start with the observation that the symmetric blocks S̃
m

i,h and

S̃
Lamé

m,h of the stiffness matrix S̃ (given by (6.2) or (6.4)) are positive semi–
definite due to the lack of the Dirichlet boundary condition, and therefore

they are singular. Let S̃
m,+

i,h and S̃
Lamé,+

m,h be symmetric left generalized inverses

of the matrices S̃
m

i,h and S̃
Lamé

m,h , respectively, so that the matrix S̃
+

defined by

S̃
+

:=




S̃
1,+

1,h O · · · · · · · · · O

O
. . . O · · · · · · O

O O S̃
1,+

p1,h O · · · O

O · · · O S̃
2,+

1,h O O

O · · · · · · O
. . . O

O · · · · · · · · · O S̃
2,+

p2,h




or

S̃
+

:=




S̃
Lamé,+

1,h O O

O
. . . O

O O S̃
Lamé,+

p,h




(depending on the choice of the above model contact problem) satisfies

S̃ = S̃S̃
+
S̃.

Thus S̃
+

is a symmetric left generalized inverse of S̃.

Since the null space of S̃ is non–trivial, we can define a matrix R as a full
column rank matrix whose columns span the null space of S̃, i.e.

Im R = Ker S̃.
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We shall assume that

R :=




R
1
1 O · · · · · · · · · O

O
. . . O · · · · · · O

O O R
1
p1 O · · · O

O · · · O R
2
1 O O

O · · · · · · O
. . . O

O · · · · · · · · · O R
2
p2




or R :=




R
Lamé
1 O O

O
. . . O

O O R
Lamé
p




(depending on the choice of the above model contact problem), where R
m
i and

R
Lamé
m correspond to the kernels of S̃

m

i,h and S̃
Lamé

m,h , respectively. Moreover, we
have

R
m
i =




1
...
1


 and R

Lamé
m =




1 0 0 −xm
2 0 xm

3

0 1 0 xm
1 −xm

3 0

0 0 1 0 xm
2 −xm

1


 , (6.5)

where xm
i is a vector of ith coordinates of all nodes located on Γm.

By introducing vectors of the Lagrange multipliers λI and λE associated
with the inequalities and equalities, respectively, and denoting

λ :=

(
λI

λE

)
, B :=

(
BI

BE

)
, and c :=

(
cI

0

)
, (6.6)

we can define the Lagrangian associated with problems (6.1) and (6.3) by

L(v,λ) :=
1

2
v⊤S̃v − R̃

⊤
v + λ⊤(Bv − c). (6.7)

It can be observed [2] that (6.1) and (6.3) are equivalent to the following
inf–sup problem: find (u,λ) such that λI ≥ 0 and

L(u,λ) = sup
λI≥0

inf
v

L(v,λ). (6.8)

Keeping λ fixed, the necessary condition for a minimizer v of L with respect
to the first variable is

S̃v = R̃ − B
⊤λ.

The latter system is solvable if and only if

R̃ − B
⊤λ ∈ Im S̃, (6.9)

which can be rewritten as

R
⊤(R̃ − B

⊤λ) = 0.
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If λ satisfies (6.9), we can express the minimizer v as

v(λ) = S̃
+
(R̃ − B

⊤λ). (6.10)

Insertion of (6.10) into the Lagrangian (6.7), omission of a constant term,
and change of signs lead to the so–called dual problem:

minimize Θ(λ) subject to λI ≥ 0 and G̃λ = ẽ, (6.11)

where

Θ(λ) :=
1

2
λ⊤

Fλ − λ⊤d̃

and

F := BS̃
+
B
⊤, d̃ := BS̃

+
R̃ − c, G̃ := R

⊤
B
⊤, ẽ := R

⊤R̃. (6.12)

Thus we transformed the original equality and inequality constrained prob-
lems (6.1) and (6.3) into bound and equality constrained one. Furthermore,
once the solution λ of (6.11) is known, the solution u of (6.1) or (6.3) may
be evaluated by

u = S̃
+
(R̃ − B

⊤λ) + Rα

and the formula [15]

α = (R⊤
B̃
⊤
B̃R)−1R

⊤
B̃
⊤
(
c̃ − B̃ S̃

+
(R̃ − B

⊤λ)
)
,

where

B̃ :=

(
B̃I

BE

)
and c̃ :=

(
c̃I

0

)

with the matrix (B̃I , c̃I) formed by the rows of (BI , cI) corresponding to the
positive entries of λI .

6.3 Natural coarse grid

As stated before, by passing from (6.1) or (6.3) to (6.11), we obtained a
constrained quadratic programming problem of a reduced dimension, better
conditioning, and simplified structure, which is now much more suitable for
computations than original problems (6.1) and (6.3), however, even further
improvement may be achieved by using the so–called natural coarse grid. As a
result, we shall get a constrained quadratic programming problem equivalent
to (6.11) with the corresponding augmented Lagrangian whose Hessian has
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a spectrum ensuring optimal convergence of the conjugate gradient method.
Let us now describe this technique that was originally proposed by Farhat,
Mandel, and Roux [27].

Let us introduce a non–singular matrix T defining orthonormalization of
the rows of G̃, so that the matrix

G := TG̃

satisfies GG
⊤ = I. By using the notation

e := Tẽ,

we can rewrite our dual problem (6.11) as:

minimize Θ(λ) subject to λI ≥ 0 and Gλ = e. (6.13)

In order to homogenize equality constraints, i.e. to get equality constraints
with zeros on the right hand side, we shall look for the solution of (6.13) in
the form

λ = µ + λ̃,

where λ̃ is a vector satisfying Gλ̃ = e. The following lemma shall be useful
when we shall show optimality of our algorithm.

Lemma 6.1 There is even a λ̃ satisfying Gλ̃ = e such that λ̃I ≥ 0.

Proof. See [17, 18].
�

Since

Θ(λ) =
1

2
λ⊤

Fλ − λ⊤d̃ =
1

2
µ⊤Fµ − µ⊤(d̃ − Fλ̃) +

1

2
λ̃

⊤
Fλ̃ − λ̃

⊤
d̃,

we can consider (in minimization) the dual function Θ without the last two
constant terms. Now we can return to the old notation and reformulate
equivalently problem (6.13) as:

minimize Λ0(λ) subject to λI ≥ −λ̃I and Gλ = 0, (6.14)

where

Λ0(λ) :=
1

2
λ⊤

Fλ − λ⊤d (6.15)

and d := d̃ − Fλ̃.
Another step is the definition of the following matrices

Q := G
⊤
G and P := I − Q.
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It is easy to check that Q and P are orthogonal projectors on Im G
⊤ and

Ker G, respectively, so that

Im Q = Im G
⊤ and Im P = Ker G.

Note that

Pλ = λ for all λ ∈ Ker G.

Problem (6.14) is then equivalent to the problem:

minimize Λ(λ) subject to λI ≥ −λ̃I and Gλ = 0, (6.16)

where

Λ(λ) :=
1

2
λ⊤

PFPλ − λ⊤
Pd.

Finally, we introduce the augmented Lagrangian associated with problem
(6.16)

L(λ,µ, ρ) :=
1

2
λ⊤(PFP + ρQ)λ − λ⊤

Pd + µ⊤Gλ (6.17)

with some penalty factor ρ > 0. Let us note that the Hessian H := PFP+ρQ
of (6.17) is decomposed by the projectors Q and P whose image spaces are
invariant subspaces of H. Now let [a, b] ⊂ R+ be an interval containing non–
zero elements of the spectrum σ {PFP} of PFP. Then σ {H} ⊂ [a, b] ∪ {ρ},
so that H is non–singular, and, by the analysis of Axelsson [1], there is an
upper bound on the number of the conjugate gradient iterations nCG that is
needed for reduction of the gradient of the augmented Lagrangian (6.17) by
a tolerance ε > 0:

nCG ≤ 1

2
int

(√
b

a
log

(
2

ε

)
+ 3

)
. (6.18)

Note that this bound is independent of the penalization term ρ. In the latter
estimate, int has the meaning of the upper integer part.

6.4 Bounds on spectrum

In this section, we shall examine the spectrum of the Hessian F of Λ0, see
(6.15). Our main tool will be the observation of Langer and Steinbach [32]

that the local boundary element stiffness matrices S̃
m

i,h and S̃
m

h are spectrally
equivalent to some Schur complements of the related local finite element
stiffness matrices K

m
i,h and K

m
h , respectively.
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For the sake of simplicity, let us start with the following notations. Firstly,
let us assume that h is fixed, so that we can skip it. In the case of our contact
problem with the Laplace operator, we shall identify each subdomain Ωm

i with
the single index j := (m− 1)p1 + i and denote

SBEM,j := S̃
m

i,h and Rj := R
m
i

for j = 1, . . . , p, p := p1 + p2. In the case of our contact problem of linear
elastostatics, we shall simply define

SBEM,j := S̃
Lamé

j,h and Rj := R
Lamé
j

for j = 1, . . . , p. Now we can introduce the matrix

SBEM :=




SBEM,1 O O

O
. . . O

O O SBEM,p


 .

Observing that the number of columns of B is the same as the number of
columns of SBEM, we can impose the block structure of SBEM on the columns
of B, so that

B = (B1, B2, . . . , Bp)

and the dual stiffness matrix from (6.12) may be written as

F =: FBEM = BS
+
BEMB

⊤ =

p∑

j=1

BjS
+
BEM,jB

⊤
j .

Let us now specify the FETI counterpart of FBEM. In each subdomain, let
us consider the regular grid which generates the same boundary mesh as
that used to form FBEM, and let us denote by KFEM,j the local finite ele-
ment stiffness matrix arising from the application of linear triangular (2D)
or tetrahedral (3D) elements. Numbering the unknowns in the interior of the
subdomain Ωj first, we can write

KFEM,j =

(
Kii,j Kib,j

Kbi,j Kbb,j

)
,

where the subscripts b and i refer to the subdomain boundary and the interior
unknowns, respectively. The finite element Schur complement matrix arising
from elimination of the interior variables can be represented in the form

SFEM,j := Kbb,j − Kbi,jK
−1
ii,jKib,j.
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Note that the diagonal block Kii,j is invertible as it can be interpreted as the
stiffness matrix of a membrane or body fixed on the whole boundary, but
SFEM,j is singular with the same kernel as SBEM,j. The FETI counterparts of
SBEM and FBEM are defined [27] by

SFEM :=




SFEM,1 O O

O
. . . O

O O SFEM,p




and

FFEM := BS
+
FEMB

⊤ =

p∑

j=1

BjS
+
FEM,jB

⊤
j ,

where S
+
FEM,j is a symmetric left generalized inverse of SFEM,j. The bounds

on the spectrum of FFEM were established by Farhat, Mandel, and Roux [27].
To formulate them, let us denote by λmin(A) and λmax(A) the smallest and
the largest eigenvalue of a given real symmetric matrix A, respectively.

Theorem 6.1 There are constants C1 > 0 and C2 > 0 independent of the
discretization parameter h and the decomposition parameter H such that

λmin(PFFEMP | Im P) ≥ C1 and ‖PFFEMP‖ ≤ C2
H

h
. (6.19)

Proof. See Theorem 3.2 of Farhat, Mandel, and Roux [27].
�

The statement of Theorem 3.2 of Farhat, Mandel, and Roux [27] gives only an
upper bound on the spectral condition number κ(PFFEMP | Im P). However,
the reasoning that precedes and substantiates their estimate proves both
bounds of (6.19). The following lemma allows us to carry over the above
mentioned bounds on the spectrum of FFEM to those on FBEM.

Lemma 6.2 There are constants c > 0 and C > 0 independent of the dis-
cretization parameter h and the decomposition parameter H such that

c(S+
FEM,jB

⊤
j λ, B

⊤
j λ) ≤ (S+

BEM,jB
⊤
j λ, B

⊤
j λ) ≤ C(S+

FEM,jB
⊤
j λ, B

⊤
j λ) (6.20)

for any λ such that R
⊤
j B

⊤
j λ = 0.

Proof. See Lemma 3.3 of Langer and Steinbach [32].
�
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Langer and Steinbach consider in their proof only the Moore–Penrose gener-
alized inverse S

#
BEM,j. However, observing that R

⊤
j B

⊤
j λ = 0 is equivalent to

B
⊤
j λ ∈ Im SBEM,j, we get that there is a y so that B

⊤
j λ = SBEM,jy and

(S+
BEM,jB

⊤
j λ, B

⊤
j λ) = y⊤SBEM,jS

+
BEM,jSBEM,jy

= y⊤SBEM,jy

= y⊤SBEM,jS
#
BEM,jSBEM,jy

= (S#
BEM,jB

⊤
j λ, B

⊤
j λ),

so that Lemma 6.2 holds for the left generalized inverse, too. Now we are
able to formulate the BETI counterpart of Theorem 6.1.

Theorem 6.2 There are constants C3 > 0 and C4 > 0 independent of the
discretization parameter h and the decomposition parameter H such that

λmin(PFBEMP | Im P) ≥ C3 and ‖PFBEMP‖ ≤ C4
H

h
. (6.21)

Proof. Let us assume that λ ∈ Im P which means

R
⊤
j B

⊤
j λ = 0

for j = 1, . . . , p, and ‖λ‖ = 1. By Theorem 6.1 and Lemma 6.2, we get that
there are positive constants c, C, C1, and C2 such that

C1 ≤ λ⊤
FFEMλ =

p∑

j=1

(S+
FEM,jB

⊤
j λ, B

⊤
j λ)

≤ 1

c

p∑

j=1

(S+
BEM,jB

⊤
j λ, B

⊤
j λ) ≤ C

c

p∑

j=1

(S+
FEM,jB

⊤
j λ, B

⊤
j λ)

=
C

c
λ⊤

FFEMλ ≤ C

c
C2
H

h
.

Since

λ⊤
FBEMλ =

p∑

j=1

(S+
BEM,jB

⊤
j λ, B

⊤
j λ),

we have thus proved that

cC1 ≤ λ⊤
FBEMλ ≤ CC2

H

h
.

To finish the proof, it is enough to set C3 := cC1 and C4 := CC2.
�
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h = 1/4

H = 1/2

Figure 6.6: Uniform boundary mesh and parameters H and h for the 2D
model problem

h = a/4

H = a/2

Figure 6.7: Uniform boundary mesh and parameters H and h for the 3D
model problem
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Langer and Steinbach [32] give stronger polylogarithmic bounds for the pre-
conditioned F, but we cannot use this result since such preconditioning trans-
forms the bound constraints into more general ones.

Thus, by Theorem 6.2, we obtain

κ(PFBEMP | Im P) ≤ C4

C3

H

h
.

It is seen that if we refine the mesh and increase the number of subdomains
so that the ratio H/h is kept constant, we have still the same upper bound
on the spectral condition number of PFBEMP | Im P. The meaning of the
discretization and decomposition parameters h and H, respectively, is illus-
trated in Figures 6.6 and 6.7.

6.5 Stable evaluation of the left generalized

inverse

In Section 6.2, we briefly recalled the concept of the left generalized inverse.
If a matrix A is non–singular, its left generalized inverse A

+ coincides with
the inverse matrix A

−1. If A is singular and symmetric, there is a permutation
matrix M such that

A = M

(
K N

N
⊤

N
⊤
K

−1
N

)
M

⊤, (6.22)

where K is a non–singular matrix whose dimension is equal to the rank of A,
and

A
+ = M

(
K

−1
O

O O

)
M

⊤.

Let us recall that if A is symmetric positive semi–definite, so is A
+.

Due to our use of Total BETI approach, which enforces fulfilment of the
Dirichlet boundary condition by additional equality constraints [20, 38], all
the subdomains float. This means we lack the conditions that would prevent
rigid body motions. The corresponding blocks

S̃
m

i,h ∈ R
Mm

i ×Mm
i and S̃

Lamé

m,h ∈ R
3Mm×3Mm

are symmetric positive semi–definite, however, with a priori known kernels
(see (6.5)). Now we shall focus on the evaluation (of the actions) of matrices

S̃
m,+

i,h and S̃
Lamé,+

m,h .
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In the case of our 2D contact problem with the Laplace operator, the
situation is relatively easy. We have to prevent only one rigid motion, namely
the vertical translation. This can be done by fixing a single arbitrary node.
Thus taking, for instance, the last node in our local numbering, we can write

S̃
m

i,h =

(
K

m
i nm

i

(nm
i )⊤ (nm

i )⊤(Km
i )−1nm

i

)
,

where K
m
i is non–singular and of the order Mm

i −1, which equals to the rank

of S̃
m

i,h, and

S̃
m,+

i,h =

(
(Km

i )−1 0

0⊤ 0

)
.

The situation in our 3D contact problem of linear elastostatics is more
complicated since we have to identify indices whose fixation prevents all
six rigid body motions: three translations and three rotations. Let us now
briefly sketch the technique by Dostál, Markopoulos, and Menš́ık described
in more detail in [24]. Let us consider any three nodes xm

i , x
m
j , x

m
k (xm

ℓ :=
(xm

ℓ,1, x
m
ℓ,2, x

m
ℓ,3), ℓ = i, j, k) of the discretization of subdomain Ωm that are

sufficiently far from each other and are not located near any straight line.
By using the rows of R

Lamé
m corresponding to these nodes, we define

R
Lamé
m,ijk :=




1 0 0 −xm
i,2 0 xm

i,3

1 0 0 −xm
j,2 0 xm

j,3

1 0 0 −xm
k,2 0 xm

k,3

0 1 0 xm
i,1 −xm

i,3 0

0 1 0 xm
j,1 −xm

j,3 0

0 1 0 xm
k,1 −xm

k,3 0

0 0 1 0 xm
i,2 −xm

i,1

0 0 1 0 xm
j,2 −xm

j,1

0 0 1 0 xm
k,2 −xm

k,1




. (6.23)

For a while, let A be a symmetric positive semi–definite matrix and L a lower
triangular matrix such that

A = LL
⊤.

It can be observed that assuming e ∈ Ker A and ℓ(e) is the largest index of
a non–zero entry of e, so that

e[ℓ(e)] 6= 0 and e[j] = 0 for j > ℓ(e),
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then the so–called “modified Cholesky factor” L of A fulfils

L[ℓ(e), ℓ(e)] = 0. (6.24)

Note that (6.24) implies zero ℓ(e)th column of L. Moreover, if RA is a full
column rank matrix such that Ker A = Im RA, we can use the so–called
“modified forward reduction” to find a new RA satisfying

ℓ(RA,∗1) < · · · < ℓ(RA,∗d),

where RA,∗i denotes an ith column of the new RA and d is the defect of
A. This procedure may be described as follows: transpose RA, reverse the
order of columns, and carry out the standard forward reduction. From the
indices of the first non–zero entries on every row of the resulting matrix
we can now easily obtain the indices of zero columns of the corresponding
factor L. This procedure has been described and tested in [37]. Finally,
the key observation of [24] is that the above technique may be applied also
to the matrix R

Lamé
m,ijk (6.23) in order to determine the zero columns of the

“modified Cholesky factor” of S̃
Lamé

m and thus the row and column indices

that shall be eliminated from S̃
Lamé

m to get a non–singular submatrix of S̃
Lamé

m .
Reasonable conditioning of such submatrix was shown experimentally in [24]
for the case of a 3D linear elastostatics problem solved by the finite element
method. Similar results for the boundary elements shall be discussed later
in Subsection 8.2.1.
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Optimal solvers

In this chapter, we shall describe algorithms for the efficient solution of the
bound and equality constrained problem (6.16) that arises from the applica-
tion of the duality theory and preconditioning by the projectors to the nat-
ural coarse grid. These algorithms combine the semi–monotonic augmented
Lagrangian method [13] which generates approximations of the Lagrange
multipliers for the equality constraints in the outer loop with the working set
algorithm for the bound constrained auxiliary problems in the inner loop [25].
Finally, we shall show that the combination of given algorithms is optimal
for the solution of problem (6.16).

7.1 Semi–monotonic augmented Lagrangian

algorithm for bound and equality con-

strained minimization

In our implementations, we used the augmented Lagrangian based algorithm
called SMALBE. This algorithm is a variant of that proposed by Conn,
Gould, and Toint [9] for identifying stationary points of more general prob-
lems. The SMALBE algorithm differs from it in the adaptive precision con-
trol introduced by Dostál, Friedlander, and Santos [14] and in the control
of the penalty parameter introduced by Dostál [13]. The modification pre-
sented in [14] was used by Dostál and Horák to develop a scalable FETI
based algorithm, as shown experimentally in [16].

The adaptive precision control of the solution λk of bound constrained
auxiliary problems in the inner loop is motivated by an argument that the
precision of the solution λk should be related to its feasibility, i.e. to the value
‖Gλk‖, since it does not seem reasonable to solve the auxiliary problems to
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high precision at the early stage of computations.
Update of the penalty factor ρk arises from the observation that a better

penalty approximation corresponds to an increased value of the augmented
Lagrangian. Thus whenever the augmented Lagrangian does not increase
sufficiently, the penalty factor is multiplied by a parameter β > 1. Alterna-
tively, we can keep the penalty parameter fixed and increase the precision
of the solution of the next auxiliary problem by updating a parameter M .
As we will see, the value M‖Gλk‖ specifies the precision of the inner loop
solution λk, so that whenever the augmented Lagrangian does not increase
enough, M is multiplied by a parameter β < 1.

Before we give the scheme of the SMALBE algorithm, let us introduce
the following notations. The gradient of the augmented Lagrangian (6.17)
with respect to the first variable is given by

g(λ,µ, ρ) := ∇λL(λ,µ, ρ) = PFPλ − Pd + G
⊤ (µ + ρGλ) .

Let I denote the set of indices of the bound constrained entries of λ. The
projected gradient gP = gP (λ,µ, ρ) of L at λ satisfying λI ≥ −λ̃I is
then given component–wise by

gP
i :=

{
gi for λi > −λ̃i or i /∈ I,
g−

i for λi = −λ̃i and i ∈ I,

where g−
i := min {gi, 0}.

Algorithm 7.1 (SMALBE – Semi-monotonic augmented Lagrangian algo-

rithm for bound and equality constrained problems)

Step 0: Initialization of parameters

Given η > 0, β > 1, M > 0, ρ0 > 0, µ0,

set k := 0.

Step 1: Inner iteration with adaptive precision control

Find λk such that λk
I ≥ −λ̃I and

‖gP (λk,µk, ρk)‖ ≤ min {M‖Gλk‖, η}.
Step 2: Stopping criterion

If ‖gP (λk,µk, ρk)‖ and ‖Gλk‖ are sufficiently small, then

λk is the solution.

Step 3: Update of the Lagrange multipliers

µk+1 := µk + ρkGλk
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Step 4: Update the penalty parameter

If k > 0 and L(λk,µk, ρk) < L(λk−1,µk−1, ρk−1) + ρk

2
‖Gλk‖2,

then

ρk+1 := βρk,
else

ρk+1 := ρk.

Step 5: Set k := k + 1 and return to Step 1.

Let us note that all the necessary parameters are listed in Step 0. Step 1
may be implemented by any algorithm for minimization of the augmented
Lagrangian L with respect to λ subject to λI ≥ −λ̃I which guarantees
convergence of the projected gradient to zero. More about the properties
and implementation of the SMALBE algorithm may be found in [11, 13].

For the sake of completeness, we also give a scheme of a variant of
SMALBE which leaves the initial penalization factor untouched and, instead,
updates the parameter M .

Algorithm 7.2 (Variant of SMALBE with fixed penalty parameter ρ
and update of M)

Step 0: Initialization of parameters

Given η > 0, β < 1, M0 > 0, ρ > 0, µ0,

set k := 0.

Step 1: Inner iteration with adaptive precision control

Find λk such that λk
I ≥ −λ̃I and

‖gP (λk,µk, ρ)‖ ≤ min {Mk‖Gλk‖, η}.
Step 2: Stopping criterion

If ‖gP (λk,µk, ρ)‖ and ‖Gλk‖ are sufficiently small, then

λk is the solution.

Step 3: Update of the Lagrange multipliers

µk+1 := µk + ρGλk

Step 4: Update of the parameter M

If k > 0 and L(λk,µk, ρ) < L(λk−1,µk−1, ρ) + ρ
2
‖Gλk‖2,

then

Mk+1 := βMk,
else

Mk+1 := Mk.

Step 5: Set k := k + 1 and return to Step 1.
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A unique feature of the SMALBE algorithm is its capability to find an
approximate solution of problem (6.16) in a number of steps which is bounded
in terms of bounds on the spectrum of the Hessian H := PFP+ρQ [11, 13]. To
get a bound on the number of matrix–vector multiplications, it is necessary
to have algorithm which can solve the problem

minimize L(λ,µ, ρ) subject to λI ≥ −λ̃I (7.1)

with the rate of convergence in terms of the bounds on the spectrum of the
Hessian H of L with respect to λ. In the following section, we shall describe
such an algorithm.

7.2 Algorithm for bound constrained minim-

ization based on gradient projection and

proportioning

Let us recall that the unique solution λ = λ(µ, ρ) of (7.1) satisfies the so–
called Karush–Kuhn–Tucker (KKT) conditions

λi = −λ̃i and i ∈ I imply gi(λ) ≥ 0

and
λi > −λ̃i or i /∈ I implies gi(λ) = 0.

Let A(λ) and F(λ) denote the active set and free set of indices of λ,
respectively, i.e.

A(λ) := {i ∈ I : λi = −λ̃i} and F(λ) := {i : λi > −λ̃i or i /∈ I}.

To enable an alternative reference to the KKT conditions [2], let us define
the free gradient ϕ(λ) and the chopped gradient β(λ) by

ϕi(λ) :=

{
gi(λ) for i ∈ F(λ),
0 for i ∈ A(λ),

and βi(λ) :=

{
0 for i ∈ F(λ),
g−

i (λ) for i ∈ A(λ),

so that the KKT conditions are satisfied if and only if the projected gradient

gP (λ) = ϕ(λ) + β(λ)

is equal to zero. We call λ feasible if λi ≥ −λ̃i for i ∈ I. The projection
P to the set of feasible vectors is defined for any λ by

P (λ)i :=

{
max {λi,−λ̃i} for i ∈ I,
λi for i /∈ I.
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Let us recall that H denotes the Hessian of L with respect to λ. The
expansion step is defined by

λk+1 := P
(
λk − αϕ(λk)

)

with the steplength α ∈ (0, 2 ‖H‖−1]. This step may expand the current ac-
tive set. To describe it without P , let ϕ̃(λ) be the reduced free gradient

for any feasible λ, with entries

ϕ̃i = ϕ̃i(λ) := min

{
λi + λ̃i

α
,ϕi

}
for i ∈ I, ϕ̃i := ϕi for i /∈ I

such that
P (λ − αϕ(λ)) = λ − αϕ̃(λ).

If the inequality
‖β(λk)‖2 ≤ Γ2ϕ̃(λk)⊤ϕ(λk) (7.2)

holds, then we call the iterate λk strictly proportional. The test (7.2)
is used to decide which component of the projected gradient gP (λk) will be
reduced in the next step.

The proportioning step is defined by

λk+1 := λk − αCGβ(λk).

The steplength αCG is chosen to minimize L(λk−αβ(λk),µk, ρk) with respect
to α, i.e.

αCG :=
β(λk)⊤g(λk)

β(λk)⊤Hβ(λk)
.

The purpose of the proportioning step is to remove indices from the active
set.

The conjugate gradient step is defined by

λk+1 := λk − αCGpk,

where pk is the conjugate gradient direction [1] which is constructed recur-
rently. The recurrence starts (or restarts) with ps := ϕ(λs) whenever λs is
generated by the expansion step or the proportioning step. If pk is known,
then pk+1 is given by the formulas [1]

pk+1 := ϕ(λk+1) − γpk, γ :=
ϕ(λk+1)⊤Hpk

(pk)⊤Hpk
.

The conjugate gradient steps are used to carry out the minimization in the
face

WJ := {λ : λi = −λ̃i for i ∈ J }, J := A(λs),

efficiently. The algorithm that we use may now be described as follows.

87



Chapter 7

Algorithm 7.3 (MPRGP – Modified proportioning with reduced gradi-

ent projections)

Choose λ0 such that λ0
i ≥ −λ̃i for i ∈ I, α ∈ (0, 2‖H‖−1], and Γ > 0.

Set k := 0.

For k ≥ 0 and λk known, choose λk+1 by the following rules:

i) If gP (λk) = 0, then set λk+1 := λk.

ii) If λk is strictly proportional and gP (λk) 6= 0, then try to generate

λk+1 by the conjugate gradient step. If λk+1
i ≥ −λ̃i for i ∈ I, then

accept it, else generate λk+1 by the expansion step.

iii) If λk is not strictly proportional, define λk+1 by proportioning.

The MPRGP algorithm has an R–linear rate of convergence in terms of
the spectral condition number of the Hessian H of L [10, 11]. The proof
of this rate of convergence for α ∈ (0, ‖H‖−1] may be also found in [25].
For more details about the properties and implementation of the MPRGP
algorithm, we refer to [11, 25].

7.3 Optimality

In order to show that Algorithm 7.1 with the inner loop implemented by
Algorithm 7.3 is optimal for the solution of problem (6.16), let us introduce
a new notation that coincides with that used in [12]. We shall use

T := {(H, h) ∈ R
2 : 2h ≤ H, and H/h ∈ N}

as the set of indices. Given a constant C ≥ 2, let us define a subset TC of T
by

TC := {(H, h) ∈ R
2 : 2h ≤ H, H/h ∈ N, and H/h ≤ C}.

For any t ∈ T , we define

At := H = PFP + ρQ, bt := Pd,

Ct := G, ℓt,I := −λ̃I , ℓt,E := −∞

by the vectors and matrices generated with the discretization and decompo-
sition parameters H and h, respectively, so that problem (6.16) is equivalent
to the problem

minimize Λt(λt) subject to Ctλt = 0 and λt ≥ ℓt (7.3)
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with

Λt(λt) :=
1

2
λ⊤

t Atλt − b⊤
t λt.

By using these definitions, Lemma 6.1, and GG
⊤ = I, we get

‖Ct‖ ≤ 1 and ‖ℓ+
t ‖ = 0, (7.4)

where for any vector v with the entries vi we define a vector v+ by v+
i :=

max {vi, 0}. Moreover, it follows by Theorem 6.2 that for any C ≥ 2 there
are constants aC

max ≥ aC
min > 0 such that

aC
min ≤ λmin(At) ≤ λmax(At) ≤ aC

max (7.5)

for any t ∈ TC . Furthermore, there are positive constants C1 and C2 such that
aC

min ≥ C1 and aC
max ≤ C2C. In particular, it follows that the assumptions

of Theorem 5 (i.e. the inequalities in (7.4) and (7.5)) of [12] are satisfied for
any set of indices TC , C ≥ 2, so that we have the following result:

Theorem 7.1 Let C ≥ 2 and ε > 0 denote given constants, let {λk
t }, {µk

t },
and {ρt,k} be generated by Algorithm 7.1 (SMALBE) for (7.3) with

‖bt‖ ≥ ηt > 0, β > 1, M > 0, ρt,0 := ρ0 > 0, and µ0
t := 0.

Let s ≥ 0 denote the smallest integer such that

βsρ0 ≥
M2

aC
min

and assume that Step 1 of Algorithm 7.1 is implemented by means of Algo-
rithm 7.3 (MPRGP) with parameters Γ > 0 and α ∈ (0, (aC

max + βsρ0)
−1],

so that it generates the iterates λ
k,0
t , λ

k,1
t , . . . , λ

k,l
t =: λk

t for the solution of
(7.3) starting from λ

k,0
t := λk−1

t with λ−1
t := 0, where l = l(t, k) is the first

index satisfying
‖gP (λk,l

t ,µ
k
t , ρt,k)‖ ≤M‖Ctλ

k,l
t ‖

or
‖gP (λk,l

t ,µ
k
t , ρt,k)‖ ≤ ε‖bt‖min {1, M−1}.

Then for any t ∈ TC and problem (7.3), Algorithm 7.1 generates an approx-
imate solution λkt

t which satisfies

M−1‖gP (λkt
t ,µ

kt
t , ρt,kt)‖ ≤ ‖Ctλ

kt
t ‖ ≤ ε‖bt‖

at O(1) matrix–vector multiplications by the Hessian of the augmented La-
grangian Lt for (7.3) and ρt,kt ≤ βsρ0.
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The same statement as that of Theorem 7.1 may be proved also for the
variant of SMALBE with constant penalty and updated M . To sketch the
idea behind, let us note that if the penalty parameter reaches a value that
is large enough, then the sufficient increase of the augmented Lagrangian is
ensured in every next step, namely, if

ρt,k ≥ M2

λmin(At)
, (7.6)

then

L(λt,k+1,µt,k+1, ρk+1) ≥ L(λt,k,µt,k, ρt,k) +
ρt,k+1

2
‖Ctλ

t,k+1‖2.

Thus if the algorithm keeps the penalty factor fixed, we have the left hand
side of (7.6) constant and in finite number of steps we obtain the fulfilment
of (7.6) by decreasing the value of parameter M . Further analysis of the
optimality then follows that of the original SMALBE.

Detailed proof of the statement of Theorem 7.1 for the case α ∈ (0, 2(aC
max+

βsρ0)
−1] may be found in [11] (see the chapter ‘Bound and Equality Con-

strained Minimization’ of [11]).
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Numerical experiments

In this chapter, we shall present the obtained numerical results. Let us note
that our implementations were carried out in Matlab 7.1.

8.1 Laplace operator

We shall now deal with the 2D model multibody contact problem (4.2), (4.3).
First of all, let us define the function f which was used in our numerical
experiments:

f(x) :=





−3 for x ∈ (0, 1) × [0.75, 1),
−1 for x ∈ (1, 2) × (0, 0.25],

0 elsewhere in Ω1 ∪ Ω2;

see also Figure 8.1. Note that f satisfies condition (4.1).
The domains Ω1 and Ω2 were both decomposed into identical square sub-

domains with the side length H. We gradually chose decompositions into
2 · 22, 2 · 42, 2 · 82, and 2 · 162 squares which correspond to the side lengths
H := 1/2, 1/4, 1/8, and 1/16. All subdomain boundaries were further dis-
cretized by the same uniform meshes with the element size h. The boundary
flux and boundary vertical displacement were approximated by the piece-
wise constant and continuous piecewise linear trial functions ψm,i

l and ϕm,i
k ,

respectively (see Figure 5.1). The deformed membranes for the choice of
parameters h := 1/512 and H := 1/8 are shown in Figure 8.2.

The resulting bound and equality constrained quadratic programming
problem (6.16) was solved by the pair of optimal algorithms SMALBE and
MPRGP (see Sections 7.1 and 7.2, respectively). In every outer iteration, if
the increase of the augmented Lagrangian was not sufficient, we increased
the value of the penalization parameter by multiplying it by a parameter
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Figure 8.1: 2D model contact problem
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Figure 8.2: Membranes after deformation
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H

H/h 1/2 1/4 1/8 1/16

64 2,048/778/2 8,192/3,622/2 3,2768/15,502/2 131,072/64,030/3
58 67 68 97

32 1,024/394/2 4,096/1,830/2 16,384/7,822/3 65,536/32,286/4
45 45 67 83

16 512/202/2 2,048/934/2 8,192/3,982/3 32,768/16,414/4
33 34 45 61

8 256/106/2 1,024/486/2 4,096/2,062/3 16,384/8,478/3
26 25 33 38

4 128/58/2 512/262/2 2,048/1,102/3 8,192/4,510/3
22 27 32 34

Table 8.1: Performance for varying decomposition and discretization

β > 1, so that
ρk+1 := βρk.

Let us also show choices of the SMALBE parameters used in our imple-
mentation:

ρ0 := 10‖PFP‖, M := 1, β := 10, η := ‖Pd‖, µ0 := 0.

The initial approximation λ0 was set to max {−λ̃, 0.5BR̃h}. The SMALBE
stopping criterion was chosen as

max {‖gP (λk,µk, ρk)‖, ‖Gλk‖} ≤ 10−4‖Pd‖.

For the MPRGP loops, we used the parameters

α :=
2

ρk

, Γ := 1.

Now let us show how the presented method works. In Table 8.1, we
demonstrate the numerical scalability of the discussed pair of algorithms.
The numbers appearing in this table have the following meaning: the upper
row of each cell shows the corresponding primal dimension / dual dimen-
sion / number of the outer iterations and the lower row gives the number
of the conjugate gradient (CG) iterations. Indeed, it can be seen that our
method does not deteriorate when we keep the number of subdomain bound-
ary nodes fixed and increase the number of subdomains. In other words,
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Figure 8.3: Graph of numerical scalability for the 2D model contact problem
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Figure 8.4: Approximation of the flux t2 and the resulting gap between the
membranes along Γc := {(1, x2) : x2 ∈ [0, 1]}
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we observe that the numbers of the CG iterations in the rows vary only
moderately. Furthermore, the graph illustrating the numerical scalability is
depicted in Figure 8.3.

For the sake of completeness, in Figure 8.4, we also show the computed
approximation of the boundary flux t2 on the contact boundary Γc obtained
for the choices h := 1/512 and H := 1/8. The blue curve stands for the
contact flux while the red one means the resulting gap between the deformed
membranes along Γc. It can be observed that the depicted flux corresponds
to the problem definition.

8.2 Linear homogeneous isotropic elastostat-

ics

8.2.1 Solution of 3D model contact problem

We shall present the numerical experiments for the model problem (4.19),
(4.20). To recall the situation, we refer to Figure 4.2.

The elastic body is represented by the cube Ω := (0, 10)3 with the sizes
given in millimeters. The material constants are defined by the following
values: Young’s modulus E := 1.14 ·105 [MPa] and Poisson’s ratio ν := 0.24.
This choice of the material parameters corresponds to steel. The body is
fixed in all directions along the Dirichlet part of the boundary Γu := [0, 10]×
{0}× [0, 10]. The body may touch the rigid plane obstacle along the contact
part of the boundary Γc := [0, 10] × [0, 10] × {0}. The initial distance |d|
between the cube and the rigid obstacle is set to 3 [mm]. The remaining part
of the boundary of the cube is free, i.e. it is neither loaded by any boundary
forces nor fixed in any direction. The density of the internal forces is defined
for any x ∈ Ω by f(x) := (0, 0,−2.1 ·103) [N/mm3], and therefore the volume
forces may be interpreted, for instance, as a gravity.

The body was decomposed into identical cubic subdomains with the edge
length H. We gradually chose decompositions into 23, 33, . . ., 63 cubes which
correspond to H := 10/2, 10/3, . . . , 10/6. All subdomain boundaries were
further discretized by the same triangular uniform meshes characterized by
the discretization parameter h. Every component of the boundary stress and
displacement was approximated by the piecewise constant and continuous
piecewise linear trial functions ψm

l and ϕm
k , respectively (see Figure 5.2).

The deformed body for the choice of parameters h := 1/2 and H := 10/5 is
depicted in Figure 8.5. Splitting into subdomains is indicated by the chess–
board on the surface.

The resulting bound and equality constrained quadratic programming
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Figure 8.5: Body after deformation

problem (6.16) was solved by the SMALBE and MPRGP algorithms (see
Sections 7.1 and 7.2, respectively). In every SMALBE iteration, if the in-
crease of the augmented Lagrangian was not sufficient, we improved the
precision of the next auxiliary problem solution by reducing the parameter
Mk so that

Mk+1 := βMk, β < 1. (8.1)

Here we show the used choices of the SMALBE parameters:

ρ := ‖PFP‖, M0 := 1, β :=
1

10
, η := ‖Pd‖, µ0 := 0.

The initial approximation λ0 was set to max {−λ̃, 0.5BR̃h}. The stopping
criterion was chosen as

max {‖gP (λk,µk, ρ)‖, ‖Gλk‖} ≤ 10−4‖Pd‖.

The MPRGP algorithm used the parameters

α :=
2

ρ
, Γ := 1.

The numerical scalability of the discussed pair of algorithms is shown
in Table 8.2. The upper row of each cell of the table shows the corre-
sponding primal dimension / dual dimension / number of the outer iterations.
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H

H/h 10/2 10/3 10/4 10/5 10/6

9 11,712/5,023/17 39,528/18,744/13 93,696/43,441/12 183,000/92,992/13 316,224/163,275/17
130 139 137 115 133

8 9,264/4,053/15 31,266/15,090/13 74,112/37,341/12 144,750/74,712/15 250,128/131,109/15
124 134 137 140 180

7 7,104/3,187/15 23,976/11,832/14 56,832/29,233/11 111,000/58,432/15 191,808/102,471/14
88 145 120 156 182

6 5,232/2,425/15 17,658/8,970/16 41,856/22,117/13 81,750/44,152/13 141,264/77,361/14
93 101 145 140 163

5 3,648/1,767/16 12,312/6,504/136 29,184/15,993/14 57,000/31,872/15 98,496/55,779/15
95 94 131 138 147

4 2,352/1,213/15 7,938/4,434/14 18,816/10,861/14 36,750/21,592/15 63,504/37,725/14
102 120 101 147 145

3 1,344/763/15 4,536/2,760/18 10,752/6,720/17 21,000/13,312/17 36,288/23,199/22
93 83 92 131 157

2 624/417/16 2,106/1,482/19 4,992/3,573/17 9,750/7,032/16 16,848/12,201/24
111 94 140 75 130

Table 8.2: Performance for varying decomposition and discretization
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Figure 8.6: Graph of numerical scalability for the 3D model contact problem

The lower row gives the number of the CG iterations. Examining the numbers
of iterations in the rows, which correspond to the fixed ratioH/h, we conclude
that the number of iterations is constant up to the oscillations that are caused
by the non–linearity of our problem. Furthermore, the graph illustrating the
numerical scalability is depicted in Figure 8.6.

In Figure 8.7, we show the computed approximations of the normal
boundary stress and normal boundary displacement on Γc obtained for the
choices h := 1/2 and H := 10/5. The white line stands for the “contact
border”. It can be seen that at points on Γc with x2–coordinate larger or
equal to 8, the contact occurs. It is also seen that the contact stress t3 is zero
at points, where the body is not in contact with the obstacle, and positive
at points, where the body touches the obstacle.

Now we shall give the results on the stable evaluation of the left general-
ized inverse discussed in Section 6.5. Since we decomposed the original cube
into identical subdomains and used the same uniform meshes for all subdo-
mains, all the local stiffness matrices S̃

Lamé

m,h coincide. Thus we shall deal, for

instance, only with the left generalized inverse S̃
Lamé,+

1,h of the matrix S̃
Lamé

1,h .
At first, let us introduce the notation

err(S̃
Lamé,+

1,h ) :=
‖S̃Lamé

1,h S̃
Lamé,+

1,h S̃
Lamé

1,h − S̃
Lamé

1,h ‖
‖S̃Lamé

1,h ‖
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Figure 8.7: Computed approximations of t3 [104 N/mm2] (left) and u3 [mm]
(right) on Γc

for the relative error of the obtained left generalized inverse and the notations

κ(K) :=
λmax(K)

λmin(K)
and κ(S̃

Lamé

1,h ) :=
λmax(S̃

Lamé

1,h )

λ7(S̃
Lamé

1,h )

for the spectral condition number of the corresponding non–singular part K

of S̃
Lamé

1,h and the ratio of the maximum and the least non–zero eigenvalue of

S̃
Lamé

1,h , respectively. To recall the meaning of K, we refer to (6.22). Let us
also recall that M1 and N1 stand for the numbers of nodes and elements on
the boundary Γ1, respectively. Performance of the technique presented in
Section 6.5 is shown in Table 8.3. It may be seen that both the relative error
and spectral condition number of the non–singular part K are reasonable.
The choice of nodes x1

i , x
1
j , and x1

k was made as it is depicted in Figure 8.8
(the node x1

i was either the mid point of the corresponding edge or the nearest
node with the smaller x1–coordinate).“Removed” indices from the stiffness

matrix S̃
Lamé

1,h were the same for all rows of Table 8.3 and they are depicted
as arrows in Figure 8.8.

8.2.2 Solution of 3D Hertz problem

We shall now be concerned with a variant of the well–known Hertz problem.
Let us consider two elastic bodies Ω1 and Ω2 made of isotropic and homo-
geneous materials. Assume that the body denoted by Ω1 is a part of a ball
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M1 N1 err(S̃
Lamé,+

1,h ) κ(K) κ(S̃
Lamé

1,h )

26 48 1.7 · 10−7 3 · 102 15

56 108 1.3 · 10−7 7 · 102 21

98 192 1.2 · 10−7 1.2 · 103 24

152 300 1 · 10−7 1.7 · 103 27

218 432 9.4 · 10−8 2.4 · 103 31

296 588 8.3 · 10−8 3.4 · 103 36

386 768 7.4 · 10−8 4.4 · 103 41

488 972 6.7 · 10−8 5.6 · 103 45

Table 8.3: Stable evaluation of the left generalized inverse

x1

x2

x3

x1
i

x1
j

x1
k

Ω1

Figure 8.8: “Removed” indices from the local stiffness matrix
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Figure 8.9: Initial geometry

with radius 20 [mm] and the body Ω2 is a cuboid with the length and depth
20 [mm] and height 10 [mm] . Let us state the following definitions:

Ω1 :=

{
(x1, x2, x3) ∈ R

3 : (x1, x2) ∈ (−10, 10)2 and

x3 ∈
(
−
√

202 − x2
1 − x2

2 + 30, 20

)}

and
Ω2 := (−10, 10) × (−10, 10) × (0, 10).

For the sake of lucidity, the considered geometry is depicted in Figure 8.9 (we
used some “quite accurate” polyhedral approximation of the upper body).
Let us suppose that the body represented by Ω1 is made of iron with the
Young’s modulus E1 := 2.1 · 105 [MPa] and Poisson’s ratio ν1 := 0.29 and
the body represented by Ω2 is made of aluminium with the Young’s modulus
E2 := 7 · 104 [MPa] and Poisson’s ratio ν2 := 0.35.

Now let us consider the following situation. The boundary Γ1 := ∂Ω1 is
decomposed into two parts

Γ1
c :=

{
(x1, x2, x3) ∈ Γ1 : x3 = −

√
202 − x2

1 − x2
2 + 30

}

and
Γ1

f := Γ1 \ Γ1
c

and the boundary Γ2 := ∂Ω2 is decomposed into three parts

Γ2
c := [−10, 10] × [−10, 10] × {10},
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Figure 8.10: 2D analogue to the considered Hertz problem

Γ2
u := [−10, 10] × [−10, 10] × {0},

and

Γ2
f := Γ2 \ {Γ2

c ∪ Γ2
u}.

We shall assume that the cuboid Ω2 is fixed in all directions along Γ2
u. On

the part Γ1
f , there acts a boundary stress p1 that is defined as

p1(x) :=

{
(0, 0,−2 · 103) for x := (x1, x2, x3) ∈ Γ1

f : x3 = 20,
0 elsewhere on Γ1

f .

The stress p1 is given in [N/mm2]. We see that the upper body is pressed
down along its top side and stays free, i.e. unfixed and unloaded, on the
remaining part of Γ1

f . On the other hand, we assume that the cuboid is free
on the whole part Γ2

f , and therefore the boundary stress p2 shall be defined
by the zero vector everywhere on Γ2

f . There are no volume forces acting in
the interior of Ω1 and Ω2. Finally, we can see that the “bottom part” Γ1

c of
the upper body will come in contact with the top side Γ2

c of the cuboid. For
better comprehension, we refer to Figure 8.10, which depicts a 2D analogue
to our problem.

Now we intend to formulate the problem in terms of displacements. We
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shall look for a sufficiently smooth (u1, u2) satisfying

−
3∑

j=1

∂
∂xj
σij(u

m, x) = 0 for x ∈ Ωm, i = 1, 2, 3, m = 1, 2,

u2(x) = 0 for x ∈ Γ2
u,

tmi (x) :=
3∑

j=1

σij(u
m, x)nm

j (x) = pm
i (x) for x ∈ Γm

f , i = 1, 2, 3, m = 1, 2,

(8.2)
together with the contact conditions

u2
3(x

2) − u1
3(x

1) ≤ x1
3 − 10

t13(x
1) ≥ 0(

u2
3(x

2) − u1
3(x

1) − (x1
3 − 10)

)
t13(x

1) = 0

t13(x
1) + t23(x

2) = 0

(8.3)

that hold for Γ1
c ∋ x1 := (a, b, x1

3), Γ2
c ∋ x2 := (a, b, 10), (a, b) ∈ [−10, 10]2.

By nm
j (x) we mean jth component of the exterior unit normal vector nm(x)

of Ωm that is defined for almost all x ∈ Γm. Since we assume that the both
materials are homogeneous and isotropic, the stress tensor {σij(u

m, x)}3
i,j=1

complies with the Hook law (3.25), where the strain tensor {eij(u
m, x)}3

i,j=1

is given by (3.26).

Let us now briefly describe the contact conditions (8.3). The first condi-
tion says that the bodies are not allowed to penetrate each other. Further-
more, at points, where contact occurs, the upper body may press the lower
one down, while at points Γ1

c , where the bodies do not touch, the normal
boundary stress corresponding to Ω1 has to be zero. The fourth condition
stands for the “action and reaction” condition.

Now due to the symmetry in our geometry and data, the following simpli-
fication may be achieved. Instead of the original bodies Ω1 and Ω2, we shall
consider only their quarters Ω̃1 and Ω̃2 as they are sketched in Figure 8.11.
To be precise, let us note that

Ω̃1 :=

{
(x1, x2, x3) ∈ R

3 : (x1, x2) ∈ (0, 10)2 and

x3 ∈
(
−
√

202 − x2
1 − x2

2 + 30, 20

)}
(8.4)

and

Ω̃2 := (0, 10)3.
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Figure 8.11: “Reduced” initial geometry

To deal still with the same problem, we now have to modify our data slightly
and prescribe some additional Dirichlet conditions. Let Γ̃1 := ∂Ω̃1 and

Γ̃1
u,x1

:= {(x1, x2, x3) ∈ Γ̃1 : x1 = 0},

Γ̃1
u,x2

:= {(x1, x2, x3) ∈ Γ̃1 : x2 = 0},

Γ̃1
c :=

{
(x1, x2, x3) ∈ Γ̃1 : x3 = −

√
202 − x2

1 − x2
2 + 30

}
,

and

Γ̃1
f := Γ̃1 \

{
Γ̃1

c ∪ Γ̃1
u,x1

∪ Γ̃1
u,x2

}
.

Furthermore, let Γ̃2 := ∂Ω̃2 and

Γ̃2
u,x1

:= {0} × [0, 10] × [0, 10], Γ̃2
u,x2

:= [0, 10] × {0} × [0, 10],

Γ̃2
u := [0, 10] × [0, 10] × {0}, Γ̃2

c := [0, 10] × [0, 10] × {10},

and

Γ̃2
f := Γ̃2 \

{
Γ̃2

c ∪ Γ̃2
u,x1

∪ Γ̃2
u,x2

∪ Γ̃2
u

}
.

Now we shall formulate a new problem. The only difference to the original
problem will be an additional fixation along the parts Γ̃m

u,xi
which will prevent
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the deformation in the corresponding direction. The task is to find sufficiently
smooth (ũ1, ũ2) such that

−
3∑

j=1

∂
∂xj
σij(ũ

m, x) = 0 for x ∈ Ω̃m, i = 1, 2, 3, m = 1, 2,

ũ2(x) = 0 for x ∈ Γ̃2
u,

ũm
i (x) = 0 for x ∈ Γ̃m

u,xi
, i = 1, 2, m = 1, 2,

t̃mi (x) :=
3∑

j=1

σij(ũ
m, x)ñm

j (x) = pm
i (x) for x ∈ Γ̃m

f , i = 1, 2, 3, m = 1, 2,

(8.5)
together with the contact conditions

ũ2
3(x

2) − ũ1
3(x

1) ≤ x1
3 − 10

t̃13(x
1) ≥ 0(

ũ2
3(x

2) − ũ1
3(x

1) − (x1
3 − 10)

)
t̃13(x

1) = 0

t̃13(x
1) + t̃23(x

2) = 0

(8.6)

that hold for Γ̃1
c ∋ x1 := (a, b, x1

3), Γ̃2
c ∋ x2 := (a, b, 10), (a, b) ∈ [0, 10]2. By

ñm
j (x) we mean jth component of the exterior unit normal vector ñm(x) of

Ω̃m that is defined for almost all x ∈ Γ̃m.

We solve the “reduced” problem (8.5), (8.6) analogously to our model
problem of linear elastostatics (4.19), (4.20), i.e. we start with a non–over-
lapping domain decomposition, then continue with the boundary element
discretization by using the Ritz method and application of the duality theory
and orthogonal projectors to the natural coarse grid. We end up with the
resulting bound and equality constrained quadratic programming problem
(6.16).

At this moment, we shall give the obtained numerical results. We used
the decompositions into 2 · 23 and 2 · 33 subdomains characterized by the de-
composition parameters H := 10/2 and H := 10/3, respectively. Let us note

that the subdomains corresponding to Ω̃2 were identical cubic regions, while
the decompositions of the body Ω̃1 are depicted by using the chess–board in
Figure 8.12 (we still use some “quite accurate” polyhedral approximation of

Ω̃1). All subdomain boundaries were further discretized by triangular meshes
with the discretization parameter h. All subdomain boundaries correspond-
ing to Ω̃2 were meshed uniformly with the same grid. For the approximation
of every component of the boundary stress and displacement, we used the
piecewise constant and continuous piecewise linear trial functions ψm

l and
ϕm

k , respectively (see Figure 5.2). The computed deformation for the choice
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Figure 8.12: Splitting Ω̃1 into 23 (left) and 33 (right) subdomains

of parameters h := 10/9 and H := 10/3 is depicted in Figure 8.13. Splitting
into subdomains is indicated by the chess–boards on both bodies’ surfaces.

The resulting problem (6.16) was solved by algorithms SMALBE and
MPRGP described in Sections 7.1 and 7.2, respectively. We used the vari-
ant of SMALBE which decreases the parameter M whenever the augmented
Lagrangian does not increase enough, i.e. uses the update (8.1). Except the
initial setting of M , we used the very same parameters and stopping criterion
for the SMALBE and MPRGP algorithms as in the previous subsection. In
this case, we put

M0 :=
1

2
.

In Table 8.4, we can see the performance of our algorithms. As in the
previous examples, the upper row of each cell of the table shows the corre-
sponding primal dimension / dual dimension / number of the outer iterations.
The lower row gives the number of the CG iterations. It can be seen that
the algorithms work worse than in Subsection 8.2.1, since we deal here with
the moving contact interface and the identification of contact points is more
difficult.

Now we shall give some additional figures to study better the obtained
solution. Let us start with Figure 8.14, where we depict the initial gap
and the gap between the bodies after deformation. In Figure 8.15, we show
the computed approximations of the normal boundary stress t̃23 and normal

boundary displacement ũ2
3 on Γ̃2

c . The white curves in Figures 8.14 and
8.15 mean the “contact border”. The depicted situations correspond to the
choices h := 10/9 and H := 10/3.

Let us also briefly mention the evaluation of the left generalized inverses.
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Figure 8.13: Bodies before (left) and after (right) deformation

H

H/h 10/2 10/3

5 7,248/3,534/21 24,624/13,008/23
162 221

4 4,704/2,426/24 15,876/8,868/24
272 338

3 2,688/1,526/25 9,072/5,520/30
255 327

2 1,248/834/28 4,212/2,964/29
236 304

Table 8.4: Performance for varying decomposition and discretization
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Figure 8.14: Gap between the bodies before (left) and after (right) deforma-
tion
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Figure 8.15: Computed approximations of t̃23 [104 N/mm2] (left) and ũ2
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(right) on Γ̃2
c
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Since we decomposed the lower body into identical subdomains which were
all meshed by the same grid, we get that all the local stiffness matrices cor-
responding to Ω̃2 coincide. On the other hand, since the subdomains of Ω̃1

differ, so do the local stiffness matrices corresponding to the upper body. For
every considered case of discretization and domain decomposition, we com-
puted the characteristics which are given in Table 8.3, i.e. the relative error
of the left generalized inverse, spectral condition number of the related non–
singular part, and ratio of the maximum and the least non–zero eigenvalue
of the associated stiffness matrix. Let us note that the obtained numbers
were of the very same order as they are given in Table 8.3.
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Conclusion

In this thesis, we presented solutions of 2D and 3D model contact problems
described by the Laplace operator and the system of linear homogeneous
isotropic elastostatics, respectively, by using the BETI method precondi-
tioned by the natural coarse grid. Our approach is based on the observation
(following from the analyses of Langer and Steinbach [32] and Farhat et al.
[27]) that when the mesh is refined and the number of subdomains is in-
creased so that the ratio H/h of the decomposition parameter H and the
discretization parameter h is kept constant, the bounds on the spectrum
of the preconditioned dual stiffness matrix (arising from the application of
boundary elements) do not change. The latter result enables us to extend
the work of Dostál and Horák [19] to the case of boundary elements and de-
velop a scalable BETI based algorithm for the variational inequalities, whose
solution to a prescribed precision can be found in a number of matrix–vector
multiplications that is bounded independently of the discretization provided
the ratio H/h is bounded. The presented results of our numerical experi-
ments are in a good agreement with the theory.

There are many issues which are closely connected to this topic and to
which we could devote ourselves in future. For instance, further improvement
could be achieved by application of the standard BETI preconditioners [32]
to the solution of auxiliary linear problem in the inner loop of our algorithm.
Also overcoming the drawback represented by the densely populated matrices
by using some Fast BE technique would improve significantly efficiency of the
discussed method. Our approach could be also adapted to the solution of
problems with Coulomb friction [26, 21].
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