
VŠB - Technical University of Ostrava

Faculty of Electrical Engineering and Computer Science

Department of Computer Science

Graph Partitioning Using Spectral

Methods

2006 Pavla Kabeĺıková

I declare I created this thesis myself. I have cited all literary sources and publications
that I have used.

Ostrava, May 8, 2006 .

I would like to express my thanks to Prof. RNDr. Zdeněk Dostál, DSc. who allowed
me the research fellowship at the Montanuniversität Leoben; to Ao. Univ. Prof. Dr.
Clemens Brand who helped me during whole five months and gave me rich advices
and to O. Univ. Prof. Dr. Wilfried Imrich for his support and kind approach.

Abstrakt

Pro paralelńı programováńı jsou výpočetně rozsáhlé grafy rozdělovány do subdomén
a distribuovány na samostatné procesory. Tato práce prezentuje spektrálńı metody
jako nástroj pro děleńı graf̊u. Lanczos̊uv algoritmus pro výpočet požadovaného
vlastńıho vektoru je d̊uležitou část́ı spektrálńıch metod. Pro vyšš́ı výkon jsou imle-
menovány modifikace p̊uvodńıho Lanczosova algoritmu. Je také popsán v́ıceúrovňový
př́ıstup jako možné zefektivéńı. Nakonec jsou prezentovány výsledky na testovaćım
souboru a je popsán napsaný software.

Kĺıčová slova: děleńı grafu, spektrálńı metody, Lanczos̊uv algoritmus, ř́ıdké matice

Abstract

For parallel computing, large computational graphs are partitioned into subdomains
and distributed over individual processors. This thesis presents spectral partitioning
methods as a tool for graph partitioning. A Lanczos algorithm is an important
component of the spectral partitioning problem to compute the required eigenvector.
For better peformance, some modifications and improvements to the original Lanczos
algorithm are implemented. A multilevel approach as a possible improvement is also
described. Finally, results on testing set are presented and the written software is
described.

Keywords: graph partitioning, spectral methods, Lanczos algorithm, sparse matrix

CONTENTS 5

Contents

1 Introduction 9

2 Background 11

2.1 Laplacian matrix and Fiedler Vectors 11

2.2 Graph Partitioning . 13

3 Spectral Partitioning 15

3.1 Motivation . 15

3.2 A spectral partitioning algorithm . 16

3.2.1 Bisection . 16

3.2.2 K-way partitioning . 17

3.2.3 Lanczos method . 19

3.2.4 Complexity . 22

4 Multilevel Partitioning 24

4.1 Contraction . 25

4.2 Interpolation . 25

4.3 Refinement . 27

5 Disconnected graphs 28

5.1 Breadth First Search . 30

6 Test examples and results 32

6.1 Connedted graphs . 32

6.2 Disconnected graphs . 38

CONTENTS 6

7 Conclusion 40

A Supported file formats 43

A.1 Adjacency list format . 43

A.2 Compressed column format . 44

A.3 Coordinates . 45

B User documentation 46

B.1 The main menu . 47

B.2 Software functions . 48

B.3 The console window . 49

B.4 Mouse control . 50

C Figures 51

LIST OF FIGURES 7

List of Figures

1 A partitioned graph . 14

2 The frequences of vibrating string . 15

3 A maximal independent set . 26

4 An example of disconnected graph patitioning 28

5 Two-dimensional graphs . 32

6 Three-dimensional graphs . 33

7 Dependence of time on count of nodes 34

8 Dependence of count of divided edges on the Lanczos tolerance in
square2 . 35

9 square2 in two parts . 36

10 square2 in four parts . 36

11 Depencence of time on number of partitions 37

12 Disconnected mesh . 38

13 athlete - the whole graph and two parts 39

14 athlete - four parts . 39

15 An example for file formats presentation 43

16 The main window . 46

17 The Open adjacency list format files dialog 47

18 The Open compressed column format files dialog 48

19 The Export divided graph dialog . 48

20 The console window . 49

LIST OF TABLES 8

List of Tables

1 Software performance in dependence on count of nodes 33

2 Software performance in dependence on count of nodes - large graphs 34

3 Dependence of count of divided edges on the Lanczos tolerance in
square2 . 35

4 Depencence of time on number of partitions 37

5 Dependence of BP tolerance on resultant quality of partitioning . . . 39

6 The compressed column format . 44

7 The compressed column format - dimensions file 44

1 Introduction 9

1 Introduction

For parallel computing, large computational graphs are partitioned into subdomains
and distributed over individual processors. The cost of communication between
processors depends on the number of edges between different subdomains. Load
balance constraints require (approximately) equal-sized subdomains.

Finding a partition with minimum number of edges cut is, in general, an NP-
complete problem. Suitable heuristics are based on spectral methods. Spectral
methods for graph partitioning have been known to be robust but computationally
expensive.

We will show the development of hardware equipment enables to compute with
implemented spectral methods in reasonable time. We will present the only one lim-
itation is the size of operationg memory that can be partially solve using additional
storage on hard disk memory.

The size of the separator produced by spectral methods can be related to the
Fiedler value - the second smallest eigenvalue of an adjacency structure. We as-
sociate with the given sparse, symmetric matrix and its adjacency graph a matrix
called the Laplacian matrix. In its simplest form, one step of spectral bisection sets
up the Laplacian matrix of the graph, calculates an eigenvector corresponding to the
second-smallest eigenvalue and partitions the graph into two sets A, B according to
the sign pattern of the eigenvector components. The set of edges joining A and B
is an edge separator in the graph G.

The use of spectral methods to compute edge separators in graphs was first consid-
ered by Donath and Hoffman who first suggested using the eigenvectors of adjacency
matrices of graphs to find partitions. Fiedler associated the second smallest eigen-
value of the Laplacian matrix with its connectivity and suggested partitioning by
splitting vertices according to their value in the corresponding eigenvector. Thus,
we call this eigenvalue the Fiedler value and a corresponding vector the Fiedler vec-
tor. Since then spectral methods for computing various graph parameters have been
considered by several others. Good summary we can foung e.g. in [14].

Although, various software is available for working with sparse matrix and for
computing eigenvalues and eigenvector, there is no suitable implementation for com-
puting them under C++. Thus, a one part of this work includes implementation
of the Lanczos algorithm in C++. The software aims at working with graph parti-
tioning and at visualization of the graph partitioning using spectral methods. Used

1 Introduction 10

algotithms work without coordinate information but we need the coordinate infor-
mation for the visualisation part which is one of the assets of our software.

In a given testing set of graphs the majority of them has a simple geometric shape.
For testing some other graphs were given and the quality of spectral partitioning was
investigated. In this case the results were not acceptable so another improvement
was included. The sparse matrix format [11] is used and also the special graph-
ics format was suggested and the various conversions between these formats were
included.

In second section, we bring a background on the spectral properties of the Lapla-
cian matrix and the Fiedler vector and we presented the idea of graph partitioning
in general. In section 3, we deal with the spectral partitioning algorithms using
the Lanczos method for getting the second eigenvector of graph. A multilevel algo-
rithm is a possibility how to increase performance of whole partitioning. We present
it in section 4. In section 5, we are solving the problem of disconnected graphs
partitioning. The results on testing sets are presented in section 6.

In appendix, we bring some overview about storage formats using in written
software and there is also short software documentation included.

2 Background 11

2 Background

2.1 Laplacian matrix and Fiedler Vectors

Let G = (V, E) be an undirected, unweighted graph without loops or multiple edges
from one node to another, on |V | = n vertices. Let A = A(G) be an n×n adjacency
matrix relevant to G with one row and column for each node, au,v equal to one if
(u, v) ∈ E and zero otherwise. For a simple graph with no loops, the adjacency
matrix has on the diagonal. For an undirected graph, the adjacency matrix is
symmetric.
The Laplacian matrix L(G) of G is an n × n symmetric matrix with one row and
column for each node defined by

L(ij)(G) =

di if i = j
−1 if i 6= j and (i, j) ∈ E
0 otherwise

for i, j = 1, ..., n, where di is the vertex degree of node i. Since the Laplacian
matrix is symmetric, all eigenvalues are real. From the Gershgorin circle theorem,
all eigenvalues are nonnegative. Thus, L(G) is positive semidefinite.

The matrices L(G) and A(G) are related via

L = D − A,

D is a diagonal matrix where dii is the vertex degree of node i.

Let the eigenvalues of L(G) be ordered λ0 = 0 ≤ λ1 ≤ ... ≤ λn−1. An eigen-
vector corresponding to λ0 is vector of all ones. The multiplicity of λ0 is equal to
the number of connected components of the graph. The second smallest eigenvalue
λ1 is greater then zero iff G is connected. Fan R. K. Chung and B. Mohar [4], [8]
list basic properties of the Laplacian matrix and present a survey of know results
about the spectrum of L(G) with special emphasis on λ1 and its relation to numer-
ous graph invariants. Fiedler [5], [6] calls this number algebraic connectivity. Fiedler
also investigated graph-theoretical properties of the eigenvector corresponding to λ1,
called second eigenvector. The coordinates of this eigenvector are assigned to the
vertices of G in a natural way and can be considered as valuation of the vertices of G.
Fiedler called this valuation characteristic valuation of G. Some of his results follows.

2 Background 12

Theorem 2.1.1 Let G be a finite connected graph with n vertices 1, ..., n. Let y =
(yi) be a characteristic valuation of G. For any r ≥ 0, let

M(r) = {i ∈ N |yi + r ≥ 0} .

Then the subgraph G(r) induced by G on M(r) is connected.

Remark 2.1.1 A similar statement holds for r ≤ 0 and the set M ′(r) of all those
i’s for which yi + r ≤ 0.

From these results simply follows that by dividing a finite connected graph into
two parts according to the theorem at least one of the parts is connected. Practical
results we describe later.

Corollary 2.1.1 Let G be a valuated connected graph with vectices 1,2,...n, let y =
(yi) be a characteristic valuation of G.

1. If c is a number such that 0 ≤ c < max(yi) and c 6= yi for all i then the
set of all those edges (i, k) of G for which yi < c < yk forms a cut C of G.
If N1 = {k ∈ N |yk > c} and N2 = {k ∈ N |yk < c} then N = (N1, N2) is a
decomposition of N corresponding to C and the subgraph G(N2) is connected.

2. If yi 6= 0 for all i ∈ N the set of all alternating edges, i.e. edges (i, k) for which
yiyk < 0, forms a cut C of G such that both subgraphs of G are connected.

Let us have a look on some other important properties of L(G). These are
standard results, presented e.g. [1], [5].

Theorem 2.1.2 Suppose v ∈ Rn, v 6= 0. Then

~vT L(G)~v =
∑

(i,j)∈E

(xi − xj)
2

Moreover if L(G) · v = λ · v, the second smallest eigenvalue λ1 is given by

λ1 = min
~v⊥(1,1,...,1)

~vT L(G)~v

~vT~v

2 Background 13

2.2 Graph Partitioning

Let a graph G = (V, E) be the computational grid of some large-scale numerical
problem. We think of a node vi in V as representing an independent job to do.
An edge e = (i, j) in E means that an amount of data must be transferred from
job i to job j to complete all tasks. More generally, we can consider a graph G̃ =
(V, E, WV , WE) with the weights WV as node weights, a nonnegative weight for each
node, and WE as edge weights, a nonnegative weight for each edge. WVvi

means the
cost of job i, WEe(i,j)

means amount of data that must be transferred from job i to
job j.

Partitioning G means dividing V into the union of n disjoint sets

V = V1 ∪ V2 ∪ ... ∪ Vn

where the nodes (jobs) in Vi are assigned to be done by processor Pi. For optimal
partitioning, some conditions should hold:

1. The sums of the weights WV of the nodes in each Vi should be approximately
equal. This guarantees a load balance condition across processors.

2. The sum of the weights WE of edges connecting nodes in different Vi and Vj

should be minimized. This minimizes the inter-processor communication.

In following text, we will always use WVvi
= 1 and WEe(i,j)

= 1 for all i, j.

On Figure 1, we can see a well-partitioned graph. The green nodes belong to V1

and the blue nodes belong to V2. Both sets are the same size and the sum of edges
connecting V1, V2 is minimal, so both conditions are satisfied.

Parallel computing is a way to decrease computational time for numerical prob-
lems related to large computational grids, or graphs. Graphs are partitioned into
subdomains and distributed over individual processors. Partial problems can be
solved in individual processors, but in global view we need informations from all
processors together. The main idea we can describe for the important problem of
the sparse matrix-vector multiplication.

Consider the computation y = A ·x, where the sparsity pattern of A corresponds
to the adjacency matrix of G as above. To map this problem to parallel computation,
we assume node vi stores xi, yi and Ai,j for all j such that Ai,j 6= 0. The weight

2 Background 14

Figure 1: A partitioned graph

of node i is the number of floating point multiplications needed to compute yi, the
weight of e(i, j) represents the cost of sending data from node j to node i.
The algorithm for computing y = A · x follows:

1. For each i, the processor owning node i gets all xj for that Ai,j 6= 0. Iff xj is
stored on another processor, get it from there.

2. For each i, the processor owning node i computes yi =
∑
j

Ai,j · xj .

3 Spectral Partitioning 15

3 Spectral Partitioning

3.1 Motivation

The spectral partitioning algorithm is based on the intuition that the second lowest
vibrational mode of a vibrating string naturally divides the string in half (Figure 2).

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

lowest frequency

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1
second lowest frequency

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1
third lowest frequency

+

+

+ +

−

−

Figure 2: The frequences of vibrating string

Applying that intuition to the eigenvectors of a graph we obtain the partitioning.
The lowest eigenvalue of the Laplacian matrix is zero and corresponding eigenvector
of all ones provides no information about the graph structure. More interesting
is the second eigenvector (Fiedler vector). Dividing its elements according to the
median we obtain two partitions (section 3.2.1). We can also use the third, fourth
or bigger eigenvector to obtain three, four or more partitions but in fact there is
always used only the second eigenvector.

3 Spectral Partitioning 16

All the algorithms mentioned in the following work with second eigenvector and
deal with graph bisection, that means they divide the vector set V into two disjoint
sets: V = V1 ∪ V2 that are equally large. To obtain more graph parts they could
be applied recursively, until the parts are small and numerous enough. In fact, we
try to find an edge separator E ′ - the smallest subset of E such that removing E ′

from E divides G into two disconnected subgraphs G1 and G2, with nodes V1 and
V2 respectively.

3.2 A spectral partitioning algorithm

3.2.1 Bisection

In this section, we describe how to search an edge separator of a graph G. Recall
(see 2.2) we can get two parts of G with nearly equals number of vertices and we
also require the size of cutting edges to be small.

Let have a connected graph G = (V, E) as in (2.2) and let ~v = (v0, v1, ..., vn) be a
second eigenvector - the Fiedler vector of the Laplacian matrix of G. In following,
we always consider G is connected thus multiplicity of the zero eigenvalue is one
and the second eigenvalue is greater than zero. The idea of spectral partitioning is
to find a splitting value s such that we can partition vertices in G with respect to
evaluation of the Fiedler vector. In fact, we create two sets of vertices, denote them
V1, V2. The first set of vertices corresponds to vi ≤ s and the second corresponds
to vi > s. We call such a partition the Fiedler cut (theorem 2.1.1) and we consider
median of v as s. If there is only one component equal to median then V1, V2 differ in
size by at most one. If there are several components equal to median we arbitrarily
assign such vertices to V1 or V2 to make these sets differ in size by at most one.

Let V ′
1 denote the vertices in V1 that are adjacent to some vertex in V2, and

similarly let V ′
2 denote the vertices in V2 that are adjacent to some vertex in V1. Let

E1 be the set of edges with both end vertices in V1, and let E2 be the set of edges
with both end vertices in V2. Let E ′ ∈ E be the set of edges of G with one point
in V ′

1 and the second in V ′
2 . The E ′ is an edge separator of G. Both V ′

1 and V ′
2

are vertex separators corresponding to the edge separator E ′. Thus, to every edge
separator, two vertex separators are naturally related. However, we will not work
with vertex separators.

Now, we can set up an algorithm for spectral partitioning of graphs:

3 Spectral Partitioning 17

Algorithm 3.2.1 (Spectral bisection)
Input: a graph G = (V, E)
Output: graphs G1 = (V1, E1), G2 = (V2, E2)

1. compute the Fiedler eigenvector v

2. search median of v

3. for each node i of G

3.1. if v(i) ≤ median
put node i in partition V1

3.2. else
put node i in partition V2

4. if |V1| − |V2| > 1 move some vertices with components equal to median from
V1 to V2 to make this difference at most one

5. let V ′
1 be the set of vertices in V1 adjacent to some vertex in V2

let V ′
2 be the set of vertices in V2 adjacent to some vertex in V1

set up the edge separator E ′ - the set of edges of G with one point in V ′
1 and

the second in V ′
2

6. let E1 be the set of edges with both end vertices in V1

let E2 be the set of edges with both end vertices in V2

set up the graphs G1 = (V1, E1), G2 = (V2, E2)

7. end

3.2.2 K-way partitioning

Let us consider a connected graph G = (V, E) as in section 2.2, n = |V |. K-way
partitioning of G is a division of its vertices into k disjoint subset of size nearly
equal to n/k. The main idea is to apply the spectral bisection as much as necessary,
exactly until we have desired count of parts (say k).

There are two posibilities. When k is power of two, we use recursive bisection in
its simple form. When k is not power of two, we have to use a modified recursive
bisection. Let us consider the first case now.

3 Spectral Partitioning 18

Algorithm 3.2.2 (Recursive bisection)
Input: a graph G = (V, E); an integer k (count of desired partitions)
Output: graphs G1 = (V1, E1),..., Gk = (Vk, Ek)

1. apply Spectral bisection(G) (3.2.1) to find G1, G2

2. if (k/2 > 1)

2.1. Recursive bisection(G1, k/2)

2.2. Recursive bisection(G2, k/2)

3. return partitions G1, ... Gk

4. end

Now, we will look in detail on the situation when k is not a power of two. Recall
when we used the Fiedler vector for bisection, we used median as the splitting value.
Now, we will use another quantil to get appropriate partitions.

Algorithm 3.2.3 (Modified spectral bisection)
Input: a graph G = (V, E); quantil (of desired size |V1|)
Output: graphs G1 = (V1, E1), G2 = (V2, E2) of prescribed size |V1|, |V2| = |V |−|V1|

1. compute the eigenvector v

2. search quantil (%) of v

3. for each node i of G

3.1. if v(i) ≤ quantil
put node i in partition V1

3.2. else
put node i in partition V2

4. 5., 6. as in (3.2.1)

7. end

3 Spectral Partitioning 19

Algorithm 3.2.4 (Modified recursive bisection)
Input: a graph G = (V, E); an integer k (count of desired partitions)
Output: graphs G1 = (V1, E1),..., Gk = (Vk, Ek) of nearly equal size |Vi| − |Vj| = ±1

1. if (k > 1)

1.1. k1 = bk/2c
k2 = k − k1

quantil = k1/n

1.2. apply Modified spectral bisection(G, quantil) (3.2.3) to find G1, G2

1.3. Modified recursive bisection(G1, k1)
Modified recursive bisection(G2, k2)

1.4. return partitions G1, ... Gk

2. else end

3.2.3 Lanczos method

In this section, we will describe how to get the second eigenvalue and the second
eigenvector of a graph. We do not need a particularly accurate answer because we
are only going to use the pattern of the second eigenvector to perform the parti-
tioning. As we will see in section 6.1, a rather loose or a very strict error tolerance
on computing the second eigenvalue and the second eigenvector has no essential
influence on a resultant partitioning.

Since L is a sparse matrix in all practical applications, the algorithm most suitable
for solving this problem is a Lanczos algorithm. Given a sparse symmetric matrix
L (n × n), Lanczos computes a symmetric tridiagonal matrix T (j × j,), j << n,
such that the eigenvalues of T are good approximations to the extreme eigenvalues
of L and also eigenvectors of T can be used to get approximate eigenvectors of
L. The most expensive part of the Lanczos process is typically the sparse matrix-
vector multiplication with L. Usually the smallest and largest eigenvalues of L are
approximated at first so we need to compute j multiplications, but practically j is
much smaller than n.

In its simplest form, the Lanczos algorithm follows. This is essentially Algo-
rithm 9.2.1. (The Lanczos Algorithm) from [7] according to C++ conventions -

3 Spectral Partitioning 20

vector indices start with zero instead of one, thus, we must involve some changes in
steps order. We also consider ε as tolerance on desired accuracy to computation of
eigenvectors. Input vector v is randomly generated and normalized to having unit
2-norm. We assume the existence of a function L.mult(v) that returns a sparse
matrix-vector multiplication L × v.

Algorithm 3.2.5 (Lanczos algorithm)
Input: a symmetric matrix L ∈ Rn×n; a vector v ∈ Rn; ε as tolerance
Output: a symmetric tridiagonal matrix Tj ∈ Rj×j

1. u = L.mult(v);

2. j = 0;

3. while |β[j]| > ε

3.1. α[j] = vT u; u = u − α[j] · v; β[j] = ‖u‖2;

3.2. for i=0:n

tmp = v[i]; v[i] = u[i]/β[j]; u[i] = −tmp · β[j];

3.3. u = u + L.mult(v)

3.4. j = j + 1;

4. end

At each step j, the algorithm produces a tridiagonal matrix

Tj =

α[0] β[0] 0 ... 0
β[0] α[1] β[1] ... 0
...
0 ... β[j − 3] α[j − 2] β[j − 2]
0 ... 0 β[j − 2] α[j − 1]

.

The eigenvalues of Tj , also called the Ritz values, are the Rayleigh-Ritz approxi-
mations to the eigenvalues of L from the subspace spanned by the vectors v arised
in each iteration of the Lanzcos algorithm. Assign Vj as matrix of those v.

3 Spectral Partitioning 21

In this form, the Lanczos algorithm delivers very good approximations to the
large eigenvalues instead of converging to the desired second smallest eigenvalue.
A practical implementation for numerical computing of the largest eigenvalues is
described in [9]. Our implementation is based on this work. Since we are specificelly
interesed in the second smallest eigenvalue we need to make several modifications.
At first, we will use instead of L a matrix L̃ = −L, comming out from rule the
largest eigenvalue of L is equal to the negative of the smallest eigenvalue of −L.
Second, we use a reorthogonalization to get second smallest eigenvalue instead of
the first eigenvalue which is zero. However, we do not need reorthogonalization in its
full form in this case. At each step we explicitly orthogonalize the current Lanczos
vector v with given vector e = (1, 1, .., 1) (the first eigenvector). In this way, we
always stay in the subspace orthogonal to the trivial eigenvector (1, 1, .., 1) and the
eigenvalue zero is removed from the problem.

Let us assign the largest eigenvalue of Tj as τj . For better performance1, we
also involve finding a narrow interval which contains the second eigenvalue λ1 and
we also involve computing a bound on |τj − λ1|. The main idea is to solve an
actual tridiagonal system Tj in each step to preconditioning a right boundary of
the interval containing λ1 (left boundary is zero). In the second iteration of j, we
compute the middle eigenvalue of T2 which is used to precondition a narrow interval
of the eigenvalue computed in next step (second eigenvalue of T3) and so on until
the stop condition is break. It comes out from the vibrating model (Figure 2).

To computing a bound on |τj − λ1| we come out from the simple inequality

|τj − λ1| ≤
‖Ay − yτj‖

‖y‖

y = Vjs, s is the normalized eigenvector of Tj corresponding to τj . After several
modifications (see [9]) we get

|τj − λ1| ≤ βjσj

βj is given from the Lanczos process and σj is the j-th component of the eigenvector
of T .

Finally, the Lanczos algorithm looks as follows.

Algorithm 3.2.6 (Modified Lanczos algorithm)
Input: a symmetric matrix L̃ ∈ Rn×n; a vector v ∈ Rn; ε as tolerance
Output: symmetric tridiagonal matrix Tj ∈ Rj×j, λ1 the second largest eigenvalue
of L̃

1described in detail in [9]

3 Spectral Partitioning 22

1. u = L̃.mult(v);

2. j = 0;

3. while |β[j]| > ε

3.1. α[j] = vT u; u = u − α[j] · v; β[j] = ‖u‖2;

3.2. for i=0:n

tmp = v[i]; v[i] = u[i]/β[j]; u[i] = −tmp · β[j];

3.3. u = u + L.mult(v)

3.4. make reorthogonalization of v using e

3.5. j = j + 1;

3.6. if (j > 1)
solve tridiagonal system to get a narrow interval which contains second
eigenvalue of Tj

compute a bound on locality of second eigenvalue

4. solve tridiagonal system Tj with preconditioning from last step to get the second
eigenvalue of L

5. end

For computing the second eigenvector of L, we at first have to search the second
eigenvector w of tridiagonal matrix Tj by some appropriate method and second,
we have to compute desired second eigenvector of L from stored vectors vi

2 (came

from each step of the Lanczos algorithm) and given w (fiedler =
j∑

i=0
viw[i]). In our

program we are using an inverse iteration [7].

3.2.4 Complexity

Let have a look on Modified spectral bisection algortihm (3.2.3) again. There are
several steps. The most expensive step of whole process is computing the eigenvector.

Since the Lanczos algorithm is an iterative algorithm, the number of Lanczos steps
required to compute the second eigenvector will depend on the accuracy desired in

2Note the vectors vi are not sparse vectors so this procedure is the most space required part of
whole algorithm.

3 Spectral Partitioning 23

the eigenvector. We assume the number of iterations of the Lanczos algorithm
required to compute a second eigenvector to a small number of digits is bounded
by a constant [10]. So each iteration of the Lanczos algorithm costs O(const) flops
and in each iteration we have to make one sparse matrix-vector multiplication in
complexity O(n).

Next time demanding step is median (quantil) computing. We are using an
algorithm that selects kth smallest elements from n elements without sorting array
(selip, [12]). Selecting a random element, in one pass through the array, it moves
smaller elements to the left and larger elements to the right. It is important to
optimize the inner loop to minimize the number of comparisons. The general idea
is to choose randomly a set of m elements, to sort them and to count how many
elements of array fall in each of m + 1 intervals defined by these elements. Next we
choose the interval containing the quantil and make next round with m+1 intervals
again until the quantil is localized in single array. The complexity of this algorithm
is bounded as O(n · log(n)).

The third step which divide graph into sets V1, V2 can be done in O(n) time and
the others last steps in the same time.

The investigation of complexity of recursive bisection could be found in the work
by H. D. Simon and S. Teng, [13].

With increasing performance of computers, there decreases the problem of time
complexity and arises the problem of space complexity. Let take an example of graph
with one milion vertices, each with about six neighbours. Simple sparse adjacency
matrix will takes about 40MB (in case of 4B for each nonzero value). Also we need
to count with some additional storage for temporary matrix and vectors.

As we wrote in footnote below the 3.2.6 algorithm, there is problem with store
the vi vectors to compute the second eigenvectors. The vi vectors are not sparse
vectors so they take about 4MB each. In case of one hundred of Lanczos steps, it is
400MB in operating memory.

Fortunately, we can solve this problem with storing this vectors on hard disk
memory and take them after for computing the second eigenvector. It causes the
deceleration of computation but it enables to work with larger graphs. The exact
results are in section 6.

4 Multilevel Partitioning 24

4 Multilevel Partitioning

Although, the Lanczos algorithm is very suitable for solving a sparse matrix problem,
there is a problem with the first step of partitionig - application of the Lanczos
algorithm on whole graph is time expensive process. For improve performance is
good idea to use some multilevel algorithm.

The main idea of the multilevel algorithm is to get a coarse approximation to the
desired eigenvector and then to use another suitable iteration scheme to get a final
eigenvector using coarse approximation from previous step as a reasonable starting
vector.

Again, let us consider a connected graph G = (V, E) as in section 2.2. We will
replace the problem of partitioning the original graph G = (V, E) by the simpler
problem of partitioning a coarse approximation G′ = (V ′, E ′) to G. Given a parti-
tioning of G′, we will use it to get a starting guess for a partitioning of G, and refine
it by an iterative process. In general the multilevel algorithm looks as follows.

Algorithm 4.0.7 (Multilevel algorithm)
Input: a graph G = (V, E), N as a maximum count of nodes of graph, that can be
directly computed via spectral bisection (in a reasonable amount of time)
Output: graphs G1 = (V1, E1), G2 = (V2, E2)

1. if |V | < N
apply Spectral bisection(G) (3.2.1) to find G1, G2

2. else

2.1. compute a coarse approximation G′ = (V ′, E ′)

2.2. (G′
1, G′

2) = Multilevel algorithm(G′)

2.3. expand G′
1, G′

2 to G1, G2

2.4. improve partitions G1, G2

3. end

There are several known algorithms to implement this algorithm effectively. We
will describe a multilevel implementation by Barnard and Simon [2], which is based
on the concept of maximal independent sets. As a suitable iteration scheme they
use a Rayleight Quotient Iteration algorithm. The multilevel partitioning consist
from three main steps:

4 Multilevel Partitioning 25

• contraction

• interpolation

• refinement

Description of them follows.

4.1 Contraction

At first, we need to contract the original graph G = (V, E) into approximate graph
G′ = (V ′, E ′). This step corresponds to the step 2.1. in algorithm 4.0.7. We choose
V ′ to be a maximal independent set with respect to G. See figure 3.

Maximal independent set must hold three conditions:

• V ′ ∈ V

• no nodes in V ′ are directly connected by edges in E (independence)

• V ′ is as large as possible (maximality)

After we have V ′, we can construct the graph G′. The idea is to add vertices not
in V ′ to domains around vertices in V ′ until all vertices not in V ′ take part in some
domain around each vertex in V ′. The domain Di for each node i ∈ V ′ just contain
its neighbors. To constuct edges in E ′ we add an adge to E ′ whenever two domains
intersect. The edges in E ′ now simply connect nodes in V ′ that are adjacent through
another node not in V ′.

4.2 Interpolation

The second step of the Multilevel algorithm is an interpolation and it corresponds
to the step 2.3. in algorithm 4.0.7. The idea is to give a Fiedler vector of some
contracted graph, to interpolate this vector to the next larger graph and to use this
vector to provide a good approximation to the next Fiedler vector.

4 Multilevel Partitioning 26

Figure 3: A maximal independent set

Let us consider a Fiedler vector f ′ = (f(0), f(1), ...f ′(n)), n′ = |V ′| of contracted
graph G′. We will construct an expansion of this vector to the next larger graph
G f̃ = (f̃(0), f̃(1), ...f̃(n)), n = |V | that we will use as an approximation for the
Fiedler vector of original graph. Interpolation consists of two steps: injection and
averaging. The algorithm is briefly described as follows.

Algorithm 4.2.1 (Interpolation algorithm)
Input: a vector f ′ = (f(0), f(1), ...f ′(n)), n′ = |V ′|
Output: vector f̃ = (f̃(0), f̃(1), ...f̃(n)), n = |V |

1. for each node i ∈ V

1.1. if i ∈ V ′

f̃(i) = f ′(i)
... interpolation

1.2. else

f̃(i) =

∑
j∈U(i)

f ′(j)

|U(i)|
, where U(i) are all neighbours of node i in V ′

... averaging

2. end

4 Multilevel Partitioning 27

4.3 Refinement

The last step of the Multilevel algorithm corresponds to the step 2.4. in algorithm
4.0.7 and it involves refining of an approximate second eigenvector to be more ac-
curate. Here could be used the Lanczsos algorithm. In case we have good initial
approximation of a Fiedler vector, it is better to use the Rayleight Quotient Iteration
algorithm which takes usually a few steps to convergence.

We present the algorithm from [7], where ρ ≡ xT Ax
‖xT x‖

is the Rayleigh quotient.

Algorithm 4.3.1 (Rayleight Quotient Iteration algorithm)
Input: a vector f̃ = (f̃(0), f̃(1), ...f̃(n)), n = |V |, a Laplacian matrix L of graph G
Output: vector f = (f(0), f(1), ...f(n)), n = |V |

1. v0 = f̃

2. v0 = v0

‖v0‖

3. i=0

4. repeat

4.1. i = i+1

4.2. ρi = vT
i−1Lvi−1

4.3. solve vi = (L − ρiI)x for x

4.4. vi = x
‖x‖

until convergence

5. f = vi

6. end

5 Disconnected graphs 28

5 Disconnected graphs

In previous sections, we considered the connected graph G = (V, E). Remark3 that
only connected graphs have the second smallest eigenvalue greater than zero and
the relevant eigenvector is the Fiedler vector. In case we would try to apply the
previous algorithms to a disconnected graph, they will not work well because there
would arise multiplicity of the zero eigenvalue.

To work with disconnected graphs, we include several changes. The main idea
is to find all disonnected components, to use some partitioning algorithm for an
appropriate component and to assign remaining components into proper parts.

Let us have a look on figure 4. There is a disconnected graph that consists from
three components. Partitioning of this graph in two equal size parts requires to
divide only the biggest component appropriately. Still, we require two conditions
from section 2.2 to be hold. According to these conditions, we have well-partitioned
graph. The green nodes belong to the first part and the blue nodes belong to the
second part. Note we had to divide only one component so the second part is still
connected.

Figure 4: An example of disconnected graph patitioning

It is clear that in each case we need to split only one of all components. We can
also consider a tolerance to count of nodes in each partition. Thus, we don’t have to
make partitioning if count of nodes in smaller part differs from ideal half less then

3see section 2.1

5 Disconnected graphs 29

tolerance. Let us call this tolerance as BP tolerance (Balance of Parts tolerance).
The algorithm for disconnected graphs follows.

Algorithm 5.0.2 (Disconnected graphs partitioning)
Input: a graph G = (V, E), BP tolerance ∆
Output: graphs G1 = (V1, E1), G2 = (V2, E2)

1. find components of graph; let mark them C0 = (VC0, EC0), ..., Ck = (VCk
, ECk

)

2. if count of component equal one
apply Spectral bisection(G) (3.2.1) to find G1, G2

3. else

3.1. sum = 0

3.2. for i=0..k
sum = sum + |VCi

|
if (sum > |V |/2)
break

3.3. quantil = sum − |V |/2

3.4. if (quantil < ∆)
move C0, ..., Ci−1 to G1 and Ci, Ci+1, ..., Ck to G2

else if ((VCi
- quantil) < ∆)

move C0, ..., Ci−1, Ci to G1 and Ci+1, ..., Ck to G2

3.5. else
apply Modified spectral bisection(Ci, quantil) (3.2.3) to find Ci1, Ci2

move C0, ..., Ci−1, Ci1 to G1 and Ci2, Ci+1, ..., Ck to G2

4. end

We consider partitioning in its simplest form, it means we will get two partitions
nearly equal size (up to tolerance). Proportional or recursive partitioning can be
obtained similarly. It remains to describe the step 1.. An appropriate algorithm to
find connected components is a Breadth First Search algorithm.

5 Disconnected graphs 30

5.1 Breadth First Search

Let a graph G = (V, E) be an undirected, unweighted graph without loops or multi-
ple edges from one node to another. Let choose some node vr from V and let call it
the root. The Breadth first search algorithm in its general form produces a subgraph
T of G on the same set of nodes, where T is a tree with root vr. In addition, it
associates a level with each node vi from V , which is the number of edges on the
path from vr to vi in T .

For our case, it suffices that the Breadth first search algorithm is able to search
all nodes that are available from vr. For getting all connected components, we have
to keep an information about visiting nodes and to aply the Breadth first search
algorithm until all nodes are visited.

Algorithm 5.1.1 (Breadth First Search)
Input: a graph G = (V, E)
Output: list of connected components C0 = (VC0 , EC0), ..., Ck = (VCk

, ECk
)

1. k = 0

2. until all vertices visited

2.1. choose an unvisited vertex vr

2.2. add vr to a new component Ck

k = k + 1
add vr to the stack
mark vr as visited

2.3. until stack is empty

2.3.1. get w from stack

2.3.2. for all unvisited neighbours of w ni

add ni to stack
add ni to actual component
mark ni as visited

2.4. assign all edges between vertices in VCi
to ECi

3. return list of components C0 = (VC0 , EC0), ..., Ck = (VCk
, ECk

)

4. end

5 Disconnected graphs 31

This implementation of the Breadth first search algorithm requires a data struc-
ture called a Stack, or a FIFO (First In First Out) list. There are two available
operations: adding and getting. The adding operation adds an object to the top of
stack and the getting operation removes the top object from the stack and returns
it to use.

6 Test examples and results 32

6 Test examples and results

In this section, we show some practical resuls of written software. Tests were made
on CPU AMD Athlon 64 3000+, RAM 1024MB, Win XP Professional, Microsoft
Visual C++ 7.0 compiler. Our testing set consists from graphs that represent two or
three dimensional computational grid of some numerical problem. We have worked
with four two-dimensional graphs (mesh, square1, square2, square3) and with
four three-dimensional graphs (cube1, cube2, cube3, cube4). There is also one
graph that represent a disconnected graph (athlete). Later, we introduce several
bigger graphs for testing maximal performance.

There are several parametres to observe. We can choose a number of partition,
a Lanczos tolerance (understand tolerance on precision in the Lanzcos algorithm)
or a maximum of Lanczos steps (understand how many iterations of the Lanczos
algorithm we allow) - see section 3.2.3. For the maximum of Lanczos steps, we will
use the maxit abbreviation. In case of disconnected graphs, there is possible to
choose the BP tolerance - see section 5. We will interest especially in computational
time and count of divided edges in sense of the edge separator E ′ from section 3.2.1.
According to section 3.2.1, we denote V as a vertex set and E as an edge set. |V |
denotes count of vertices, |E| denotes count of edges.

6.1 Connedted graphs

On figure 5, we can see two-dimensional graphs and on figure 6, we can see three-
dimensional graphs that we have used for testing purposes.

(a) mesh (b) square1 (c) square2 (d) square3

Figure 5: Two-dimensional graphs

6 Test examples and results 33

(a) cube1 (b) cube2 (c) cube3 (d) cube4

Figure 6: Three-dimensional graphs

At first, we have tested time demands. Table 1 shows the resuls with using
number of partition = 2 and Lanczos tolerance = 0.001.

Table 2 shows the results on large three-dimensional graphs. Again, we have
used the number of partition = 2 and Lanczos tolerance = 0.001. All this graphs
represent cubic grid with maximal degree of vertex equal six. As we have wrote in
section 3.2.4, the main limitation is the space memory. For better idea, see column 7
in the table. The first number means the count of bytes allocated at the beginning in
virtual memory and the second number means the maximum of bytes used during
computation. Since large cube3 we have to use swapp (on hard disk memory)
so the size decreased. We can also see that the only one limitation is the size of
operating memory (or the size of addressable space). On figure 7, graphs are joined
for better illustration4.

NAME dim |V | |E| time[s] Lanczos steps |E ′| |E ′| [% of |E|]
mesh 2D 20 43 0 12 7 16,28%

square1 2D 62 163 0 20 17 10,43%
cube1 3D 63 257 0 17 43 16,73%
cube2 3D 522 2522 0 31 201 7,97%
square2 2D 857 2488 0,015 56 63 2,53%
cube3 3D 4784 24836 0,078 70 896 3,61%
square3 2D 13217 39328 0,406 148 262 0,67%
cube4 3D 14836 79261 0,328 105 1953 2,46%

Table 1: Software performance in dependence on count of nodes

4We have also made measurement of participation of the Lanczos algorithm computation and
the quantil computation on whole time requirements. The results in arithmetic mean: 95,41%
takes Lanczos and 0,08% takes quantil (without table).

6 Test examples and results 34

NAME |V | |E| time[s] L. steps |E ′| VM size .. max size
large cube1 125000 367500 4 120 4669 18 MB .. 146 MB
large cube2 421875 1248750 54 160 9565 59 MB .. 670 MB
large cube3 857375 2545050 106 199 18317 88 MB .. 260 MB
large cube4 1000000 2970000 137 197 19133 101 MB .. 315 MB
large cube5 1520875 4522950 233 201 23483 149 MB .. 463 MB
large cube6 2197000 6540300 372 217 31399 214 MB .. 670 MB
large cube7 3375000 10057500 599 242 41405 325 MB .. 1048 MB

Table 2: Software performance in dependence on count of nodes - large graphs

(a) squares (blue), cubes (green) (b) large cubes

Figure 7: Dependence of time on count of nodes

6 Test examples and results 35

Now, we show the influence of tolerance in the Lanzcos algorithm on final quality
of partitioning. For presentation, we have chosen the square2 graph. Results are
in table 3 and on figure 8. Tolerance 10−4 is a sufficient choise to get an optimal
edge cut |E ′| = 63. In case of two parts, it is evident that the increasing of precision
of tolerance has only small influence on count of divided edges as we assumed in
section 3.2.3. Different situation arises in case of four parts. There is a turn in
points [10−3, 129] and [10−2, 126]. Explanation of this situation is easy. In k-way
partitioning there should hold the conditions of optimality in each level separately
but in global view there could exists some better partitioning which is not optimal
in lower levels but which is optimal in global view. Specifically, the optimal four-cut
|E ′| = 126 corresponds to suboptimal two-cut |E ′| = 67. See figure 9, 10.

TWO PARTS FOUR PARTS
tolerance Lanczos steps |E ′| Lanczos steps |E ′|

10−6 103 63 252 133
10−5 92 63 229 133
10−4 77 63 188 134
10−3 56 64 155 129
10−2 31 67 89 126

5 · 10−2 18 87 56 182
10−1 14 103 40 216

Table 3: Dependence of count of divided edges on the Lanczos tolerance in square2

Figure 8: Dependence of count of divided edges on the Lanczos tolerance in square2

6 Test examples and results 36

(a) tolerance=10−4,
|E′| = 63

(b) tolerance=10−3,
|E′| = 64

(c) tolerance=10−2,
|E′| = 67

Figure 9: square2 in two parts

(a) tolerance=10−4,
|E′| = 134

(b) tolerance=10−3,
|E′| = 129

(c) tolerance=10−2,
|E′| = 126

Figure 10: square2 in four parts

At the end of this subsection, let us have a look on a dependence of time on num-
ber of desired partitions. It is expectable that time grows with number of partitions
but the progress in time is reduced because in higher levels smaller matrices need
to be computed. Let us have a look in table 4 and on figure 11. Note the turns in
points 8, 16, etc. (2k, k = 1, 2, ... generally).

6 Test examples and results 37

cube3 square3

parts time[s] |E ′| time[s] |E ′|
2 0,062 896 0,406 262
3 0,11 1253 0,641 373
4 0,125 1834 0,719 505
5 0,156 2199 0,812 655
6 0,172 2927 0,86 748
7 0,185 2890 0,891 861
8 0,188 3212 0,907 1052
9 0,203 3472 0,907 1023
10 0,218 3951 1 1241
11 0,218 3957 1 1272
12 0,219 4182 1,032 1372
13 0,223 4441 1 1364
14 0,234 4720 1,078 1398
15 0,235 4896 1,109 1543
16 0,235 5184 1,109 1586
17 0,265 5673 1,11 1626
18 0,25 5327 1,125 1709
19 0,25 5606 1,156 1783
20 0,281 5717 1,157 1822

Table 4: Depencence of time on number of partitions

(a) cube3 (b) square3

Figure 11: Depencence of time on number of partitions

6 Test examples and results 38

6.2 Disconnected graphs

The behaviour of disconnected graphs is a little different. Simple demonstration is
on figure 12. The subfigure (a) shows us whole mesh. On subfigure (b), there are
results of first partitioning. On subfigure (c), mesh is partitioned into three equal
parts. One of them is disconnected (green nodes). Sometimes, it could be better
to reduce the condition on equality of parts to get ”more suitable” results. So on
subfigure (d), we have included some tolerance5 (BP tolerance) on count of nodes
in each partition and we have got all resultant parts connected.

(a) whole mesh (b) two parts (c) four parts (d) four parts with tol-
erance

Figure 12: Disconnected mesh

To testing, we have chosen graph of surface of human body, see figure 13 (a). It
consists from six disconnected parts. Right leg (1), left leg (2), swimming trunks
(3), body with hands and head (4), right eye (5) and left eye (6). We have observed
primarily the influence of BP tolerance on resultant quality of partitioning. Results
are in table 5 and a view of graphical output is on figures 13, 14.

The detail view of this figures is in appendix C.

5We have chosen tolerance = 10%. It means that counts of nodes in each part can differ from
ideal third in 10% of all nodes (see section 5). In this case 10% are two nodes. It is too hight for
standard computations but in this case it is acceptable.

6 Test examples and results 39

parts BP tolerance Lanczos tolerance total Lanczos steps |E ′| time[s]
2 0 2 · 10−3 122 127 0,109
2 0 10−3 138 110 0,14
2 15% 2 · 10−3 0 0 0

4 0 10−3 354 297 0,25
4 5% 10−3 274 249 0,234
4 15% 10−3 138 162 0,141
4 15% 10−5 244 248 0,234

Table 5: Dependence of BP tolerance on resultant quality of partitioning

(a) whole graph (b)
BP tolerance=0%,
Lanczos tol.=2 · 10−3

(c)
BP tolerance=0%,
Lanczos tol.=10−3

(d)
BP tolerance=15%,
Lanczos tol.=2 · 10−3

Figure 13: athlete - the whole graph and two parts

(a)
BP tolerance=0%,
Lanczos tol.=10−3

(b)
BP tolerance=5%,
Lanczos tol.=10−3

(c)
BP tolerance=15%,
Lanczos tol.=10−3

(d)
BP tolerance=0%,
Lanczos tol.=10−5

Figure 14: athlete - four parts

7 Conclusion 40

7 Conclusion

Spectral methods for graph partitioning have been known to be robust but compu-
tationally expensive. We have presented appropriate algorithms to compute parti-
tioning in their simple forms and we have also introduced several modifications to
compute partitioning effectively.

We have also investigated various strategies how to achieve an optimal cut in a
reasonable time. The set of test matrices was used to test the influence of several
parameters to resultant quality of partitioning. There were also used some large
graphs to find the limitation of written software.

We have found out the only one limitation is the size of operating memory that
can be partially solve by appropriate datas storing on hard disk memory. There is
also the possibility to use another store structure in the program to decrease the
space demandingness.

On the other hand, we have also brought a new case for visualisation of graph
partitioning.

REFERENCES 41

References

[1] W. N. Anderson and T. D. Morley, Eigenvalues of the Laplacian of a graph,
Linear and Multilinear Algebra, 18:141-145, 1985

[2] S. T. Barnard and H. D. Simon, A Fast Multilevel Implementation of Recur-
sive Spectral Bisection for Partitioning Unstructured Problems, Concurrency:
Practice and Experience, 6(2):101-117, 1992

[3] J. Demmel, http://www.cs.berkeley.edu/∼demmel/cs267/, University of Cali-
fornia at Berkeley, 1996

[4] F. R. K. Chung, Spectral Graph Theory, Regional Conference Series in Mathe-
matics, 92:0160-7642, 1994

[5] M. Fiedler, Algebraic connectivity of graphs, Czech. Math. J., 23(98):298-305,
1973

[6] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and
its application to graph theory, Czech. Math. J., 25(100):619-633, 1975

[7] G. H. Golub and C. F. Loan, Matrix Computation, John Hopkins University
Press, Baltimore, MD, Second edition, 1989

[8] B. Mohar, The Laplacian spectrum of graphs, Preprint Series Dept. Math. Uni-
versity E. K. Ljubljana 26, 261, 1988

[9] B. N. Parlett, H. Simon and L. M. Stringer, On Estimating the Largest Eigen-
value With the Lanczos Algorithm, Math. Comp., 38(157):153-165, 1982

[10] A. Pothen, H. D. Simon and K. Liou, Partitioning Sparse Matrices with Eigen-
vectors of graphs, SIAM J. Matrix Anal. Appl., 11(3):430-452, 1990

[11] R. Pozo, K. Remington and A. Lumsdaine, SparseLib++ Sparse Matrix Class
Library, http://math.nist.gov/sparselib++/, 1996

[12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical
Recipiens in C, Cambridge University Press, Second edition, 1992

[13] H. D. Simon and S.-H. Teng, How good is Recursive Bisection, SIAM J. Sci.
Comput., 18(5):1436-1445, 1997

REFERENCES 42

[14] D. A. Spielman and S.-H. Teng, Spectral Partitioning Works: Planar graphs
and finite element meshes, Technical Report UCB//CSD-96-898, University of
Berkeley, 1996

A Supported file formats 43

A Supported file formats

We can use two formats. As we use the SparseLib++ package by [11] for mathemat-
ical computations, we use the compress column format from there. Second, we can
use the adjacency list format - in this structure data are stored in program. Input
and output are possible in both of them and also conversions between them are
implemented. With both formats is an information about coordinates connected.
The information is stored into the coordinations file.

To illustrate both formats we will use graph on figure 15.

Figure 15: An example for file formats presentation

Adjacency matrix of this graph sees as follows:

A =

0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 1 1 0 0
0 1 1 0 0 1 0
0 0 1 0 0 1 0
0 0 0 1 1 0 1
0 0 0 0 0 1 0

.

A.1 Adjacency list format

Adjacency list file is a text file. The first number represents count of vertices and
the second number represents count of edges6. Each next line describes a node and
its adjacent edges. Indexing starts from one (to compatibility with e.g. Metis).

6In fact, if you don’t know the count of edges nothing happends because we need it only for
information purposes

A Supported file formats 44

Adjacency list is terminated by the end of the line.

Adjacency list file
7 16

2 3

1 4

1 4 5

2 3 6

3 6

4 5 7

6

A.2 Compressed column format

The compressed column format consists from three vectors files and one dimensions
file. They are all stored as text files. Indexing starts from zero. In compressed
column format each column is understood as a sparse vector. Pointers to the first
element in each column are stored in column pointer file (row vector), nonzero values
and their associated row indices are stored in the nonzero values file and row index
file (column vectors). An aditional element is appended to the column pointer file
specifying the number of nonzero elements. See table 6.

column pointer 0 2 4 7 10 12 15 16
row indices 1 2 0 3 0 3 4 1 2 5 2 5 3 4 6 5

nonzero values 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 6: The compressed column format

The dimensions file contains three numbers in one row. First number is a count
of rows, second is a count of columns and third is a count of nonzero values. See
table 7.

dimension 7 7 16

Table 7: The compressed column format - dimensions file

A Supported file formats 45

A.3 Coordinates

For graphical purposes, we need coordinates more. Coordinates are stored in sep-
arated text file, three coordinates for each node on line. There are possible both
positive and negative values.

Coordinate file
0 1 0

0 0 0

1 1 0

1 0 0

2 1 0

2 0 0

3 0 0

B User documentation 46

B User documentation

Program was developed under Microsoft Visual C++ with MFC and OpenGL sup-
port. The source codes and the testing set of graphs are enclosed on CD. To launch
the program you need MFC libraries in your computer. Program starts with opening
graph partitioning.exe file.

Program consists from two windows. First, there is a main window for work with
graphs and second, there is a console window in which we can see the results of
program. We can see the main window on figure 16.

Figure 16: The main window

B User documentation 47

B.1 The main menu

At first, let us have a look on the menu File. It provides functions Open adjacency
list format files and Open compressed column format files for reading graph, function
Export partitioned graph for export graph and the Exit function.

The Open adjacency list format files dialog is on figure 17. There are boxes for
typing an Adjacency list file and a Coordinates file7. You can also choose them from
directory. Default directory is the starting directory of the program. Adjacency list
format is described in A.1.

Figure 17: The Open adjacency list format files dialog

The Open compressed column format files dialog is on figure 18. Similarly, there
are boxes for typing a Dimensions file, a Column pointer file, a Row index file, a
Values file and a Coordinates file. You can also choose them from directory. Default
directory is the starting directory of the program. The compressed column format
is described in A.2.

On figure 19, there is the Export divided graph dialog. There are several possi-
bilities how to export graph. First choice is the Adjacency list format. In this case
there arises one file for each part with appendix * i.txt, i is index of partition.
Indexing of vertices stays the same as in whole graph with blank rows in places of
vertices from another parts. Second choice is the Reindexed adjacency list format.
It differs from previous in system of indexing. It starts from one for each part and
there are no blank rows. Last choice is the Compressed column format. In this
case there arise compressed column format files for each part. They have appen-
dixs * i dim.txt for the dimensions file, * i colptr.txt for the column pointer
file, * i rowptr.txt for the row index file and * i nzerovals.txt for the nonzero
values file, i is index of partition. Indexing of vertices starts from zero for each part.

7In both formats (adjacency list format and compressed column format), you don’t need to
read the coordinates files. In this case you can work with graphs without visualisation. It is good
choise in case of large graphs.

B User documentation 48

Figure 18: The Open compressed column format files dialog

If you choose to export coordinates, there arises one file for each part with appendix
* i coords.txt in each choise of format.

Figure 19: The Export divided graph dialog

B.2 Software functions

Now, let us have a look on software functions in left box of the main window on
figure 16.

First, there is the View functions group. The first check box enable to show or
hide graphical visualisation of graphs. It is important if you can work with large
graphs - the graphical output require quite a bit of operating memory. The second
check box enable to view only one part from partitioned graph. You can choose it
in list box below.

Second, there is the Parameters group. First parameter is the Number of parts.
Here you can choose a count of desired parts as an integer value. Second there is

B User documentation 49

the Use BFS check box for enable/disable a Breath first search. In fact, it is always
used if you are working with a disconnected graph. It provides an information about
count of disconnected components. If it is enabled you can choose a BP tolerance
(Balance of Parts tolerance). For explaining see section 5. The edit boxes for setting
a Lanczos precision (understand tolerance on precision in the Lanzcos algorithm)
and a Max Lanczos steps (understand how many iterations of the Lanczos algorithm
we allow) follow. For explaining see section 3.2.3. The last parameter from this group
is the Use swap check box. It should be enabled during work with large graphs. It
enable to store some information from operating memory to hard disk memory. You
can also choose the size of swap buffer. The button Apply above starts partitioning
with chosen parameters.

Last group is the Viw settings functions group. First item Nodes size enable to
change size of nodes in visible graph. Second item is the Reset view settigs, that
reset all view settings to original (it means nodes size, move and rotation of graph).

B.3 The console window

The console window provides us the informations about partitioning. The typical
view is on figure 20. There are results of partitioning of the square2 graph into two
parts8.

Figure 20: The console window

8see figures 5(c), 9(b)

B User documentation 50

B.4 Mouse control

It remains to descibe the possibilities of visualisation. The view is controled by a
mouse in graphical window.

• Translation (left button + move): translate the graph with mouse move

• Zoom (wheel button + move): zoom in or out in dependence on mouse move

• Rotation (right button + move): rotate the graph around axes x, y, z.

C Figures 51

C Figures

The detail of the figure 13

C Figures 52

The detail of the figure 14

