Faculty of Eletrical Engineering and Computer Science

Duality-based domain decomposition
with natural coarse-space for
variational inequalities and its

parallel implementation

Diploma thesis
2000

Made by: David Horak
Branch: Computer Science and Applied Mathematics
Advisor: Prof. RNDr. Zdenék Dostal, CSc.
Department of Applied Mathematics of VSB - Technical University of Ostrava
Opponent: Prof. RNDr. Radim Blaheta, CSc.
Institute of Geonics at Czech Academy of Sciences

Acknowledgments

The aim of this diploma thesis is to put the genius idea proposed by prof. Zdenék
Dostal and his colleagues into the life. However in advance I would like to thank
above all my advisor prof. Zdenék Dostal, that he has entrusted this theme to solve
just to me, for his help during the solution of this problem and for everything, what
he has taught me during all my studies and I hope he will still teach. At the same
time I thank also to opponent of this work, prof. Radim Blaheta. The numerical
experiments were very exacting on configuration of parallel computer, installations
and various changes and that’s why I thank in this place to ing. Jan Haluza, ing.
Karel Kre¢mer and RNDr. Ondfiej Jakl, without them the successful realization
would be very time-consuming. Last but not least, I thank to my family and all my
friends for their love and support.

I declare, that I have made all my diploma thesis on my own and only with the
application of the literature presented in references.

Rychvald, 4th May 2000

Contents

List of Figures

List of Tables

Notation

1

9

Introduction

Model Problem and Continuous Formulation
Discretization and Domain Decomposition
Dual Formulation

Modifications of Problem

Algorithm for Quadratic Programming with Equality Constraints
and Simple Bounds

PETSc 2.0 - Equipment for Parallel Implementation

Parallel Implementation

8.1 Objects Defining Model Problem
8.2 Implementation of Dual Formulation and Modifications
8.3 Implementation of Algorithm

Numerical Experiments

10 Conclusion

Epilogue

Bibliography

12

16

19

23

27

29
29
31
36

42

53

53

54

Appendix

57

List of Figures

2.1
2.2

3.1
3.2
3.3
3.4

4.1

0.1

0.2
7.1
8.1

9.1
9.2
9.3

Model Problem 8
Domain of model problem 9
Discretization and domain decomposition 12
Doubled nodes on interface I'. 13
Discretization and auxiliary domain decomposition 14
Corner nodes belonging to four subdomains 15
Main idea of dual formulation 18

Example of spectrum distributions of Hessians (H = 1/8,h =1/2,p =

103) 21
Mesh and subdomain parameters 22
Organization of the PETSc Library 28
Example of data distribution over 4 processors 31
Model problem with concrete parameters 42
Solution of model problem with h=1/2and H=1 45
Solution of model problem with h =1/16 and H =1/4 46

List of Tables

9.1

9.2

9.3

9.4

9.5

9.6

Comparison of basic, projected, projected-preconditioned version with
ip & us protocol for regular decomposition H = H, = H, with pa-
rameters M = 10%, py = 102,T = 1 on 1,2,4,8 processors with initial
aproximation A%
Comparison of the impact of given problem dependent parameters pg
and M for projected version with us-protocol for regular decompo-
sition for h = 1/128 and H = 1/4 (primal dimension 34848, dual
dimension 1695) on 8 processors with initial aproximation \%!
Comparison of the impact of given problem dependent parameters pg
and M for projected version with us-protocol for regular decompo-
sition for h = 1/128 and H = 1/4 (primal dimension 34848, dual
dimension 1695) on 8 processors with initial aproximation A\
Comparison of the impact of given problem dependent parameters pg
and M for projected version with us-protocol for regular decompo-
sition for h = 1/128 and H = 1/4 (primal dimension 34848, dual
dimension 1695) on 8 processors with initial aproximation A\ . . .
Comparison of projected, projected-preconditioned version with us-
protocol for regular decomposition H = H, = H, with parameters
M =102, py = 102, = 1 on 1,2,4,8 processors with initial aproxima-
tion A\
Comparison of projected, projected-preconditioned version with us-
protocol for regular decomposition H = H, = H, with parameters
M =102 py = 10%,T =1 on 1,2,4,8 processors with initial aproxima-
tion A\

48

49

20

Notation

Following symbols keep their meaning in this work:
a(-,-) symmetric bilinear form
() linear form

u displacements field

f density of forces

A vector of Lagrange multipliers

A stiffness matrix - symmetric positive definite
B matrix with constraints

c-! preconditioner

R null space of matrix A

g gradient

94 domain or subdomain

I boundary between subdomains 2* and ¥
R” n-th dimensional real space

L2(Q%) space of functions on ' whose squares are integrable in the sence
of Lebesgue

H!'(Q%) Sobolev space of first order

Kn coarse grid space

J(+) energy functional

Il Euclidian norm

Applied abbreviations:

DD Domain Decomposition

QP Quadratic Programming

CG Conjugate Gradient

PDEs Partial Differential Equations
s.t. so that

Chapter 1

Introduction

“If we perform large calculations occuring especially in astronomy, geonics, mechan-
ics and elsewhere, we get as a rule bad results, because we are not appropriate
practised in numerical reckonning. Sources of arithmetical faults are: confusion of
calculations, negligent writing of figures, large haste and small heed during execution
the calculations. That’s why it is necessary to get used to reckon steadily, carefully,
to write figures conspicously and one below another. A good reckonner writes about
40 figures per minute, otherwise the multiplication of 5-figured number by 5-figured
one takes him about 1 minute in usually way. The famous reckonner Dase needed
for multiplication of two 100-figured numbers about 9 hours. The calculation by a
machine is for skilled reckonner faster and more comfortable and takes him about
1/4 or 1/5 of time needed for the same calculation in common way”

This is only a part of Introduction of charming book: Theory and Practice of
Numerical Reckonning [1| from the year 1927. It is admirable, what our ancestors
knew and it is amazing at the same time, that mathematics and computing made
enormous progress and improvement during the last 3/4 of century. Our ancestors
would have been doubtless shocked, if they had seen the results this branch had
reached to. We are aware, that we would not be able to build it up to the present
level without their firm and good fundamentals. Many people are convinced, that
the development in applied mathematics is at the end. I am aware of further devel-
opment in this branch, although each age has its charm, positives and negatives. I
am very happy, that the birth was granted me just to this age, when mathematics
and computer science complement perfectly each other.

Partial Differential Equations (PDEs) are encountered in all the sciences and
engineering disciplines. An effort to implement the solution of these equations on
parallel computers leads to the domain decomposition, that consists in division of
global domain over which the solution is sought into subdomains and allowing each
processor of parallel computer to handle individual subdomain. The PDEs are
traditionally clasified into 3 categories: elliptic (from numerical viewpoint belonging
to static equations), parabolic and hyperbolic (both belonging to time dependent

equations).

The objective of this work is to explain the basic principles of recently suggested
efficient domain decomposition algorithm for the solution of variational inequalities
arising from elliptic problems with inequality boundary conditions (suggested by
Dostal, Gomes Neto and Santos) and to present the parallelization strategy that
has been employed for implementation of this FETT related solver (FETI means
the Finite Element Tearing and Interconnecting method called also as the dual
Schur complement method) in PETSc and the numerical experiments reached by its
variants.

Discretized problem is first turned by duality theory of convex programming into
a quadratic programming problem and modified by means of orthogonal projectors
to the natural coarse space (suggested by Mandel, Farhat and Roux). The problem
is then solved by augmented Lagrangian algorithm with an outer loop for Lagrange
multipliers for equality constraints, ensuring continuity among non-overlapping sub-
domains, and inner loop for solution of bound constrained quadratic programming
problems. The projectors and preconditioning - that all guarantee an optimal con-
vergence of iterative solution of auxiliary linear problems. Presented theoretical
results and numerical experiments obtained by parallel program using PETSc in-
dicate high numerical and parallel scalability of this algorithm. The aplications
include e.g. problem of finding stresses and displacements of a system of linear
elastic bodies without friction or the contact problem with Coulomb friction.

The work is organized as follows: chapter 2 describes model problem and its con-
tinuous formulation, chapter 3 explains discretization and domain decomposition,
chapter 4 recalls the principles of dual formulation, chapter 5 presents modifications
of problem accelerating the copmutation, chapter 6 is devoted to the suggested al-
gorithm, chapter 7 introduces the tool for parallel implementation - PETSc, chapter
8 details the complete parallel implementation of algorithm, chapter 9 presents nu-
merical experiments executed on IBM SP2 and chapter 10 concludes all the work.

Chapter 2

Model Problem and Continuous

Formulation

This chapter introduces variational inequality model problem, which shall simplify
the exposition and together with it represents problem for numerical experiments

(see Figure 2.1).

|

Figure 2.1: Model Problem

This problem arising from variational formulation of problem
boundary conditions reads:
find sufficiently smooth u(zx,y) so that:

—Au=f in Q=Q'UN?

u'=0 on T}

ou’

=0 e, i=1,2
ani on (3

w—~u'>0 on I.=T!=TI?

with inequality

(2.1)

(2.2)

(2.3)

(2.4)

ou?

_—> I, 2.
Iy > 0 on (2.5)
ou?, 5,
a—m(u —Uu) =0 on Fc (26)
oul ou?
—+— =0 I, 2.7
8774 + a’n? on ()

here Q! = (0,1) x (0,1),92% = (1,2) x (0,1) denote open domains with boundaries
I'',T? and their parts T}, T'%, "%, formed by the sides of Q',i = 1,2, and ny(z,y)
denote components of the outer unit normal at (z,y) € I'" (see Figure 2.2).

1 2

I I

r, Q r.|r: Q@ r

u

L I

Figure 2.2: Domain of model problem

The solution u(x,y) can be interpreted as a vertical displacement of two mem-
branes stretched by normalized horizontal forces and pressed together by vertical
forces with density f(x,y). Relation:

e (2.1) - is elliptic Poisson equation

e (2.2) - is boundary condition of Dirichlet type

e (2.3) - is boundary condition of Neumann type

e (2.4) - describes the non-interpenetration of the adjacent edges of the mem-
branes with the edge of the right membrane above the edge of the left mem-
brane

e (2.5) - expresses that right membrane can press the left one down at the contact
points

e (2.6)-(2.7) - define points, that are in contact - if there is no contact at (z,y) €

L., ie. u?*(z,y) > u'(x,y), then the membranes are stretched by the horizontal
force in the same way as at (z,y) € I'}.

To derive the variational inequality whose smooth solutions satisfy (2.1)-(2.7), let
H! (©2") denote Sobolev space of first order on the space L% (2) of the functions on
Q' whose squares are integrable in the sence of Lebesgue. Then f € H! () iff both
f and its first derivates belong to L?(Q?).

Let’s define following requisities: V! = {v € H'(Q') : 0! =0 on TI'l} C H'(Q')
denotes the closed subspace of H!(Q!), V2 = H!'(Q?), V = V! x V? denotes the
closed subspace and K = {(v',v?) € V:v? —v* >0 on I'.} closed convex subset of
H=H(Q') x H'(Q?). On H lets define a symmetric bilinear form

, o o
out ovt Ov' Ot
a(u, v) _7221:/ <8x or dy 8y> “

and a linear form

l(v) = Z/ fl'dQ.

Let u denote a smooth solution of (2.1)-(2.7). After multiplication of (2.1) by
v € V and application of the Green theorem and using relations (2.2)-(2.3) we obtain

1 2
a(u,v) —l(v) = /1“ {g—zlvl + 2—221}2} dr

and forv =w —u, w € K

a(u,w —u) —l(w —u) = /FC {g—zi(wl —u') + a—UQ(w2 — uQ)} dr. (2.8)

ang
At the points of T, with u! > u? there is , due to (2.6)-(2.7),

1 2
ou" Ou _0 (2.9)

ony Ony

so that the integrand in (2.8) vanishes at such points. At the points of I'. with
u' = u? there is , due to (2.5) and (2.7),

1 2 1
8l(wl —u') + ai(w2 —u?) = Ou

! = —w') >0. (2.1
o o w + w (w*—w") >0. (2.10)

The integral in (2.8) is nonnegative for any w € K and the solution u of problem
defined by relations (2.1)-(2.7) solves also problem defined in following way

findu € K s.t. a(u,w—u) —(w—u) >0 for all we kK (2.11)

and opposite [3].

10

The expression on the left of inequality in relation (2.11) is gradient of the energy
functional

J(v) = %a(v,v) i)

at u and that’s why the problem given by (2.11) is equivalent to the minimization
problem

min J(v) s.t. v e K. (2.12)

It can be proved that functional J(v) is convex and coercive on K and theorem
for existence and uniqueness [4] of minimum for such functionals then guarantees
that problems (2.11)-(2.12) have unique solution if f satisfies [, fdQ < 0, what is
assumed in all following expositions.

11

Chapter 3

Discretization and Domain
Decomposition

For the numerical proccesing of this problem it is necessary to execute the lin-
earization and finite element discretization. To this purpose let’s define (1, 7,) a
partitioning of {2 into triangles T; € 73, with suitable numbering vertices at N € n,.

BI }\’I
Figure 3.1: Discretization and domain decomposition

For i = 1,2 (see Figure 3.1) let P! denote the piecewise linear finite element
subspaces of H!(Q), let Vi =P NV’ and define V, =V x V7 and K, = KNV,
The problem (2.12) is then aproximated by the finite element problem

min J(vg) s.t. vy € Kp,. (3.1)

The functions pi, € P} are fully determined by values u}, = pi(Ny) at nodes
N} € Q, while Q denotes a closure of Q. Assuming the independ indexing of nodes
of Q' \ T’y by indices 1,2,...,s; and denoting of standard basis functions of Vi by
e}, so that e (N?) = di; (Kronecker symbol), it is possible to write any v}, € V}, in

12

following form

k=1

Substituting (3.2) into expression for functional J(v) gives

1
J(vp) = §uTAu — fTu,

Al . . o
where A = [0 A2 } is symmetric positive semidefinite block-diagonal stiffness
matrix of order n (symmetric means that a;; = aj; for 4,j = 1,...,n, while positive

fl
f2

forces of size n and u = [9 } vector of nodal unknowns of size n (note: in previous
u

semidefinite means that u” Au > 0 for all vectors u), f = [} vector of nodal

chapters the symbols u, f denote continuous functions but from this place on, after
discretization because of simplicity, u, f represent the vectors), with A* = [a},],
i = alel,cf), £ = [fi]. £i = (e}) and i = [i]. |

For completion of discretization it is necessary to describe conditions on uj, cor-
responding to

Because of doubled nodes on interface I'., the m inequalities u} < u? can be substi-
tuted by exprression Byu < 0, with m x n full rank matrix B; consisting of m rows
of form

b:[--- 1 ... -1 }7
that means zero entries except positions j : b} =1land k: b = —1 (see Figure 3.2).
u u
Szl Ja Py k QZ

Figure 3.2: Doubled nodes on interface I,

The discretized version of problem (2.12) then reads

13

1
min §uTAu — fTu s.t. Bru <0. (3.3)

Bg Ag

BI }\’I
Figure 3.3: Discretization and auxiliary domain decomposition

Above presented exposition takes into account just the decomposition in two
subdomains ' and Q?, but it is possible each subdomain Q¢ auxiliary decompose
into p; subdomains Q%P with interfaces I'/* (see Figure 3.3), so that each of these
subdomains is partitioned by a subset of (n,7,). After using the finite element
discretization of problem (2.12) with the basis functions that are zero extensions
of P, (%) for i = 1,2 and j = 1,...,p;, the functional has for all piecewise linear
functions vj, continuous in subdomains Q%7 the form

1
J(vp) = =u” Au — fTu,

2
F AL 0 P T SURREE
0 ? 0 15 ;
where A = 8 0 Aoﬂf’1 A(;’l 0 8 . J;;; o 1;;11
0o 0o . 0 : :
0 .0 AP | e |22 |

have the same interpretation as above.

The enforcing of continuity across I'*/* is more complicated in this case. For this
purpose let’s define matrix Bg, which has for each node N € 1, NT'*/* a row of zero
entries except 1, —1 at the positions corresponding to the indices of N in Q% and

7k

14

Qik. In the case of corner nodes that belong to four subdomains, the problem is
solved by means of following three rows

by o2 L0 2 L 2 vz

2 2 2 2
by | = .- 1 ... —1 0 0 e |,
bs 0 0 1 S

whose four nonzero columns ¢, j, k,[correspond to four nodes joined with global
indices i, j, k,[. If these nodes belong to the contact interface I'., rows by, by, b3 are
used to form matrix Bg, otherwise row b; moves to B; possibly replacing all other
rows with nonzero columns i, j, k, [and rows by and b3 moves to Bg (see Figure 3.4).

1,1 ... 2,1 2,..]
Q Q Q Q

u; U

u~‘ ‘u
nl, 2 AlD 1 nz, 2 nz,p2
- - - -

Figure 3.4: Corner nodes belonging to four subdomains

The modified problem after above described refinement then reads

1
min iuTAu — fTu st. Bju <0 and Bpu =0. (3.4)

15

Chapter 4

Dual Formulation

Although (3.4) is a typical quadratic programming problem, it is not very suitable for
numerical computation especially because of ill conditioning, singularity of stiffness
matrix A or complicated feasible set. How to avoid above introduced complications
is to apply duality theory of convex programming.

The Lagrangian of problem (3.4) looks

1
L(u, A\, Ag) = 5uTAu — fTu+ M Bru + M\, Bpu, (4.1)

where \; and A\p denote Lagrange multipliers associated with inequalities and equal-
Ar

and B = By the Lagrangian gets simplified
AE Bg

ities. Using notation A = [

form
1
L(u, \) = 5uTAu — fTu + AT Bu.
The problem (4.1) is then equivalent to the saddle point problem

find (@, A\) s.t. L(@,\) = sup inf L(u, \). (4.2)

Ar>0 U

For fixed A, the Lagrange function is convex in the first variable and the minimizer
u satisfies equation

Au= f — BT\, (4.3)

which expresses, from a physical viewpoint, the subdomain equation of equilibrium
with Neumann boundary conditions. Equation (4.3) has solutiom iff

f—B")XeImA, (4.4)

16

which can be expressed by means of a matrix R whose rows span the null space of
matrix A

R(f — B™\) =0. (4.5)

Matrix R can be formed directly so that each floating subdomain is assigned to a
row of R with ones at positions of nodes belonging to this subdomain and zeros
elsewhere. The solution u of (4.3) with assumption that A satisfies (4.4) can be
evaluated by formula

u=A"(f — B"\)+ R a. (4.6)

Here AT denotes matrix satisfying AAT A = A such as generalized inverse or Moore-
Penrose pseudoinverse, considering effective solution of given problem - Farhat and
Roux proposed to use left generalized inverse with

AT = AT

for A* non-singular considering fixed subdomain and

it il K{Il 0 i
a5 0

K, Ki,
e
singular considering floating subdomain - in this case matrix A° is symmetric positive
indefinite matrix because of absence of Dirichlet boundary conditions, while with
FETI method the local boundary conditions are of Neumann type, and matrix K?,
is positive definite with dimension equal to the rank of A’ and therefore the Schur
complement K%, — Ki Ki,' K, have to be zero.

Further

with permutation matrix S* and non-singular matrix K¢, for A® = [

a=—(RB"BR") '"RB"BA*(f — B™))

denotes vector of constants determined by relation BA*(f — BT)) + BRTa = 0,

with B = [B } and E formed by rows of By, that correspond to active constraints
E

latter characterized by A; = 0.
Substitution of (4.6) into problem (4.2) and some manipulations lead to mini-
mization problem

1
min 5ATBA+BTA —~ MBATf st. \; >0 and R(f — B")\) =0, (4.7)

17

whose Hessian is positive definite and conforms with one from FETT basic method by

Farhat and Roux [5], having relatively favorable distributed spectrum for application
of the conjugate gradient method.
The illustration of the main idea of dual formulation is showed in the Figure

4.1 - the large problem with primary variable u representing displacement in subdo-
mains nodes is transformed to the significanty smaller problem with dual variable A
representing the “gluing” forces on interfaces.

U4 u7 Ui U2 Uo2s U3 Ugdo U4 Ussuss Uel
L L L L4 o
Ao A An
._u 2 Ll‘; u x" ._u 20 Ll‘%.! u (\" “u 38 u‘:| u 44" “Ll 56 u.f) u A:"
4 L 9€¢ L 9 & 9 @ 9
Ao Aa| A nf
U3 ue Uo U2 U24 U2 U3oua2 Uas U s7Ug U6 A A A
o o o o T ToT T © T T T
Uil iz uie UasUsz Ux U46U 49 U 52 U6l 67 U 70
Ak s Aokl Ankndx Aos Moo
b Py ae o a h P se o a
4 L ¢ £ 9 € & ¢ & 9
unus ug U20U3 U3s U47U 50 Us3 UesUes U7 Ao ha| € }\.He
Y VY 9 1Y A 1o As o Ais
unuis uis U3 U3z Use UagUsi Use U6 U UT2

Au = fs.t. Bju < 0and Bgu =0

18

FA=dst.A\; >0and G\ =e¢

Figure 4.1: Main idea of dual formulation

Chapter 5

Modifications of Problem

Even though the problem (4.7) is much more suitable for computation than (3.4),
further improvement can be achieved by adapting simple observations and results
of Farhat, Mandel and Roux [6] consisting in formulation of equivalent problem
with augmented Lagrangian that has spectral properties guaranting optimal con-
vergence of conjugate gradient method. Before incorporation of these observations
let’s establish following notation

F =BA*BT, G = RB",
d = BAf, ¢=Rf

and let T" denote a regular matrix that defines the orthonormalization of the rows
of G used for definition of matrix

G =TGaG,
and vector
e="Te.
The problem (4.7) after this denoting has form
1 ~
mmiﬂTA—Vﬂ&tAIZOdeA:a (5.1)

The problem of minimization on the subset of the affine space is transformed to
the problem on subset of vector space by means of arbitrary A which satisfies

G\ = e,
while the solution is looked for in the form A = A +). Because of relation

1 N I P
iﬂFA—ﬂd:§VTA—AWd—FM+§VTA—ﬂ@

19

using old notation and denoting d = d—F X, the problem (5.1) is equivalent to
N T Yy
min §A FAX—Xd st. A\ > =) and G)A=0. (5.2)

Further improvement is based on the observation, that the augmented Lagrangian
for problem (5.2) can be decomposed by orthogonal projectors

Q:GTG and P:]—Q

on the image space of GT and on the kernel of G, while they satisfy among others
following relations

ImQ = KerG and ImP = ImG”
P=pPr=pr'p and Q=0"=Q7Q.

The modified dual formulation of problem (5.2) has then the form
min %/\TPFP)\ —MTPd s.t. A\; > —X; and G\ = 0. (5.3)
Let’s investigate for a comparison the distributions of the spectrums of Hessians
H, =F+ pGTG, Hy=F + pG'G and H; = PFP + pQ

of the augmented Lagrangians corresponding to the problems (5.1), (5.2) and (5.3),
with the assumption that the eigenvalues of F' are in the interval [a, b], the eigen-
values of GTG are in [y,6] and o(A) denotes a spectrum of square matrix A. Using
the analysis of |7] it is possible to obtain following estimates

o(Hy) Cla,blUla+ py,b+ pd], o(Hz) C [a,b]U[a+ p,b+ p] and
o(Hs) € [ap,bp] U {p}

where [ap,bp] C [a,b] denotes the interval of non-zero eigenvalues of PF'P (see
Figure 5.1). If p is sufficiently large and v < p, then the spectrum of H; is distributed
in two intervals with the larger one on the right, while the rate of convergence of
conjugate gradients for minimization of quadratic function with H; depends on the
penalization parameter p. In the second case the situation is much more favorable
for Hs, because the spectrum is always distributed in two intervals of the same
length and the rate of convergence is governed by the effective condition number
R(H>) = 2, so that the number k» of conjugate gradient iterations for reducing the
gradient of the augmented Lagrangian Lo(X, i, p) = tAT(F + pQ)A — Xd + p"GA
for (5.2) by € satisfies

1 4 2
ko < —int (—bln <—> + 1)
2 a €

20

50/ 50
— . —x
02 04 o6 o8 1 12 14 16 18 E o 5 10 is 20 25 30 B2 o 02 [08 08 1

50 50]
2 25
x 10" 0 100 200 300 400 500 600 700 800 900 1000 o 100 200 300 400 500 600 700 800 900 1000

Figure 5.1: Example of spectrum distributions of Hessians (H = 1/8,h =1/2,p =
10%)

and does not depend on the penalization parameter p. In the third case the Hessian
Hj of the augmented Lagrangian Ls(\, p1, p) = AT (PFP + pQ)A — A'Pd + " GA
is decomposed by projectors P and () whose image spaces are invariant subspaces
of H3 and the number k3 of conjugate gradient iterations for reducing the gradient
of L3(A, i, p) for (5.3) by e satisfies

ks < 1int (b—Pln <g> +3) ,
2 ap €

while according to the analysis of the FETI method by Farhat, Mandel and Roux
following relation is valid

ap
— < const—
bp — h

with A denoting the mesh and H subdomain diameter (see Figure 5.2). Thus the
rate of convergence does not depend on penalization parameter p or discretization
parameter h, but it is bounded by the constant given by the ratio %

21

Figure 5.2: Mesh and subdomain parameters

22

Chapter 6

Algorithm for Quadratic
Programming with Equality
Constraints and Simple Bounds

This chapter focuses to the description of the algorithm for augmented Lagrangian,
that is a variant of algorithm proposed by Conn, Gould and Toint [8] for identifi-
cation of stacionary points of more general problems and supplied by the adaptive
precision control of auxiliary problems in Step 1, so that the algorithm aproximates
new Lagrange multipliers for equality constraints in the outer loop, while quadratic
programming problems with simple bounds are solved in the inner loop. The al-
gorithm treats each type of constraints separately, so that efficient algorithm using
projections and adaptive precision control in the active set strategy [9] may be used
for the bound constrained quadratic programming problems.
First let’s define the augmented Lagrangian for problem (5.3)

1 1
L\, i, p) = §ATPFP)\ ~\'Pd+ "G+ 37 QA7
its gradient

g(\ 1, p) = PFPX — Pd+ GT (u+ pG\)

and projected gradient g = ¢g”(\, p, p) of L at \ given componentwise by

p g; for N> —\ or ig I
min(g;,0) for M\ =-)\ and i€l

Y

with I denoting the set containing the indices of constrained entries of \.

Algorithm for simple bound and equality constraints

23

Step 0 : Inicialization of parameters:

parameter typical value of parameter role of parameter

0<a<l a=0.1 for equality precision update
g>1 8 =10 for penalty update

po >0 po = 104 initial penalty parameter

Mo > 0 o =0 initial equality precision

M >0 M = 10* for balancing ratio

10 1 =o initial vector

k k=20 number of iterations

Step 1 : Find * so,that ng()\k,,uk,pk)H <M HG)\kH
Step 2 : If ||gp()\k,uk,,0k)|| and M ||G)\kH are sufficiently small then
A¥is the solution
Step 3 : If ||GA*|| < i then
Pt =+ ok GAF, prr = ok, Tk = o
else py1 = Bpr, Mkt1 = M
Step 4 : Update: £k = k + 1 and return to Step 1

Note: The salient feature of this algorithm is that it deals with each type of con-
straint completely separately and that it accepts inexact solutions for the auxiliary
box consrained problems in Step 1. The algorithm has been proved to converge for
any combination of parameters satisfying given conditions, while only parameters
po and M are problem dependent (py should be larger than M - the algorithm is
designed so that it warrants the adaption of p to all parameters including M).

Just the instruction for the gain of A* in the Step 1 remains for completeness of
presented algorithm. Step 1 can be realized by the minimization of the augmented
Lagrangian L subject to \; > —\; by efficient algorithm for the solution of con-
vex quadratic pragramming problems with simple bounds proposed independly by
Dostéal and Friedlander and Martinez, which can be considered a modification of the
Polyak algorithm.

If we assume that p and p are fixed, we are allowed to write O(\) = L(\, p, p).
Let I and E denote the sets of indices corresponding to the entries of dual vectors
Ar and A\ and let A(\) and F()\) define the active set and free set of indices of A

A(A):{ieI:Ai:—Xi} and f(A):{i:Ap—XiormE},

determining the chopped gradient ¢© and the inner gradient g’ of () in following
way

gf=g; for i€ F(\) and g/ =0 for ie A())
g¢ =0 for ieF(\) and g¢°=min(g;,0) for ie A(N).

24

The unique solution A = A(u, p) of auxiliary problems satisfies the Karush-Kuhn-
Tucker conditions expressed by the relation

hence the solution of problem
minf(\) st A > =)
satisfies the Karush-Kuhn-Tucker conditions if the following relation is valid
9" =g"+ 4%

The precision of the solution of auxiliary problems is controlled by norm of violation
of Karush-Kuhn-Tucker condition ¢¢ in each inner iterate y* by

9% < Tlg" (v)

while I' > 0 and y° satisfying this inequality is called as proportional. The algorithm
explores the face

)

WJ:{y:yi:_Xi for Z'EI}

with a given active set J C I until the iterates are proportional, otherwise if 4/ is not
proportional, a new 3! is generated by means of descent direction d* = —g“(y*)
(without violating any constraint) in step called proportioning, that is succeeded by
exploring the new face defined by J = A(y"t1).

Algorithm of General Proportioning Scheme

Let a feasible A\’ and I' > 0, |[I" = 1| be given. For i > 0 choose \'*! by following
rules

Step 1 : If A’ is not proportional, define A'*! by proportioning

Step 2 : If A’ is proportional, choose a feasible A*™! so that O(A“!) < A(\)
and \“*! satisfies either condition: A(*) C A(A!) while A" is not proportional,
or A™! minimizes 6 subject to A € W, J = A(\Y).

This algorithm is applicable for the minimization of convex quadratic functional
6()\) with Step 2 implemented by means of conjugate gradient method.

25

Algorithm of Conjugate Gradient Method for Proportioning

Step 0: 3% =\F

Step 1 : Generate by conjugate gradient method the aproximation 7* for
min {0(y) : y € Wy, J = A(y°)}

Step 2 : If 4" is feasible or proportional or not minimizes #(\) subject to
)\[Z —)\[then

¢t =1+ 1 and return to Step 1
Step 3: If 4/ is feasible then
ARFL — i
else y' =y~ ! — aigpi is not feasible but we can find &' so that
AFL = i — aipt is feasible and A(NF) ¢ A(NFH)
The resulting algorithm has name feasible proportioning |?|.

To touch up the performance of conjugate gradient method it is possible through
the preconditioning consisting in finding a suitable matrix C~! that aproximates in
our case matrix F'~!, so that modified system is more easy to solve than the original
one. The use of lumped preconditioner in the form C~' = PBABT P + () offers for
this purpose.

26

Chapter 7

PETSc 2.0 - Equipment for Parallel
Implementation

Before the description of the parallel implementation I would like to introduce first
a tool, that was instrumental in all the realization - its name is PETSc. What does
the word “PETSc” mean? The name PETSc is the abbreviation formed by the initial
letters of the Portable Extensible Toolkit for Scientific Computation, developed by
Argonne National Laboratory by group formed by Balay, Gropp, McInnes and Smith
[10].

PETSc is a suite of data structures and routines that provide the building blocks
for the implementation of large-scale application codes on parallel and sequential
computers especially used for the numerical solution of partial differential equations
and related problems on high-performance computers. A number of parallel lin-
ear and non-linear equation solvers and unconstrained minimization modules using
modern programming paradigms enables development of large scientific codes writ-
ten in C, C++ or Fortran. PETSc 2.0 uses the MPI standard for all message-passing
communication and routines from BLAS, LAPACK, MINPACK, SPARSPAK and
BlockSolve95. Technique of object oriented programming provides enormous flexi-
bility and code reuse. The library is hierarchically organized according to level of
abstraction (see Figure 7.1).

PETSc consists of a variety of components, which manipulate a particular family
of objects. These components are:

e index sets

e vectors

matrices (sparse and dense)

distributed arrays (useful for parallelizing regular grid-based problems)

Krylov subspace methods

27

Level of .
Abstraction Application Codes
(My Domain Decomposition
PDE Solvers
TS
SNES (Time Stepping)
(Nonlinear -Equati(-)n‘s Slolyers)
(Unconstrained Minimizations) SLES
KSP (Linear Equations Solvers)
(Krylov Subspace Methods)
PC
Draw (Preconditioners)
Mat Vec IS
(Matrices) (Vectors) (Index Sets)
BLAS LAPACK MPI

Figure 7.1: Organization of the PETSc Library

e preconditioners

e non-linear solvers

e unconstrained minimization

e timesteppers for solving time dependent PDEs

e graphics devices.

Each of these components consists of an abstract interface and one or more im-
plementations using particular data structures. Thus PETSc provides clean and
effective codes for various phases of solving PDEs, with a uniform approach for each
class of problems, as well as a rich environment for modeling scientific applications
and for algorithm design and prototyping.

28

Chapter 8

Parallel Implementation

This chapter gives a simplified overview of the most relevant phases of the algorithm
and the description of their implementations.

The program consists of two parts, namely from generator of input objects (see
function Chess () in the Appendix) and from the solver of model problem given by
these input objects (see function FETI() in the Appendix).

Each processor works with local part associated with its subdomains. For sim-
plification let X[**] denote this local part or the restriction of object X on current
processor specifying by rank (rank =0, ..., size — 1, with size denoting number of
processors being at disposal in communicator for our computation).

Most of computations appearing in this program are purely local and therefore
parallelizable, but some operations requires data transfers. I distinguish two kinds
of these data transfers in my program, namely:

e data transfer that picks up the contributions from all processors and then
distributes the complete result to each of processors - such a transfer is denoted
in description of parallel scheme as [-] (e.g. computation of dot products of
parallel distributed vectors, computation of the norm of parallel vector, matrix
by vector multiplication G\ etc.)

e data transfer that picks up the contributions from all processors and then
distributes the appurtenant part of result to appurtenant processor - such a
transfer is denoted in description of parallel scheme as [-] (e.g. assembling
of sequential vector on one of processors from particular results located on
other processors and conversion of this sequential vector by means of scatter
functions into parallel vector - matrix by vector multiplication Bf etc.)

8.1 Objects Defining Model Problem

I would like first to describe a part generating input objects - stiffness matrix A, ma-
trix B describing the interconnectivity of subdomains, vector of forces f and matrix

29

R representing the null space of A. These objects are distributed over the proces-
sors, so that their localy stored portions of the same size correspond to relevant
subdomains. The data distribution of various types of objects over the processors
showing the local portions is then presented in the Figure 8.1 - matrices and vectors
are simply divided into size-equal length segments. Let N denote the primal di-
mension (number of primal variables) and Ng,,; denote the dual dimension (number
of dual variables size of vector of Lagrange multipliers).

The allocation of memory needed for storage of these matrices including distri-
bution is realized by PETSc function

MatCreateMPIAIJ(PETSC_COMM_WORLD,int m,int n,int M,int N,
int dnz,int *dnz,int onz,int *onz,Mat *mat)

where PETSC_COMM_WORLD is a communicator comprising all processors being at dis-
posal for computation, then follows numbers of local rows m, local columns n, global
rows M and global columns N, parameters dnz,*dnz,onz,*onz have to do with a
control dynamic allocation of matrix memory space, specifying by MPI the fact, that
mat is parallel matrix and by AIJ its sparse format (all the matrices used in pro-
gram are of this format). If the communicator consists only of one processor then
following function is used

MatCreateSeqAIJ(PETSC_COMM_SELF,int M,int N,
int nz,int *nz,Mat *mat)

only with indications of global dimensions and other parameters of the same meaning
as above.

For vectors the situation is analogous - it is possible to use two functions accord-
ing to size of communicator, namely

VecCreateMPI (PETSC_COMM_WORLD,int n,int N,Vec *vec),
VecCreateSeq(PETSC_COMM_SELF,int N,Vec *vec).

So the components defining the model problem include:

e stiffness matrix A - global number of rows N, local number of rows stored
on processor N/size, global number of columns N, local number of columns
stored on processor N

e matrix B? for interconnectivity of subdomains - global number of rows N,
local number of rows stored on processor N/size, global number of columns
Nayal, local number of columns stored on processor Ny,

30

e matrix R’ of null space of A - global number of rows N, local number of
rows stored on processor N/size, global number of columns N, local number
of columns stored on processor N,, with N, denoting the number of floating
subdomains

e vector of forces f - global number of elements N, local number of elements
stored on processor N/size.

Dirichlet boundary conditions for nodes of fixed subdomains are incorporated, so
that rows of matrix A corresponding to these nodes are set to 0.0, on diagonal is
put 1.0 and the same positions in vector f are set to 0.0.

A B" R'f G" A
processor[0]]
processor(11| I [|
processor2l] I N J[_Hj-
processor3l| I RIE

Figure 8.1: Example of data distribution over 4 processors

8.2 Implementation of Dual Formulation and Mod-
ifications

Objects presented in previous section are input parameters for domain decompo-
sition solver - function FETI(). Before the start of algorithm it is necessary to
execute preparatory phase consisting in dual formulation (presented in chapter 4)
and modifications (presented in chapter 5). The descriptions and comments of the
realizations follow:

e Computation of matrix
F =BA'BT

- the principle of efficient programming is to avoid time-consuming operations
and that is beyond dispute that the matrix by matrix multiplication is one
of them. Fortunately, only matrix by vector multiplication crops up in this
algorithm and it is performed as Fvecy = B(A*(BTvecy)). The action of AT
can be evaluated by means of Cholesky or LU decomposition of 2 stiffness
submatrices on each processor (factorization of 2 blocks is sufficient in our

31

case, because there are only 2 types of subdomains - fixed and floating) and
the storing of this matrices is also acceptable. These two submatrices can be
obtained on each processor by means of PETSc function

MatGetSubMatrices (Mat mat,int n,IS *irow,IS *icol,
MatGetSubMatrixCall scall,Mat *submat),

which exploits on the basis of arrays of index sets (IS is data type containing
indices) to extract n submatrices from a matrix mat, submat then points to an
array of current matrices. In this case two IS are created on each processor
- IS[0] defines global indices of rows and columns of stiffness submatrix first
stored on processor - candidate for generalized inverse of fixed subdomain, and
IS[1] defines global indices of rows and columns of stiffness submatrix last
stored on processor - candidate for generalized inverse of floating subdomain,
identical to submatrix Ki; defined in chapter 4 (that means last row and last
column of this submatrix are cut off). For purpose of factorization PETSc
provides functions

MatCholeskyFactor(Mat mat,IS perm,double fill),
MatLUFactor (Mat mat,IS rowperm,IS colperm,double fill)

performing in-place Cholesky factorization of a symmetric matrix or in-place
LU factorization of matrix respectivly, while index sets define permutations
of possible orderings and £i11>1 is the predicted fill expected in factored
matrix, as a ratio of the original fill. Having factored matrices L[k] (such that
A = LIK]L[k]", where k = 0 if 4 indicates fixed subdomain and k = 1 if
i indicates floating subdomain), one can then solve system A‘z[k] = b[k] by
means of the function

MatSolve(Mat L[k],Vec bl[k],Vec x[k]).

If it is necessary to compute product vec; = Atwvec; (where vec; = BTvecy
denotes vector of the same type as vector f, and vecy vector of the same type
as vector d), the procedure is following: on each processor is created an array
is of index sets IS (for one subdomain one index set of global indices of vecf of
the same size as corresponding L[k]), is[i] defines the part from vector vecf
for scatter into vector b[k] at positions defined by index set isb[k] (k=0 if
i indicates fixed subdomain and k=1 if i indicates floating subdomain), while
the following functions are used

VecScatterCreate(Vec vecf,Vec b[k],IS is[i],IS isb[k],
VecScatter *ctx),
VecScatterBegin(Vec vecf,Vec blk],INSERT_VALUES,

32

SCATTER_FORWARD,VecScatter ctx),
VecScatterEnd(Vec vecf,Vec b[k],INSERT_VALUES,
SCATTER_FORWARD,VecScatter ctx),

followed by solution of system above introduced MatSolve(Mat L[k],Vec
blk],Vec x[k]). Acquired solution x[k] is then put back into vecf at posi-
tions defined by index set is[i] using calls of scatter functions with changed
arguments

VecScatterBegin(Vec x[k],Vec vecf,INSERT_VALUES,
SCATTER_REVERSE,VecScatter ctx),
VecScatterEnd(Vec x[k],Vec vecf,INSERT_VALUES,
SCATTER_REVERSE,VecScatter ctx),
VecScatterDestroy(VecScatter ctx),

while the last function destroys a scatter context created by VecScatterCreate ().
In the case of floating subdomain we have to set the position in vector vecf cor-
responding to cut off row and column to value 0.0, this is value of Schur comple-
ment Ki,— K% Ki,' Ki, presented in chapter 4. All these operations concerning
AT are performed on each of processors with own local portions without any
communication. The communication is then required for matrix by vector mul-

tiplications vecgfa”k] —= PBTlrank] [vecga”kq and vecg‘mk] = B[m”k]vecgfa”k])

The product Fvec, is computed at least once per cg-iteration and although it
is efficiently performed in parallel way, it dominates the overall time because
of large primal dimension.

Computation of matrix

G = RBT

- since the size of the dual problem can be still considerable large, I have de-
cided to parallelize the vector of Lagrange multipliers A (and of course vectors
of the same type denoting as vecy) and matrix GT in such way that each of
processors owns nearly the same local portion éT[”mk], namely for vector \ -
global number of elements Ngyq, local number of elements stored on processor
Nyuai/size, for matrix G- global number of rows Ny,q;, local number of rows
stored on processor Nyyq/size, global number of columns N, local number of
columns stored on processor N,. Although a matrix by matrix multiplication,
as was mentioned above, does not belong to efficient operations, there is no
way how to avoid it. Also PETSc provides no function for this multiplica-
tion and so nothing else is left, as tranform matrix by matrix multiplication
GT = BRT to matrix by vector multiplication Bvec;, while vec; is vector
created by i — th column of matrix R? and obtained by function

33

MatGetColumnVector (Mat RT,Vec vecf,int i),

the result then forms i — th column of matrix G7 - fortunately number of
columns of matrix R” is small - equal to number of floating subdomains N,. All
the computation is done in parallel, the communication is required only during
the distribution of these IV, result vectors over the processors in communicator.
For more details see the function ComputeMatG().

Parallel scheme:

'GV'T[rank] _ {B[rank]RT[rank]J ‘

icol icol

e Computation of vector
d= BA*f

- matrix by vector multiplication is realized according to scheme A*vec; intro-
duced in item concerning a matrix F. Matrix by vector multiplication Bvecy
is performed in parallel but the communication is necessary to convert the
result into the parallel vector d - for more details see function BLLvec ().
Parallel scheme:

gﬂr(mk] — LB[rank] (A-l—[rank]f[r(mk])J)

e Computation of vector

e=Rf

- in line with the formats of R and f, this matrix by vector multiplication is
also parallelized.
Parallel scheme:

= [R[r(mk]f[rank]")

All presented operations have to be done how in case of basic version so in case of
projected and projected-preconditioned one. However, for last two named versions
it is necessary to execute still following modifications:

e Computation of matrix

G=TG

with T" denoting a regular matrix that defines the orthonormalization of the
rows of G. Further acceleration of computation reached via projectors built

34

thanks to matrix G is paid by orthonormalization of columns of matrix G7.
For this purpose the classical Gram-Schidt algorithm was chosen, that appears
more suitable for parallelization of this problem than modified or iterated clas-
sical Gram-Schmidt [11]| (classical Gram-Schmidt requires half the number of
floating-point operations, on parallel computers it can be much faster than
modified Gram-Schmidt and its parallel efficiency equals that of iterated clas-
sical Gram-Schmidt). The columns of matrix G are copied into the array g|]
of vectors of type vecy (local size Ng,q/size, global size Nguq) and process of
orthonormalization is performed according to

ol = gl = S gl o) = i = 0 N = 1,

while through this way gained vectors form columns of required matrix G7.
For more details see the function OrthogMatG().
Parallel scheme:

g[l’][rank] — g[i][rank] . Z;—:B [g[i]T[rank]g[j][rank]] g[j][rank]7

rank] — _ glillremt _
S = gy = O Ne L

Computation of vector
e=Te
- problem of finding vector e transforms after some manipulations to problem

to solve the small system of equations GGTe = e, while the product GGT is
computed in similar way as product BR” - see the function ComputeMatGGort ().

Computation of vector X that satisfies relation G\ = e, but being aware of
features of matrix GG, the vector Acan be easy obtained as

A= GTe.
Parallel scheme:

X[r(mk] — GT[rank]e.
Computation of vector
d=d—F\

- vector d is given by difference of vector d and vector acquired as the the
above explained product F\.
Parallel scheme:

d[rank] — &Trank] . {B[rank] (A—l—[r(mk] (BT[rcmk] [X[rank]-‘))J)

35

e Creation of active A(\) and free set F(\) - vector J is used for this purpose
having ones at positions i belonging to F(\), where \; > ¢;, with ¢; = —Xi for
i €I and ¢; = —oo for i € E, and zeros at positions belonging to A(\).
Parallel scheme:

— 1
7

1 for)\[rank] > C[rank]

7)

Jlronk] _ { 0 for Aot < (lrank]

The course of computation is appreciably influenced by initial aproximation of vector
AY (comparison of various aproximations is shown in Tables 9.2-9.4). T take following
aproximations into account in my program:

1.)\?’I = max (O, —);)

0, AN 5,

3. AP = max (—)TZ-,)\i>

here we can look at — A\, ; as at the hindrance and at

1
A=;Bf

computed according to parallel scheme

1
)\[rank] _ - B[rank:] [rank]
o] = 1| plront ans)
as at the optimal estimate of resulting vector A, taking into cinsideration distribution
of forces f on interfaces and arising from relation BY\ = f using orthogonality

BBT = 21y with Ip denoting square unit matrix.

8.3 Implementation of Algorithm

Step 0 contains initialization of following needful parameters - parameters for adap-
tive precision control: o = 107!, 8 = 10, various precisions: 1074 ||d||, 107 |l¢|l,
no = 0.01, initial vector u® and vector ¢, which serves for comparison with vector
AF and subsequent update of active A(\) and free F(A) sets (problem dependent
parameters M, py and I' are set by user from command line).

Step 1 consists of QP problem to find A¥ so that ||gP()\’“, u*, or) H <M Hé)\k — gH

(or ||g”(Nk, p¥, pi)|| < M ||GA¥||) and it is realized by function QP(). This step
contains:

36

e Computation of vector
b=d—G'(u—pe) or b=Pd—G"p

for basic version or for projected and projected-preconditioned versions respec-
tively.
Parallel scheme:

b[rank] d[rank:] _ GT[rank] (
d

L — p€) or

b[rank] [rank] __ GT[rcmk] I'G[r(mk]d[rank]'l _ GT[rcmk]lu.

e Computation of residuum

r=(F+pGTG)A—b or r=(PFP+pQ)A—b

for basic version or for projected and projected-preconditioned versions respec-
tively (with relevant vector b). The product (F + pGTG)\ or (PFP + pQ)\
is computed by the function FrhoGGvec () employing the function BLLvec ().
Parallel scheme:

r[rank] — [B[Tank:] (AJr[rank] (BT[rank] [/\[rank:Tl))J +
+p éT[rank] [é[rank])\[rank{‘) _ b[rank]} or
7a[rcmlc] — U[rank] _ GT[rank] (G[rank]v[r(mk]"l +
+p (GT[r(mk] (G[rank]/\[r(mk]") _ b[rank],
with v = LB[rank] (A-l—[rank] (BT[rank] [/\[r(mk] _ GT[r(mk] [G[r(mk])\[rank]""l))J

o If M > 0 computation of the norm nyes = Hé)\ — ¢||/in case of basic ver-
sion or Nyes = ||GA|lin case of another one else nf.,s = 0 - see function
ComputeNfeas().

e Computation of projected ¢*, inner ¢’ and chopped ¢¢ gradients and their
norms using the PETSc functions

VecPointwiseMult (Vec r,Vec J,Vec gI),
VecNorm(Vec g,Scalar norm)

and my function ChoppGrad().
Parallel scheme:

gl[r(mk] — J[rank]‘ % r[rank])

—[rank] « T[rank] 0) :

C[rank] — min (Jz

7

gP[rank] — gl[rank:] 4 gC[r(mk]7

with J denoting the negation of vector .J.

37

Iteration k + 1 of QP problem while ||¢g”|| > max (10*4 HJH , M

gP
gC

G — 'éH) (or
> max (1074 ||d||, M * [|G)]|)) (note: this test realizes Step 2) consists in case
< T'||g"|| of following steps:

e Initialization of initial solution y and starting direction vector p

y=A\p=g'

Parallel scheme:

y[rank] —)\[rank] [rank] _ ql[rank]

bl . M

e Performance of CG-iteration n, + 1 while ||g”|| > 107* H&H (or ||g"| >

10~*||d||) and oy = @ and ||g|| < T'||g’|| consists in following updates

Ap = (F + pGTG)p or Ap = (PFP + pQ)p

pAp = p" Ap

Qg = TT])/])A])

Proportioning() - this function returns values «, k44, proc

y=y—ap

r=r—adp

compute ¢’, g%, g* and their norms

w = g' or w=J. * (C~1g’) for basic and projected or preconditioned version
Beg = ApTw/pAp

p=w— ﬁcgp

Parallel scheme:

Aplrank] = | Blrank] (g+{rank] (pTlrent] [plrankl]))| 4 p (éT[rank] ’Vé[rank]p[r(mk]-‘
or Ap[rank] — U[rank] _ GT[rank] "G[rank]v[rank]—l +p (GT[rank] {G[rank]p[rank]—‘)
with v = LB[r(mk] (A—l—[r(mk] (BT[r(mk] "p[rcmk] _ GT[rcmk] "G[rank]p[r(mk]'l")”
pAp — I'pT[rank]Ap[mnk]"

Qg = "TT[r(mk]p[mnk]" /pAp

Proportioning() - this function returns values a, kpq, proc

Y

y[rank] — y[r(mk] _ &p[r(mk]

T[rtmk] — T[rtmk] _ &Ap[r(mk]

compute g!lrankl gClrank]l g Plrank] anq their norms according presented scheme
wlrank] = gllrank] for hasic and projected version or

w = Jrenkl (Ctrank] Tgllrank]]) for preconditioned one
Bcg — [ApT[Tank]w[rank]—‘ /pAp
p[rank] — w[rank] _ ﬁcgp[rank]

38

e Function Proportioning() explores the decline of energy functional in y—agp
compared with the value of energy functional in y - if §(y — a.gp) < 6(y) then
is used steplength & = a,4 and there is found £,,,, as the largest index ¢ such
that y; — aegpi and J; =1, else if y; — aypi < ¢; and p; > 0 then k4, = ¢ and
0 < & < ag, is found as smallest (y; — ¢;)/pi, otherwise & = 0. Return value
proc indicates rank containing index Kj,q;. S0 if kpee # —1&&rank = proc
then yk,,.. = Ckpon-

e Update of vector A\ according to
i = max (y;, ¢;)
Parallel scheme:

)\Erank] — max (yl[rumlc]7 Cgrank]) ‘

e Update of A(\) and F()) - that means update of vector J realized by function

UpdateSets().
J; =0
else
J, =1

)\i = max()\i, Cl‘)
Parallel scheme:

if)\Erank:] _ cgrank]

Ji[rank:] —0
else
Ji[rank:] 1
)\Erank] — max()\Erankk Cgmnk])

e Computation of new residuum
r=F+pGTG)A—b or r=(PFP+pQ)A—b
according to parallel scheme presented already in Step 1.
e Computation of ¢/, ¢, ¢* and their norms - already presented

Iteration k 4+ 1 of QP problem while ||gPH > max (10’4 HJH s M % Hé)\ - gH) (or

while ||¢”|| > max (107*]|d||, M « |GA|)) (note: this test realizes Step 2) consists
in case ||g¢|| > I'||g"|| of following steps:

39

e Initialization of direction vector

p; = min (r;,0)

Parallel scheme:

pgrank:] — max (Tz[rank:]7 O))

e Performance of one CG-iteration n., + 1 concerning following updates

Ap = (F + pGTG)p or Ap = (PFP + pQ)p

pAp = pT Ap
g = 1T p/PAp
Y=Y — QP

r=1T— QAp
update of A()\) and F(A) - vector .J
compute ¢', ¢¢, g* and their norms

Parallel scheme:

Ap[rank] — LB[rank] (A+[rank] (BT[rank] [p[rank]—l))J +p (éT[Tank:] lré[rank]p[rank]
or Ap[rcmk] — U[rank] _ GT[r(mk] "G[rank],v[r(mk]'l +p (GT[rcmk] I'G[r(mk]p[rank]") 7
with v = LB[r(mk] (A—l—[r(mk] (BT[r(mk] "p[rcmk] _ GT[rcmk] "G[rank]p[r(mk]'l")”
pAp — [pT[rank]Ap[rank]"

Qg = (TT[r(mk]p[rank]" /pAp

y[rank] — y[r(mk] _ acgp[rank]

T[rtmk] [rank] [rank]

b

=r — g Ap
update of A()\) and F()) - vector JI™] according to presented scheme
compute g![renkl gClrank] o Plrank] and their norms according to presented scheme

Step 3 of Algorithm for simple bound and equality constraints then consists in
update of parameters for adaptive precision control and vector of secondary Lagrange
multipliers p.

e Adaptive precision control

if ‘é)\ - EH < n (or ||[GA|| < n for proj. and prec. version)
1=+ p(GX) (or = p+ p(GA) for proj. and prec. version)
n=an

else
p=pp

40

Parallel scheme: the only communication is required for computation of

’V’G\/f[rank])\[rank]-‘ or "G[r(mk])\[r(mk]"‘)

Steps 1,2,3 are repeated while ||g”(A, p, 0)|| > 10~ HJH and Hé)\ —el| > 107 |e]]

(or while ||gF(A, 11,0)|| > 107*[|d|| and [|GAl| > 10~*[e]|) . In case of projected
or projected-preconditioned version there is executed operation

A=XA-\0

at the end of algorithm.

41

Chapter 9

Numerical Experiments

Numerical experiments should confirm the theoretical results and ilustrate the be-
haviour of the algorithm on model problem presented in chapter 1 with given burden
(see Figure 9.1)

-3 for (z,y) € (0,1)x[0.75,1)
flz,y)=<¢ 0 for (z,y) € (0,1)x[0,0.75) and (x,y) € (1,2) x [0.25,1)
-1 for (z,y) € (1,2) x[0,0.25)

'
w

i

Figure 9.1: Model problem with concrete parameters

Model problem was discretized by the regular grid defined by mesh parameter
= 1/n and with n + 1 nodes in each direction per subdomain Q¢,i = 1,2. Each of
these was decomposed into n, x n, rectangles of dimensions H, = 1/n,, H, = 1/n,,.
All the experiments were performed on 8-processors parallel Computer RISC
System /6000 Scalable POWER parallel System with distributed memory = IBM
SP2. It consists from nodes, each node creates self-contained Unix workstation
with own local memory. The nodes are put through by switch-HPS, ATM and
Ethernet interfaces. The nodes are processors POWER2 SuperChip (P2SC) based
on architecture RS/6000, which are able to perform 4 floating point operations in
one cycle. This computer appears as system of one-processor computers with shared
disk space.
During my experiments the IBM SP2 has following configuration

42

| nodel | node2 | node3 | node4 ‘ nodeb | node6 | node7 | node8 ‘

Type Thin2 | Thin2 | Thin | Thin | Thin2 | Thin2 | Thin2 | Thin2
MHz 66.7 | 66.7 | 66.7 | 66.7 160 160 79.2 79.2
MFlops 267 267 267 267
RAM-MB | 128 128 128 128 512 512 256 256

Disk-GB 9 9 9 4.5 4.5 9 9 9
Swap-MB | 384 256 256 256 768 768 512 512
DNS spl sp2 sp3 sp4 Spd spb sp7 sp8

I used 1, 2, 4 or 8 processors and have at disposal for this purpose nodes:
e noded

e node) and node6

e noded, node6, nodel and node2

e noded, node6, nodel, node2, node3, node4, node7 and node8

with possibility to use for the communication over the switch the default ip-protocol
or to set up us-protocol (user-space) - for the imagery the measured bandwidth
between node2 and node3 was with ip-protocol 10.24 MB/sec and with us-protocol
26.22 MB/sec.

The stopping criterium [|gF(X, 1, 0)|| < 107*||d|| and [|GA[] < 10*||e|| was
used for all presented calculations obtained by basic, projected and projected-
preconditioned version of algorithm. The results are then summarized in following
tables.

Table 9.1 shows for given parameters the number of iterations in the outer loop
of augmented Lagrangian algorithm, number of conjugate gradient iterations in the
inner loops for the solution of bound constrained quadratic programming problems
and time taking by this computation using for the communication over the switch
ip- and then us-protocol, that all for basic, projected and projected-preconditioned
version of algorithm. Especially the effect force of projection and preconditioning
and difference between the use of ip- and us-protocol are perceptible from this table.

Tables 9.2-9.4 then ilustrate the sensitivity of the algorithm with projection
to the choice of problem dependent parameters: the balancing parameter M and
penalization parameter py and the impact of initial aproximation A°. It is possible
to say, comparing these three tables, that the most suitable choice are parameters
having values M = 102, py = 10? and as the best initial aproximation seems to be
AV derived from the above presented estimate and being that’s why the cause of
small number of CG-iterations and small number of updates of active and free sets
(perceptible from the large number of CG-iterations per face).

Quality of DD-based algorithm hinges on two important properties: numerical
scalability with respect to the mesh parameter A and the subdomain parameter H,

43

and parallel scalability with respect to the number of processors. The first property
characterizes the rate of convergence - number of iterations should decrease with
decreasing value H (that means with increasing number of subdomains) and fixed
mesh parameter h. The second property characterizes the measure of algorithm’s
applicability for parallel processing and the fact, that parallel implementation pro-
duces larger speedups when larger number of processors are used. It follows that
numerical scalability is a necessary condition for parallel scalability. These both
scalabilities of this algorithm are demonstrated in the Table 9.5 and 9.6 (with re-
spect to the ratio of the decomposition parameter H and discretization parameter
h, with observable time dependence to number of processors), and graphicaly ilus-
trated in Figures . This graphs show necessity of finding suitable size of “coarse
grid” problem given by subdomain parameter H that is large enough to accelerate
convergence and small enough to keep all additional computations and first of all
interprocessor communications acceptable.

Solutions of some problems are then for ilustration drawn near in the Figures
9.2 (the solution corresponding to domain decomposition presented in Figure 3.3)
and 9.3.

44

-0.02

-0.04

-0.06

-0.08

Figure 9.2: Solution of model problem with h =1/2 and H =1

45

-0.01

-0.015

_0.03

-0.035

Figure 9.3: Solution of model problem with h = 1/16 and H = 1/4

46

Table 9.1: Comparison of basic, projected, projected-preconditioned version with
ip & us protocol for regular decomposition H = H, = H, with parameters M =
102, pp = 102,T =1 on 1,2,4,8 processors with initial aproximation A%

h H | primal | dual FETI procs | out. | cg. | cg.iter. | time | time
dim. | dim. | version iter. | iter. | /face ip us

1/16 | 1 578 17 basic 1 6 26 3.25 0.11 | 0.10
2 6 28 3.5 1.35 | 0.23

proj. 1 3 13 2.6 0.05 | 0.05

2 3 13 2.6 0.43 | 0.11

projprec. 1 3 14 2.8 0.06 | 0.06

2 3 14 2.8 0.53 | 0.15

1/32 | 1/2 | 2312 167 basic 1 5 95 8.6 0.62 | 0.62
2 5) 88 8.0 2.43 | 0.83

4 5 88 8.8 741 | 1.63

proj. 1 4 34 3.8 0.32 | 0.32

2 4 34 3.8 1.15 | 0.43

4 4 34 3.8 3.01 | 0.87

projprec. 1 4 29 3.2 0.34 | 0.34

2 4 29 3.2 1.31 | 0.50

4 4 29 3.2 3.11 | 1.00

1/64 | 1/4 | 9248 | 863 basic 1 6 26.2 | 12.20 | 12.08

2 6 546 26.0 | 26.69 | 12.80

4 6 549 26.1 | 55.10 | 21.42

8 6 539 25.7 | 89.66 | 25.55

proj. 1 4 32 8.0 294 | 2.94

2 4 32 8.0 6.46 | 1.98

4 4 32 8.0 5.11 | 2.96

8 4 32 8.0 6.93 | 2.51

projprec. 1 4 27 6.8 3.08 | 3.05

2 4 27 6.8 5.55 | 2.21

4 4 27 6.8 6.17 | 2.80

8 4 27 6.8 8.21 | 3.02

47

Table 9.2: Comparison of the impact of given problem dependent parameters py and
M for projected version with us-protocol for regular decomposition for h = 1/128
and H = 1/4 (primal dimension 34848, dual dimension 1695) on 8 processors with
initial aproximation \%!

M | py | out. | cg. | cg.iter. | time
iter. | iter. | /face us

10° [100 | 8 33 3.7 8.30
10! 7 36 4.0 9.12
102 6 37 4.1 8.28
100 | 5 40 5.0 10.72

10! | 10! 6 36 5.1 9.59
10| 5 34 4.9 7.91
100 | 4 38 5.4 8.26
100 | 3 39 6.5 12.29
102 | 10% | 4 35 5.8 7.60
10| 3 37 7.4 9.36
100 | 2 37 7.4 7.94
10° 1 38 9.5 11.62
10 [10° | 3 34 8.5 7.79
104 | 2 35 8.8 7.78
10° 1 36 9.0 10.61

48

Table 9.3: Comparison of the impact of given problem dependent parameters py and
M for projected version with us-protocol for regular decomposition for h = 1/128
and H = 1/4 (primal dimension 34848, dual dimension 1695) on 8 processors with
initial aproximation \%!

M | py | out. | cg. | cg.iter. | time
iter. | iter. | /face us

10° [100 | 8 57 2.0 14.08
10! 7 59 2.0 12.38
102 6 69 2.3 13.48
100 | 5 7 3.0 14.20

10! | 10! 6 64 2.6 12.85
10| 5 67 2.4 13.12
100 | 4 7 3.0 13.15
100 | 3 159 2.3 27.05
102 | 10% | 4 71 3.1 12.77
10| 3 71 3.1 17.60
100 | 2 157 2.3 26.66
10° 1 296 2.3 50.58
10 1 103 | 2 155 2.3 26.26
100 2 94 2.4 16.68
10° 1 332 2.3 73.61

49

Table 9.4: Comparison of the impact of given problem dependent parameters py and
M for projected version with us-protocol for regular decomposition for h = 1/128
and H = 1/4 (primal dimension 34848, dual dimension 1695) on 8 processors with
initial aproximation A%

M | py | out. | cg. | cg.iter. | time
iter. | iter. | /face us

10° [10° | 8 | 46 5.1 8.31
10! 7 40 5.0 8.03

102 6 40 5.0 7.54
100 | 5 43 6.1 7.23

10! | 10! 6 39 6.5 7.12
10| 5 39 6.5 6.87
103 | 4 41 7.0 7.25
100 | 3 75 3.0 14.71
102 | 10% | 4 40 10.0 6.64
10| 3 40 10.0 6.65
100 | 2 66 2.8 14.08
10° 1 40 13.3 6.49
10 [10° | 3 68 3.0 12.16
100 | 2 73 3.0 |12.46
10° 1 40 13.3 8.87

20

Table 9.5: Comparison of projected, projected-preconditioned version with us-

protocol for regular decomposition H = H, = H, with parameters M = 102, pg
102, = 1 on 1,2,4,8 processors with initial aproximation A%

h H | primal | dual FETI procs | out. | cg. | cg.iter. | time
dim. | dim. | version iter. | iter. | /face us

1/64 | 1 8450 65 proj. 1 3 25 2.3 3.70
2 3 25 2.3 2.16

projprec. 1 3 31 2.2 4.35

2 3 31 2.2 2.67

1/64 | 1/2 | 8712 | 327 proj. 1 4 44 3.4 2.32
2 4 44 3.4 1.67

4 4 44 3.4 3.07

projprec. 1 4 45 3.2 2.58

2 4 45 3.2 2.01

4 4 45 3.2 3.22

1/64 | 1/4 | 9248 | 863 proj. 1 4 32 8.0 2.94
2 4 32 8.0 1.99

4 4 32 8.0 2.43

8 4 32 8.0 2.63

projprec. 1 4 27 6.8 3.06

2 4 27 6.8 2.21

4 4 27 6.8 2.90

8 4 27 6.8 3.00

1/64 | 1/8 | 10368 | 1983 proj 1 4 37 9.1 42.85

2 4 37 9.1 21.44

4 4 36 9.0 23.13

8 4 34 8.5 13.83

projprec 1 4 33 6.6 52.11

2 4 33 6.6 20.84

4 4 33 6.6 22.96

8 4 33 6.6 14.47

51

Table 9.6: Comparison of projected, projected-preconditioned version with us-
protocol for regular decomposition H = H, = H, with parameters M = 102, pg

102, =1 on 1,2,4,8 processors with initial aproximation A%

h H | primal | dual FETI | procs | out. | cg. | cg.iter. | time
dim. dim. | version iter. | iter. | /face us
1/128 | 1 33282 129 proj 1
2 3 40 1.9 25.31
projprec 1
2 3 54 2.5 29.97
1/128 | 1/2 | 33800 647 proj 1
2 3 62 3.0 11.97
4 3 62 3.0 14.67
projprec 1
2 3 54 2.7 12.25
4 3 54 2.7 14.42
1/128 | 1/4 | 34848 | 1695 proj 1
2 4 38 9.5 7.65
4 4 40 10.0 8.25
8 4 40 10.0 6.64
projprec 1
2 4 38 7.6 8.97
4 4 38 7.6 9.88
8
1/256 | 1/1 | 132098 | 257 proj 1
2 3 62 1.8 399.8
4
8
1/256 | 1/2 | 133128 | 1287 proj 1
2
4
8
1/256 | 1/4 | 135200 | 3359 proj. 4 4 48 8.0 49.23
8 4 47 7.8 31.25
1/512 | 1/8 | 540800 | 14975 proj. 8 316.13

52

Chapter 10

Conclusion

Untill recently the complicated problems were very difficult and lengthy to solve.
The presented algorithm is able to solve problems with hundreds thousands un-
knowns in a few secondes. At practical testing of functionality of this program the
fact was proved, that the algorithm designed by prof. Dostal appears as the most
effective tool for solution of variational inequalities and the genius of this idea was
fully confirmed. The problems as e.g. computation of the tension of system of elas-
tic bodies in contact or contact shape optimization would not be effective solved
without this method, but that is not true in this time. From presented tables the
speed up of computations with more processors is good seen and that’s why next
apparent improvements consists in the use of more processors. I am very pleased to
contribute perhaps to the realization of this method with my, even small part.

33

Epilogue

I have started my work with the citation from the book Theory and Practice of
Numerical Reckonning. I would like to finish it in the same mind: “If we are not
appropriate practised in numerical reckonning, we get as a rule bad results. The
mental depression appearing in consequence of made mistakes becomes a source of
new mistakes.” My large desire is just this depression to be unknown for us during
our work.

54

Bibliography

[1]

2]

131

4]

5]

6]

17l

18]

19]

[10]

[11]

V. Laska, V. Hrugka, Theory and Practice of Numerical Reckonning, Prague
1927.

Z. Dostal, F. A. M. Gomes Neto, S. A. Santos, Duality-based Domain Decom-
position with Natural Coarse-space for Variational Inequalities.

G. Duvant, J. L. Lions, Inequalities in Mechanics and Physics, Springer Verlag,
Berlin 1976.

I. Hlavacek, J. Haslinger, J. Necas, J. Lovisek, Solution of Variational Inequal-
ities in Mechanics, Springer Verlag, Berlin 1988.

Ch. Farhat, P. Chen, F. Risler, F. X. Roux, Simple and Unified Framework
for Accelarating the Convergence of Iterative Substructuring Methods with La-
grange Multipliers, STAM J. Sci. Stat. Comput.

C. Farhat, J. Mandel, F. X. Roux, Optimal convergence properties of the FETI
domain decomposition method, Comput. Methods Appl. Mech. Eng. 115, 1994,
365-385

O. Axelson, A class of iterative methods for finite element equations, Comp.
Meth. in. Appl. Mech. and Eng., 9, 1976, 127-137

A. R. Conn, N. I. M. Gould, Ph. L. Toint, A globally convergent augmented
Lagrangian algorithm for optimization with general constraints and simple
bounds, SIAM J. Num. Anal. 28, 1991, 545-572

Z. Dostal, Box constrained quadratic programming with proportioning and pro-
jections, STAM J. Opt.. 7 (1997), 871-887.

S. Balay, W. Gropp, L. C. Mclnnes, B. Smith, PETSc 2.0 Users Manual,
http://www.mcs.anl.gov/petsc/, Argonne National Laboratory.

F. J. Lingen, Efficient Gram-Schmidt orthonormalization on parallel computers,
Research report, Department of Aerospace Engineering, Delft University of
Technology, 1999

95

[12] Parasol, An Integrated Programming Environment for Parallel Sparse Matrix
Solvers, Project No. 20160, Onera 1996

[13] Z. Dostal, Duality-based Domain Decomposition with Proportioning for the
Solution of Free Boundary Problems, Journal of Computational and Applied
Mathematics 63 (1995) 203-208

26

Appendix

example

o7

