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Abstract

This thesis deals with the application of Dual problem in quadratic programming and in-

troduces algorithms for solving minimizing problem of quadratic function subject to set pre-
scribed by quadratic constraint functions. We proceed from simple observations to a new
algorithm which was never presented before. Quadratic constraints are characteristic for
contact problems with Coulomb friction.

Keywords: Dual problem, Inverse dual problem, quadratic function, PDP

Abstrakt

Tato prace popisuje vyuziti Dudlni dlohy v kvadratickém programovani a piedstavuje algo-
ritmy pro minimalizaci kvadratické funkce vzhledem k mnoZziné popsané vazebnimi kvadrat-
ickymi funkcemi. Od pozorovéni jednoduchych algoritmi pfechédzi k algoritmu novému,
ktery zatim nebyl nikde publikovan. Kvadratické vazby jsou charakteristické pro kontaktni
tlohy s Coulombovskym tfenim.

Klicova slova: Dudlni tloha, Inverzni dudlni tloha, kvadratickd funkce, PDP
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1 Introduction

In my master thesis I try to show application of Dual problem in minimizing quadratic func-
tions with separable quadratic constraints solutions. This problem arises in problems with
Coulomb friction. The motivation example is presented in Chapter 2.

Formulation of minimizing problem can be found in Chapter 3. In this chapter are given
also graphs of quadratic function and quadratic constraint set of one constraint problem.

I introduce Lagrange function in Chapter 4 and also its utilization in analytical solution
of a simle two dimensional problem. From presented example one can see the point of using
KKT conditions. In this chapter, I introduce two numerical algorithms used later - Conju-
gate gradient method and Modified proportioning with reduced gradient projections. These
algorithms are introduced without detail analysis. Further implementation can be found in
Appendix.

In Chapter 5, I examine KKT conditions for more dimensional problems. Using simple
modifications we can infer Dual problem and Inverse dual problem - two key components
of new algorithm.

In Chapter 6, I try to find meaning of Lagrange multiplier. Due to my observations, it can
be regarded as linear penalty, increasing of which we can attract aproximations to boundary
of constraint set.

Simple algorithms, which use first KKT condition and linear update, are introduced in
Chapter 7. Their convergence depends on the choice of input data. These algorithms are
helpful in costruction of a main algorithm.

Finally, I used all previous observations to introduce the new pretentious algorithm in
Chapter 8 - Projected Dual Problem method (PDP). This algorithm uses both of KKT con-
ditions and update Lagrange multipliers in the best way - it uses projection to boundary of
quadratic constraint set. Numerical tests are also presented.
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2 Motivation

We start with motivation example. This problem consists of solving minimizing problem of
quadratic function with linear inequalities and quadratic inequality constraints. But in this
thesis, I try to solve simpler problem only with quadratic constraints.

Example 2.0.1

Let us consider the steel brick lying on a rigid foundation as it is shown in ﬁgure.1

The brick occupies in the reference configuration the domain w C R?, whose bound-
ary Ow is split into three nonempty disjoint parts v,, 7,, and 7. with different boundary
conditions: zero displacements ,, surface tractions 7, and contact conditions ~. (i.e., the
nonpenetration and the effect of friction).

The elastic behavior of the brick is described by Lamé equations that, after finite element
discretization, lead to a symmetric positive definite stiffness matrix K € R3m<*3% and to
a load vector f € R3". Moreover, we introduce full rank matrices N, 71,72 € R™e*x3n¢
projecting displacements at contact nodes to normal and tangential directions, respectively,
and we denote B = (N rorf T )T € R3nex3nc Here, we shall use the dual formulation in
terms of contact stresses.

We start with the contact problem with Tresca friction that reads as

minimize %)\TQ)\ —\Th,
subjectto A,; > 0,7, + A2, <rfi=1,...,mc

T
A= (AT AT L) A, Ay A, € R,

where Q = BK!BT h = BK~1f, and r; > 0 are given slip bound values at contact
nodes. Let us point out that A\, and \;,, \;, represent normal and tangential contact stresses,

respectively.
n

1This example was introduced and numericaly solved in [5]. More details about model problem can be found
in [6].
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3 Problem definition

In this chapter I formulate minimizing problem and show how quadratic function and set
prescribed by quadratic function looks.

3.1 Quadratic function

Definition 3.1.1 (Quadratic function definition)

The quadratic function has prescription

f(x) = %xTAa: — bl (1)

where
e n € Nis problem dimension
e f:R™ R
e A € R x R? is symetric positive definite matrix

e b € R?" is vector of right sides

Theorem 3.1.1 (Quadratic function gradient)

Gradient of function defined by equation (1) is

vf=Ax -0

Remark: Minimum of 3.1.1 without constraints is equal to solution of system v/ f = o,
respectively Az = b. That is the reason, why we called b the vector of right sides. ~

Proof: Let us consider improvement = + aw of point 2, where z,v € R", o € R
Then

f(z+ av) — f(z) = (;(x + )T A(x + av) — b7 (z + av)) — <;a:TA:E - bT:p) —

1 1
= azT Av — abTv + 5052UTA1) = iaszAv + a(Az —b)Tw
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e z=minf(z) = Az =b
Necessary condition of min f(x)is /f = o
Vflz)=Az—b=>Ar—b=o0= Az =10

e z=minf(z) <= AT =b
Az =b= Az —b=o0
f(@+av) — f(z) = 1a2vT Av > 0,Va € RYv € R”
(A is positive definite)
= f(Z +av) > f(Z),Va € RYv € R"

Theorem 3.1.2 (Existence of minimum)

Function f(z) given by equation (1) has one minimum.
System v/ f = o has only one solution.

3.2 Separated quadratic constraints

Definition 3.2.1 (Constraint function)

Let us define n quadratic constraint functions

def .
gi(x) = x%i_1+x%i—rz~2,z:1,2,...n ()

where
e 1 € Nis number of constraint functions,
o g : R 4 R,

e r € R™ is vector of radii.

If we choose firm ¢g(z) = 0 then the geometric representation of set described by quadratic
function is circle with radius r.
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Definition 3.2.2 (Constraint set)

Quadratic constraint functions define equality constraint set

def

Qp S {z €R™: gi(z) =0,i=1,2,...n}. 3)

We can also define inequality constraint set

def

QS {zeR™: gi(z) <0,i=1,2,...n}. 4)

3.3 Minimizing function subject to constraint set

Definition 3.3.1 (Minimizing problem)
Unconstrained problem: Find
_def .
= 5
o= i (2) (5)
Equality problem: Find
_ def .
g = bied) (6)
Inequality problem: Find
de .
£ Y m f () (7)

Example 3.3.1
Find solution of Equality problem defined by equation 6 with

2 -1 3
SERHE

Geometrically, quadratic function f(x) is a modified elliptic paraboloid.
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Isolines of this function (curves with same function value) are depicted in the following
figure.

10 T T T

-10 . . L
-10 -5 0 5 10

The geometric representation of equality constraint set Qg of (6) is a circle with centre at
[0,0] and radius r = 1.

If we combine isolines and constraint we can estimate the probable location of minimum,
as plotted in the next figure:
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4 Behind the new algorithm

4.1 Lagrange function

Definition 4.1.1 (Lagrange function)
Lagrange function has prescription
L(z, ) < f(z) + Mg(a)
where
e f(z):R™ — Ris cost function
e g(z) : R™ — R is constraint function

e )\ € R is Lagrange multiplier

Theorem 4.1.1 (bounded local extremes subject to equality constraint set)
Let

e f,g:R" - Rbe C!inopensetQ) C R",n > 1

e grad g(z) # (0,...,0) for each z € 2

. QE(i:ef{xEQ:g(x):O}.
Then

1. (Necessary condition of existence of local bounded extreme)
If f has in ¢ € 2 local extreme subject to set {1g, there exists A € R such that cis a
stationary point of L(x) = f(z) + Ag(x), z € .

2. (Sufficient condition of existence of local bounded extreme)
Let ¢ € 2 be a stationary point of function L(x) = f(z) + Ag(z) for some X € R,
let f and g have in ¢ continuous second partial derivatives
and let d>L. (for given \) be positive definite quadratic form.
Then f has in ¢ local minimum subject to Q.
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Theorem 4.1.2 (Sufficient condition subject to inequality constraint set)

Let f, g, L be same functions as in Definition 4.1.1.

LetQ; & {reQ:g(x) <0}
If

e c € () is a stationary point of function L(z) = f(z) + Ag(z) for some A > 0,
e fand g have in c continuous second partial derivatives,
e d’L. (for given )) is positive definite quadratic form

then f has in ¢ local minimum subject to ;.

These theorems (i.e., sufficient conditions) gives us manual how to find bounded local
extremes subject to equality and inequality constraint set.

Definition 4.1.2 (Lagrange function for more constraints)

Lagrange function for problems with m constraints has prescription

L(z,2) € )+ Nigi(x)
i=1

where
e f(x):R™ — Ris cost function
e m > 1is number of constraints
e gi(x) : R™ — Ris one of m constraint functions

e )\ € R™ is vector of Lagrange multipliers
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4.2 Analytical solution

In analytical solution we will proceed with standart “bounded local extremes” search algo-
rithm. At first we consider Equality problem (see Definition 3.3.1). We assume a simple
problem with one quadratic constraint.

Assume Lagrange function for one condition

L(z, A) = f(z) + Ag(x).
For saddle point of this Lagrange function applies

i = min L(z, \) = Z.
min f(z) = min L(z,\) =

In saddle point also holds constraint condition
g9(z) =0

Derivative of Lagrange function in saddle point has zero value (it is stacionary point of
Lagrange function), so our task is to compute derivative of L(z, \) and set it equal to zero.
Since Lagrange function is a function of two variables, we have to compute partial deriva-
tives and solve system of two equations.

1) VyL(z,\) =0

I1.)) VyL(z,\) =0

These conditions are also called “Karush-Kuhr-Tucker conditions” (alias "KKT system”,
see Chapter 5).

So
1) VyL(z,A) =V f(z) + AVeg(z) = Az — b+ 2\x

I1.) VaL(z, A) = Vaf(z) + Vadg(z) = g(x)
and derived KKT system is
1) Ax —b+2 zx =0 (8)
I1.) g(z) =0 )
For Inequality problem, we simply modify second condition

I1.) g(z) <0

Example 4.2.1
Consider Inequality problem with input data

2 -1 3
e B N A



4 BEHIND THE NEW ALGORITHM 11.

So our problem is to find

,_dif .
7 == min f(z)

where
Q€ {z e R?: g(x) < 0}

and one constraint is defined ot
€

o) S ot o

Left-hand side of first KKT equation (8) (we consider A as parameter A € R, A > 0) has

the form
2 -1 T | 3 n 20 x1 | 2x1 — x2 — 3+ 2)x1
-1 2 | oxo 4 2o o —x1 + 229 — 4+ 2Xx9
Thus (8) is transformed to the next system

(2 + 2)\)$1 — X9 = 3
—r1+ (2 +2\)22 = 4.

Using Kramer formulas we obtain

ol 2+2x -1 . 2 (_1\2 _ 2
D_‘ T o | m @2 - ()P =38+
Di=|3 Tl l=3@y2n) - (“1)4=10+6)

1714 2420 |7 T
D2:‘24_F12>‘ 2':4-(2+2>\)—3.(—1)=11+8>\

and parametric solution is (for common case refer to Dual task in Chapter 5)

D1 10 + 6A
X = ——_—m
7D T 348\ +4N2

Do 11+ 8A
Xro = — =

D 3+48\+4)?

Now consider the constraint function

104+6) 7 11+8x \?
2 2
= 1= T L A B
9(x) = @i+ o3 <3+8)\+4)\2) +<3+8)\+4)\2)
and put it equal to zero
10 + 6 2+ 11+ 8\ 2_1
348X +4X2 348 A+4N2)

(10 +6X)% + (11 + 8X)* )
(38N +4X2)2
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(10 + 6X)2 + (11 4 8)\)2 = (3 + 8\ + 42%)?
(100 4 120X + 36A%) 4 (121 + 176X + 642%) = (3 4 8\ + 4)?)(3 + 8\ + 42?)
221 + 296\ + 100\ = 9 + 48\ + 88X\ + 642% + 16)\*
0 = 160* + 64X3 — 1202 — 248\ — 212

This polynom has 4 roots - two of them are real, one is positive. Value of it is approxi-
mately

A = 1.9877,
so the solution after substitution is
_ 0.6318
T = .
0.7751

Example 4.2.2
Consider Inequality problem with input data

4 -1 1
e e N

So our problem is to find

where
and one constraint is defined

First, we refer (8):

4 -1 Ty | 1 4 221 o 4dr1 —x9 — 1+ 221 . 0
-1 2 | oo 1 2A\xo - —x1 + 229 — 1 + 2Xx9 o 0
Now solve system

(4+2N)z1 —22 =1
—r1+ (242 )2 =1

using Kramer formulas

BT N e ,
D_‘ -1 2+2)\'_(4+2>\)(2+2>\) ( 1) =74+ 12\ + 4\
D=1 L =+ (-1 =3+2

YT 242 | T =
D2='4+2A1M:M+2M—W—U=5+2A

-1 1
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Parametric solution is

D 342X
=D T T 12h £ 402
D, 542\

Tr9 = —

D~ T+ 12\ + 422

Constraint function

RS SIS (I L/, S Y 5 S
FE =T == 7 20 1 ane 712X+ 4)2
is set to zero and solved
(342024 (5+20)% = (T+ 12\ + 4)?)?
(9 + 12X 4 4X%) + (25 + 20\ + 4X2) = 16X + 961 + 20002 + 168\ + 49

0= 16A* + 963 + 192\ + 136\ + 15

This polynom has two real roots, but all of them are negative, because minimum of orig-

inal problem naturaly satisfies quadratic inequality constraint.
Thus we search for A > 0 and because founded A < 0, we simply choose A = 0 and get

L(z,0) = f(x) + 0.9(x) = f(z) = minL(z,\) = min f(x)

We can find minimum of this Inequality problem using simple minimalization algorithm
without constraints.

T = ;relg;f(w) = min f(x) & Vo f(z) =0

We solve equation
Az —b=o

Az =10

using Gauss-Jordan elimination method we have

4 =111 4 —-111 4 —-111 28 7|7
-1 2|1 —4 8 |4 0 715 0O 7 |5
28 0112 10 %
0 7|5 0 1|3
We obtain the solution
173
sh

which really satisfies constraint

3\2  /5\? 9425 — 49 15
g(x):x%+x§—r2:<7> +<7> —1:+T:—@<0:>§:e§21
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4.3 Conjugate gradient method

The Conjugate gradient method is iterative method for solving system
Az =1b
where A is symmetric positive definite matrix and b is the vector of right sides.

Remark: The CG method is also used to find minimum of quadratic function with SPD
matrix. (see Remark after Theorem 3.1.1) ~

More information about Conjugate Gradient method can be found in [1].

4.4 MPRGP

Modified proportioning with reduced gradient projections (MPRGP) is iterative method for
minimizing quadratic cost function

1
f(x) = ixTA:B — bz

subject to linear inequalities I € R™
Vi=1,...m:x; >

More information about MPRGP can be found in [2].
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5 KKT system and dual problem

During analytical solution of minimizing problem in Section 4.2 we deduce that in minimum
of Lagrange function are accomplished two equations implied from partial derivatives of
this function. In this section we try to generalize these equations and then we make some
observations which we use into Dual problem definition.

In whole section we consider minimizing problem with quadratic function f : R** — R

and n quadratic constraints which bind together succesively pairs of components of vector
of variables z.

5.1 KKT system
5.1.1 Minimum of Lagrange function

We consider Lagrange function (see Definition 4.1.1)
L(z,\) = f(z) + > Nigi()
i=1
AER™ L:R™™ 4R

and express KKT conditions in saddle point of L(x, \) using Theorem ??

VaLl(z,A) = 7 f(2) + Y X v gi(x) = 020 (10)
i=1
VaL(z,A) = g(z) = on (11)
Remark: o, denote zero vector of n components. R

5.1.2 Duplication of Lagrange multipliers

Now consider first KKT condition (10)

Vi@ + 3N v gi() = o3
=1

At first we express gradient of quadratic function
Vf(x) = Az —b 12)

and gradient of separable quadratic constraints
9g:

oz 0
da; '
09 2oi
vaila) = | g | = | ot | er™ (13)
Dwo; 21
0g; 0

OTan
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Then we substitute (12) and (13) into (10). We obtain

Vf(:v) + Z Ai g@(;v) =Ax —b+ Z ()\i(O, e, 2X9i-1, 2T, . . . ,O)T) =
i=1 =1

2n
=Arx—b+2 (Z )\[;‘1172') = Az — b+ 2diag(\)z
i=1

where 3
X O, AL A2y Aoy A, M) T € R27, (14)

Hence

Ax — b+ 2 diag(\)z = 09y,. (15)

5.2 Dual problem

Let us assume modified first KKT condition (15) and express variable x:

Az — b+ 2 diag(\)z = o9y,

Az + 2 diag(N\)z = b

(A+2diag(\)x =10
= (A+2diag(\) "1 (16)
We call equation (16) Dual problem. It represents relation between variable x and corre-
sponding Lagrange multipliers A (supposing the first KKT condition to be accomplished).

If we have A, we can simply solve (16) with Conjugate gradient method (see Section 4.3) to
get solution z.

Definition 5.2.1 (Dual problem solution)
We say that a pair (z, \) solve Dual problem, if equation

z=(A+2diag(..., \j, \i,...)) "D (17)

is fulfilled.

5.3 Inverse dual problem
5.3.1 Inverse problem

Now we consider situation, when we have approximation z and our task is to find corre-
sponding Lagrange multipliers A that (z, \) solve Dual problem (17) as good as possible.
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Remark: In Dual problem dimension of vector of Langrange multipliers )\ is hNalf of dimen-
sion of variable z. That is reason why not for all z € R*" exists corresponding . ~

From A we require that A given by (14) satisfies (16) as good as possible:
o Vi = 1,...n:5\2i_1 :5\21' :/\i

e equation (17) from Dual problem is accomplished as good as possible

5.3.2 Error function

At first we express \ from Dual problem (16)

Az + 2. diag(A\)z = b
2. diag(A\)z = (b — Ax)
2.diag(z)A = (b — Ax) (18)

From equation (18) we can derive error function, which describes distance of approxi-
mate solution A to exact solution of dual problem equation (16).

err & 2 diag(z)X — (b — Az) (19)

Our aim is to have err as small as possible

lerr||* = err”err
Substitute and compose
errlerr = (2.diag(m)5\ - Ax))T (2.diag(m)5\ - Am)) -
= 4.2\ diag(z)?X — 4. T diag(x)(b — Az) + (b— Az)T (b — Azx) =
— 4. i (R2a2) -4 i (Niwilb — Azls) + (b — An)T (b — Ax) (20)
i=1 =1

But we know Ag;_; = Ag; = \;, SO we can write (20) as follows

4 (W@ +25)) =4 (Ni(waia[b — Azlgi 1 + wilb — Axla)) + (b— Ax)" (b — Aw) =
i—1 i=1

=4\T diag(. .. ,w%i,1+x§i, .. .))\—4.(. ey 21 [b—Al‘]Qi_l—i-(L'Qi [b—AIL']Qi, .. .)/\—i-(b—A(L')T(b—A{E)
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5.3.3 Final simplification

If we denote
QXS diag(...,2% | +2%,..)) (1)
q d:ef 4.(. .. ,xgi_l[b — A.’E]Qz‘_l + Igi[b — Ax}gi, .. .)T (22)

our next task is to minimize
1
mmP=§VQA—f)+@—A@Hmnmy (23)

Further work depends on original problem formulation (due to Definition 3.3.1)

o Equality problem

A = min ||err|?
AER

o Inequality problem
A = min |err||?
A<R

5.3.4 Minimum of error function without constraints

Let us consider Equality problem from Definition 3.3.1.
We look for A € R™ minimizing error function (23). So we have to find roots of first deriva-
tive.
At first we compute first derivative

9 [|lerr||?]

2T on—

o QA —q

Remark: We used remark after Theorem (3.1.1) for minimizing quadratic function.
(@ is symmetric positive definite matrix and

(b — Ax)T (b — Ax)

N =0.

Q

Now we put first derivative of error function equal to zero
A=Q 7
and substitute (21) and (22)
1 ' 1
8" x3;_1+e3;

0

4. T2;—1 [b — Al’]%—l + Zo; [b — A.’E]Qi

We express prescription for i-th element of A

1

—————5 = ($2i_1[b — A$]2i_1 + in[b — A.I‘]Qz) . (24)
2(3331‘71 + w%z)

i =

Thence Inverse Dual problem for Equality problem (see Definition 3.3.1) can be solved
using equation (24). But for Inequality problem we use MPRGP algorithm (see Section 4.4).
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6 Lagrange multipliers

In this chapter we describe Lagrange multipliers and their relation to a proper parameter.
We consider Equality problem (see Definition 3.3.1). In our exploration figures will be very
useful.

6.1 Lagrange multiplier as linear penalty
6.1.1 Linear penalty introduction

Let us consider function f,(x) given by

def

fv(aﬁ) = f(x)+ ng(x) (25)

where v € R" is appropriately chosen constant vector with positive components.
We refer to v as the linear penalty parameter.
We can derive these properties:

o if 2 € 09y, then g(z) = o,
thus f,(z) = f(z) + v7g(z) = f(x) +vT0 = (),

e if z € 2y \ 0Qy, then —c < g(x) < o (meaning —¢; < gi(z) <0,Vi=1...n),
hence f,(x) = f(z) +vTg(x) < f(2)

o if 1 € R?" \ ©; then g(z) > o (meaning g;(z) > 0,Vi=1...n),
therefore f,(z) = f(z) + vl g(z) > f(z).

Due to the observations we can say that linear penalty modifies value subject to constraints -
it increases values in R*" \ Q and decreases in 2y \ 0.

Example 6.1.1
Let us have specific values of Equality problem with one constraint

2 -1 1
SERISHES

and draw isolines of original function f(z) and function with linear penalty f,(z) subject to
one quadratic constraint. We try some different values of linear penalty parameter v.
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Example 6.1.2

Another values can be

But now, for more illustrative example, we put a cross into figure on coordinates where,
for concrete value of v, the real minimum of f,(z) is.
We try to set vg = 0, vi41 = v; +0.25,% = 0, 1..20.
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|
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We can also demostrate difference between value in minimum of original function f and
function f using specific v;.

0 -
—o0k M
T
++ ++++ .
+ o with penalty
-40 ++ +++
+ ++
+
-60r + +
+
+ +
-80+ +
E + +
g
-100F *
Lt
-120
+
-140 -
+
-160
+
_180 1 1 1 1 1 1 1 1 1 J
0 2 4 6 8 10 12 14 16 18 20
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6.1.2 Lagrangie multipliers as linear penalty parameter
For next consideration we will need prescription of common Lagrange function

L, ) = f(x) + N g()
Linear penalty has the same rules as Lagrange function, so logically, we can consider the
vector of Lagrange multipliers as linear penalty parameter.

From Example 6.1.2 we can note that if we increase Lagrange multiplier, the minimum
of L(z, \) will be more closer to the center of the circle defined by constraint function g(z).

Written in limit form

lim (argmin L(z,\)) — o
A—r00

where convergence A — oo means

Vi=1...n:\ — oco.

6.2 Lagrange multipliers sequence

Let us consider a simple two-dimensional problem.

That means, we have only one constraint and also only one Langrange multiplier.

We already tried to find minimum of quadratic function, but this minimum is not from Qg
(see Definition 3.2.2). There exists A which is efficient to construct function L(z,y) which
minimum is in this set. At this point z, the first KKT condition is accomplished (it is the
minimum of Lagrange function at all) also the second (this z is from Qf). We refer to this
point as the z.

Let us get back to Example 6.1.2. In fact, we construct a sequence of Lagrange multipliers

AM< <. <A<...<x©

and we stepwise by substitute members of this sequence to Lagrange function. Mini-
mum of this function started to move towards Q, but it didn’t stop in Qg, but it continues
to zero point o (to the centre of the circle described by quadratic constraint). Now our task is
to find A corresponding to minimum z of Lagrange function in .

6.3 Constant Update of Lagrange multipliers

We simply try to put some values of Langrange multipliers into Dual problem. Since we
want to show how Dual problem works, we choose simple equidistant arithmetic progres-
sion with convenient € € R difference.

Abi1 = A\ + e (26)
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Listing 1: Constant update Lagrangian method

lambdas = 0:epsilon:lambda.-max;

for i=1:(length (lambdas))
xi(i,:) = cg(A + 2 x diag([lambdas(i),lambdas(i)]),b,x0,e);
end

Example 6.3.1
Consider input data

2 -1 -5
A—<_1 9 >,b—< 6 ),r—l,e—().l,)\max_5

If we try to plot aproximations x;, we get something like this:

-+

and in case that we evaluate quadratic function and quadratic constraint:
—ar
s}
6}
at
s}
o}

-10F

-11
0
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6.3.1 Sequence of Update Lagrange algorithm aproximation using different input
data

Example 6.3.2
Let us consider testing data

2 1
A:<1 2>,7‘:1,6:0.1,)\ma,<:2

and let us try to plot sequence of minima for different right side vectors. We choose
be{-5,...,5} x {-5,...,5}. Output:

o kB N w » G
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7 Simple update Lagrange methods

We consider Equality problem (see Definition 3.3.1) with one quadratic constraint. From
previous observations in Chapter 6 we know how to move aproximations towards equality
constraint set 2. But we do not know how to stop this progression. In this chapter we try
some simple algorithms which solve this problem.

7.1 Linear constraint update

Let us consider prescription
Akt1 = Mg + p-g(Tk)

where p is sufficiently small real constant.
This prescription tries to update Lagrange multiplier using sofisticated method - size of up-
date is adequate to distance of actual aproximation from Q.

Using this prescription we construct algorithm:

e input

- A € R? x R? - SPD matrix
- b € R? - right side vector

r € R - radius of boundary

- e € R - precision of algorithm

zo € R? - initial approximation
— Ao = 0 - initial approximation of Lagrange multiplier
- k = 0 - iterator

e while xf:c —r>edo

= Tk+1 = Cg<A+ 2 % diag([)‘kvAk])7b7xk7e)
- Aer1 =\ + p.(x%+1.xk+1 —r)
-k=k+1

where cg(A, b, zo, e) is implemented algorithm of Conjugated gradient method, see Sec-
tion 4.3.
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Example 7.1.1
Let us choose the following input data

2 —1 | 4 |1 a4
A_[—l 9 ],b—[ﬂ)],xo—[l],e—lo ,r=1.

Using different constant coeficients p, algorithm find solution subject to precision using dif-
ferent number of iterations:

P # of iterations
0.020 2779
0.021 2340
0.022 5000+
0.023 1791
0.023 1791
0.024 1872
0.025 1602
0.026 1542
0.027 1503
0.028 1843
0.029 1600
0.03 1232
0.031 1528
0.0311 922
0.0312 623
0.03121 2295
0.03122 1105
0.03123 735
0.03124 653
0.03125 541
0.03126 407
0.03127 200
0.03128 -
0.0313 -
0.032 -
0.04+ -

7.2 Adaptive linear constraint update

We modify previous algorithm - we find adequate coeficient p by testing and making shorter
in every iteration.
e input

- A € R? x R? - SPD matrix
— b € R? - right side vector

- r € R - radius of boundary
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e € R - precision of algorithm

zo € R? - initial approximation
— Ao = 0 - initial approximation of Lagrange multiplier
- p = 1 -initial update coefficient

— k = 0 - iterator

e while zl .z —r > edo

try to update: \est = A, + p-(@}, T — 1)

compute testing aproximation: zyy1 = cg(A + 2 * diag([Mest, Mtest]), b, Tk, €)
while xL ;. 2ot — 7 < €

x* p=15
% try to update: Mest = A, + p.(@], Tpg1 — 1)

* compute testing aproximation: xtest = cg(A + 2 * diag([Mest, Atest]), b, Tk, €)
- Ak+1 = )\test

= Tk+1 = Ttest

Example 7.2.1
Consider input data

_ 2 -1 |1 . R -4
A_[—l 9 ],b—[l],r—l,xo—[3],6178—10

Output of this algorithm:




7 SIMPLE UPDATE LAGRANGE METHODS

28.

1.5j

1 1 1 1 1

0 20 40 60

12

107

80 100 120 140 160
it

180

7.3 Bisection method

In this algorithm we try to find A, using bisection method.

80 100 120 140 160
it

There exists sufficient by large A4, such that

9(x(Amaz)) <0

J
180
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Then our solution Z = z(\) with A € (0, Apaz ). We search this A using Bisection method with
stop condition

lg(z(\)] <€

where € > 0 is required precision.

Listing 2: bisect

% find any lambda_max
lambda_max = 0;
x-max = cg(A + 2 x diag([lambda_max,lambda_max]),b,x_00,e);
while (x_max’#x_max — c) > e

lambda_max = lambda_max + 1; % try to increase

x-max = cg(A + 2 x diag([lambda_max,lambda-max]),b,x_00,e);
end

% initialization

a_bisect = 0; % lower estimation

b_bisect = lambda_max; % upper estimation

s-bisect = (a_bisect+b_bisect)/2; % pivot

x = cg(A 2 x diag([s-bisect ,s_bisect]),b,x_00,e);

+

% main iterations
while abs(x’xx — r) > e
% compute new interval
if x*xx —r >0
a_bisect = s_bisect;
else
b_bisect = s_bisect;
end
% compute new pivot
s_bisect = (a_bisect + b_bisect)/2;
x = cg(A + 2 x diag([s_bisect,s_bisect]),b,x_00,e);
end
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Output of this algorithm:
5.
s
3l
ol
1 +
> 0
1t
ot
3t
4}
s 0
X
6
6.2
6.4
-6.6
-6.8F
- B
-7.2¢
—74}
—76f
7 2 4 6 8 10 12 ‘

14
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0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-0.1 ;
14
7.4 Numerical tests
21 2 -1 31 2 2
S EE IR R B ER IR P
—5 4 -3 0
R ER HECH RN
input adaptive ULM bisection method
Ay | by | -0.654301 | 0.756363 | 3.399414 | 523 | -0.654208 | 0.756261 | 3.399414 | 12
Ay | by | 0.585708 | 0.810689 | 1.723145 | 52 0.585623 | 0.810529 | 1.723145 | 12
Aq | b3 | -1.000000 | -1.000000 | 0.621338 | 8 -0.707101 | -0.707101 | 0.621338 | 12
Ay | by | -0.224782 | 0.974464 | 1.167847 | 70 -0.224741 | 0.974410 | 1.167847 | 14
Ay | by | -0.616196 | 0.787549 | 2.418091 | 73 -0.616200 | 0.787545 | 2.418091 | 13
Ao | by | 0.645064 | 0.764311 | 2.693481 | 170 | 0.644944 | 0.764177 | 2.693481 | 13
Ay | b3 | -0.039247 | -0.039247 | 1.621338 | 6 -0.707101 | -0.707101 | 1.621338 | 13
Ao | by | 0.224782 | 0.974464 | 1.167847 | 70 0.224741 | 0.974410 | 1.167847 | 14
As | by | -0.578076 | 0.816043 | 3.530762 | 926 | -0.578042 | 0.815980 | 3.530762 | 13
As | by | 0.438290 | 0.898793 | 2.037598 | 192 | 0.438317 | 0.898819 | 2.037598 | 11
Az | b3 | -0.432857 | -0.901445 | 0.923828 | 121 | -0.432894 | -0.901480 | 0.923828 | 9
As | by | -0.158926 | 0.987283 | 1.606201 | 252 | -0.158925 | 0.987305 | 1.606201 | 13
Ay | b1 | -0.697204 | 0.721933 | 3.635254 | 1000 | -0.694557 | 0.719450 | 3.635254 | 13
Ay | by | 0.641243 | 0.767328 | 0.922363 | 31 0.641220 | 0.767341 | 0.922363 | 11
Ay | b3 | -0.948984 | -0.315123 | 0.248535 | 34 -0.949028 | -0.315105 | 0.248535 | 11
Ay | by | -0.419434 | 0.907905 | 1.164917 | 183 | -0.419347 | 0.907851 | 1.164917 | 14
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8 Projected Dual problem (PDP) algorithm

In the most important chapter of this thesis we introduce new algorithm for solving Equality
and Inequality problems. At first we introduce projection to boundary of set and then use
observations in previous chapters to construct PDP algorithm.

8.1 Projection

Our following problem is to find the nearest Px € R? to z, which satisfy II. KKT condition
(11) in the best way:.

Definition 8.1.1 (Projection)

r

VmERQ\{o}:degf x
]2

Remark: We simply normalize vector of actual iteration x and then extend it to r, thus
g(P:L‘) =0« Pzr € Qg,00;.

Q
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Theorem 8.1.1
For every iteration z; € R? is Pxj, from (8.1.1) the nearest point accomplishing II. KKT

condition (11).

Vay, € R?Vy € R?: (g(y) = 0 Ay # Pay) = (||zg — Payll2 < ||lzx — yl2)

Proof: For projection holds
[kl = l[Pklla + |z — Pall2

SO
|z — Prgll2 = |okll2 — [[Pzglle = |2kl — 7

and because g(y) = 0 = ||ly||]2 = r, we have
ekl = = llzklla = lyllz = (e = v) + yll2 = llyll2

For every norm ||z + y[| < ||| + [ly||, so we can write

I(xx —y) +yll2 = lyll2 < llze = yll2 + llylle = llylle = [z — yll

Equality is possible, only if 2, — y = —y = x, = 0. For this point, projection (8.1.1) is not
defined.
So we can say

[ = Paglls < [lzx — yl2

Definition 8.1.2 (Projection in more dimensions)

For every iteration
z € R?\ {z € R : ||(v2i-1,22)|2 # 0,3 = 1,2,...n}
we define projection

P.Qj' = (P(x1,$2), 000 P(xQZ‘_l, Z’QZ‘), 000 P(:L'Qn_l,xgn))T
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8.2 Idea of PDP

Previous algorithms in Chapter 7 (except Bisection method) update Lagrange multipliers
from previous iteration by multiple of value of quadratic contraint in this iteration. Now
we try to compute this update using more sofisticated process - we use Lagrange multiplier
corresponding to projection of previous iteration to boundary of constraint set.
We will use update prescription .

Akl = Mg+ A

where
e )\, is Lagrange multiplier from previous iteration
e )\;41 is Lagrange multiplier corresponding to next iteration

e )\, is update

Initialization

conditions

are accomplished <—

due to precision

TRUE

Solution is x, and
corresponding A,

Compute projection
Number of used Px,

iterations is k

Compute update A,
from projection

1]

Update Lagrange
mul1ipliers‘
M= N+

[l _(n).

Compute next
aproximation Xy,
using new multipliers

(e
& U

Increase number
of iterations
k=k+1




8 PROJECTED DUAL PROBLEM (PDP) ALGORITHM 35.

The algorithm consists of these steps:

o Initialization
Find minimum of quadratic function without constraints

0= 5

using CG method. Set Ag = 0.

Xo

/Q_\
o KKT conditions accomplishment

The algorithm is over, if both of KKT conditions are accomplished due to precision.
Because first KKT condition is accomplished in every iteration (every next iteration is
computed using dual problem solver), we simply test accomplishment of second KKT
condition.

e Projection computation
Compute projection of actual iteration using Definition 8.1.2.

Xo

+

o Update computation
Minimize inverse dual problem function - find Lagrange multiplier corresponding to
projection using:
— CG algorithm for finding \;, € R without confidement - if original problem is with
equality constraints (or use prescription from Section 5.3.4),
— MPGRP algorithm for finding )\, > 0 - if original problem is with inequality con-
straints.

o Lagrange multipliers update
Compute next Lagrange multiplier by updating

Aet1 = M+ M

o Next aproximation computation
Find next aproximation x4 corresponding to A,.1, using Dual problem definition
5.2.1 - use CG algorithm.
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Xo, ..

X4

8.3 Inequality constraints
8.3.1 Characterization

Denote (z, A;) k-th iteration (solution aproximation and corresponding vector of Langrange
multipliers in k-th iteration, this pair solve Dual problem, see Definition 5.2.1 ). Next iteration
(Zk+1, Ak+1) can be expressed from previous one.

We compute first iteration (zg, \o):

° /\0:0

e zp = min f (z) is minimum without constraints
reR="

(can be computed using CG method, see Section 4.3)

In each iteration we compute pair (2541, Ap+1) using this method:
(We denote for simplicity (x, A\p) = (x, A))

e projection of previous iteration

i

I L , T
|(z2i—1, x2i)||2 (w2i-1,221) - |

(projection in more dimensions see Definition 8.1.2)
e Langrange multiplier from projection
Q = 8. diag(..., (Pz)3,_, + (P2)3;,...)
q=4.(...,(P2)2i—1[b — A(Pz)]2i—1 + (Pz)2i[b — A(Pz)]2i,...)"

i 1 T T
S U

(minimum of Invert Dual problem error function with constraint A > 0, see equa-
tion (23) in Section 5.3.3) for solving this problem, we use minimalization algorithm
MPRGP, see Chapter 4.4.

e update Lagrange multipliers .
Akl = Ap + A

e compute next iteration using new multipliers

1 = (A + 2diag(.. ., estlis Pegalin - )b

(for solving this system can be used CG method see Chapter 4.3)



O 0NNVl WN =

O 0NNV WN =

8 PROJECTED DUAL PROBLEM (PDP) ALGORITHM

37.

8.3.2 Algorithm in Matlab

Main algorithm:

Listing 3: pdp ineq

% initialization

k = 0;
x_k = cg(A,b,x_00,eps);
lambda_k = zeros(length(x_k),61);

% main iterations

while “is_in_.omega(x_k,r,eps)
% projection
Px_k = projection(x_k,r,eps);

% find update

lambda_dot_k = get_lambda(A + 2 x diag(lambda_k),b,r,Px_k,eps\);
% update lagrange multipliers
lambda_k = lambda_k + lambda_dot_k;

% find next aproximation using Dual problem
x_-k = cg(A + 2xdiag(lambda_k) ,b,x_k,eps);

% increase iteration counter
k =k + 1;
end

Stop condition:

Listing 4: is in omega

function [return_value] = is_in_omega(x,r,eps)
return_value=true;
for i=1:(length(x)/2)
if ("satisfy_quadratic_constrain (x((2+i—1):(2%i)),r(i), eps))
x(2x1i—1)"2 + x(2%i)"2 — r(i)"2
return_value = false;
end
end
end
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Verify condition:

Listing 5: satisfy condition

function [return_value] = satisfy_quadratic_constrain(x,r,eps)
if x(1)"2 + x(2)"2 — r"2 <= eps
return_value = true;
else
return_value = false;
end
end
Projection:

Listing 6: projection

function [x] = projection(x,r,eps)
for i = 1:(length(x)/2) % for all constraints
x_couple = x((2*i—1):(2xi));
% compute projection to actual boudary
x((2%1i—1):(2%i)) = (r(i))/(sqrt(x_couple(1)"2+x_couple(2)°2))
* x_couple;
end
end

Update computation:

Listing 7: compute update

function [lambda_out] = get_.lambda(A,b,r,x, eps)
reziduum = b-Axx;
Q = zeros(length(x)/2,length(x)/2);
q = zeros(length(x)/2,1);
for i = 1:length(x)/2
Q(i,i) = 8x(x(2xi—1)"2 + x(2%1)"2);
q(i) = 4%(x(2*i—1)xreziduum(2+i—1) + x(2*1i)*reziduum(2x*i));
end
% compute solution using MPRGP
lambda = mprgp(Q,q,zeros(length(x)/2,1),eps);

lambda_out = zeros(length (lambda)=*2,1);
for i = 1:length (lambda)
lambda_out(2xi—1) = lambda(i);
lambda_out(2xi) = lambda(i);
end
end
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8.4 Radius scaling

We shall remind minimizing problem with separable inequality quadratic constraints (??):
Find z € R?" such that

_ def

z = min f(z)

def
f(:L")f = taT Az — b7y 27)
QY eR™ . g(2)<0,i=1,2,...n}

def o 2 2
9i(x) = w3y + a5 — 1}

where

e n € Nis problem dimension, resp. number of constraint functions
e f:R?" — Ris quadratic function

e A€ R?" x R™ is symetric positive definite matrix

b € R?" is vector of right-hand sides

e r € R™ is vector of radii

Definition 8.4.1 (Identity of radius)
We say that problem 27 has identical radius r = p € R if

Vi=1,...n:r;=p

Let us consider constraint function g;(z) < 0. We try to identity its radius
gi(x) <0

2 2 2
x2i—1 + x2i — Ti S 0
2 2 2

Ty + x5 ST
2 2 2 2 2 2
p xy; 1+ pTry < pir;

2 2
) ) 2
20211 5T S P

3 K
~2 ~2 2
T+ T3 < p
where we used subsitution
Toi—1 = 7%3321—1

To; = ,,%3321‘

(28)
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We can use this substitution to whole vector z:
7=Rr, RY diag(2,2,... 2 2 (29)
r nm

Then z € Q is equivalent to Rz € {z € R?": g;(z) < 0,i = 1,2,...n}, where
~ def 9 2 2
gi(x) = @3 1 + a5 —p (30)
Now we can express f (&) using the previous substitution

f(z) = f(Rx) = %(Rar)TA(Rx) — bT(Rx) = %xTRAR:c — (Rb)Tx = %aﬁTflx — 'y

where
(31)

Theorem 8.4.1 (Problems equivalency)

Solution of problem 27 denoted as 7 is equivalent (after substitution Z = R~1%) to solution

of problem with identical radius:
Find z € R?" such that

Qd:ef{$€R2"!§i($) <0,i=1,2,...n}

~ def o 2 2
= Tt Xy —p

8.5 Numerical tests

Example 8.5.1
Let us consider input data:

2 -1 2
A_<_1 5 ),b—<3>,r—(1),ep8—0.0001

Algorithm is over in one iteration.
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Example 8.5.2
Let us consider input data:

4 -1 -1 0
A - :1 _41 _41 :i 7b = (17 17 _2075O)T7T - (17 I)T,€p8 - 00001

0 -1 -1 4

Algorithm is over in two iterations.
Iteration progress and progress of constraint functions values:

progress of iterations due to g, (x) = +x¢ - 1°= 0 values of g, (x) = ¢ +x2 - 1
-0.695
0.8
-0.696 -
06
+
0.4
-0.607 -
02
<or © -0.698-
-02
-0.699 -
-04F
-061
-0.7H
-08
. . . . L 0701 . . . . . . L I I
-1 -05 0 05 1 11 12 13 14 15 16 17 18 19
Xy it
progress of iterations due to g,(x) = X +x2 12 = 0 values of g,(x) = x + x2 - 12
4 0.081
08
0.07P
06
0.06
04
0.05F
02
0.04F
<o >
0.03F
-0.2
0,02
-04f
—06l 0.01F
-0.8F of
- v L . ; ~0.01 L L L L L L L L L )
-1 -05 0 05 1 1 11 12 13 14 15 16 17 18 1.9 2
X
3 it

Function value progress and progress of Lagrange function values:

values of Lagrange funcion L(x\) values of cost function (x)
5197 5181
sal
51975
-s2.2f
-51.98} _spa|
-52.6
-51.985
- - -s28f
5199
sal
51,995 5321
-53.41-
5ol
-53.6F
52,005 . . . . . . . . . . 538 . . . . . . . . .
1 11 12 13 4 15 16 17 18 19 2 1 1 12 13 14 15 16 17 18 19
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We can verify our solution - induct solution into KKT conditions:
0
% —0.0033
— A : _10-13
KKT1er = Az — b+ 2 diag(A)x = 1077, 00711
0.1421
(z) = —0.7006
=\ ~0.0058
]

Example 8.5.3
(with large variability of radius)?
Let us consider input data

A = fivediag(—1,—1,4,—1,—1) € R12x12

b= Ay

y=(2,1,0.5,0,0,11,107%, —1,v/2, —0.1,4.1 + 1074, 143)"
r=(2,1,0.5,2,1073,154)T

eps = 1074

Algorithm is over in 2 outer iterations.
Iteration progress and progress of constraint functions values:

progress of iterations due to g, (x) = 2 +x2 - 22 =0 values of g (x) = X2 + x2 - 22

28 . . . . . . . .
25 1 11 12 13 14 15 16 17 18 19

2This example was introduced and solved in [4]



PROJECTED DUAL PROBLEM (PDP) ALGORITHM

43.

progress of iterations due o g,(x) = X + X2 - 1

24242
values of g,(x) =2 + 2 - 1

121
05
10f
ol
sk
-05f
ot 6
°
_1sk s
ol
oL
-25}
ok
=
. . . \ . . . . . . . . . . . . . . . L
25 -2 -15 -1 -05 0 05 1 15 2 25 11 12 13 14 15 16 17 18 19
%g it
progress of iterations due o g,(x) = x2 + 2 ~ 057 = 0 values of g, (x) = X2 + X2 - 0.5
3 5 6
0.005
04f
ok
03f
02f
-0.005
01
ok o -001F
—oal
-0.015-
-02f
—oal
-0.02
-04f
—0‘6 0‘6 ~0.025 L L L L L L L L L
- 1 11 12 13 14 15 16 17 18 19
it
progress of iterations due to g,(x) = <& + % - values of g,(x) = 2 + X2
4 7 8
ar
15F ask
1t 3l
05 25}
oF ’r
S
15
-5t
b
ol
05F
_1sl
ok
ol
. . . . . . . . . . . o5 ) ) ) ) ) . . . .
25 -2 -15 -1  -05 0 05 1 15 2 25 i1 12 13 12 15 16 17 18 19
X
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44.

progress of iterations due o g(x) = X + x2; = 0.001° = 0

=32 2 _ 2
values of gy(x) = x5 + X2 - 0.001"
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11 12 13 14 15 16 17 18 19 2 1 11 12 13 14 15 16 17 18 19



8 PROJECTED DUAL PROBLEM (PDP) ALGORITHM

We can verify our solution - induct solution into KKT conditions:

—0.0013
0.0007
0.0066
~0.0036
—0.4334
KKT1ep = Az — b+ 2 d]ag(j\)x — 10712, 83385’7)
—0.0089
~0.0120
—0.0089
0
0
—0.0017
~0.0002
0.0000
9(e) =10% | 0 0000
0.0000
~3.2844

Inner iterations:

o [nitialization
- number of CG iterations: 13

e 1. iteration
- number of MPRGP iterations: 22
- number of CG iterations: 18

e 2. iteration
- number of MPRGP iterations: 9
- number of CG iterations: 11
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9 Conclusion

In this thesis, we used observations from simple algorithms to construct new very effective
algorithm for solving problem of minimizing of quadratic function with separated quadratic
constraints. We call it PDP. It represent a new way how to use Dual problem and projection
to boundary of a set - it uses Inverse Dual problem to find corresponding update of Lagrange
multipliers. It is probably the best update of Lagrange multiplier of previous iteration.

First numerical tests imply good convergence, but proof was not constructed yet. Also
precondition can improve number of inner CG and MPRGP iterations.

In fact, contact problems imply minimizing problems with quadratic constraints, more-
over linear equalities and inequalities. That is the reason, why PDP algorithm is useless in
these cases. It has to be modified, probably using classic MPRGP algorithm.
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Appended CD includes these folders with matlab functions:
e Chapter 3

— algorithm for generating figures in Chapter 3

Chapter 4

- chapter4/cg - implementation of CG algorithm
— chapter4/mprgp - implementation of MPRGP algorithm

Chapter 5

- chapter5/dual problem - figures in Section 5.2

— chapter5/invert dual problem - usage of Invert Dual problem

Chapter 6

- chapter6/constant update lagrange - constant update of Lagrange mul-
tipliers

- chapter6/sequence - sequence of Lagrange multipliers

Chapter 7

— chapter7/linear update - Linear update of Lagrange multipliers

- chapter7/adaptive linear update - Adaptive linear update of Lagrange
multipliers

— chapter7/bisection - Bisection algorithm

Chapter 8

- chapter8/pdp_eq - implementation of PDP algorithm for Equality problem

- chapter8/pdp_ineq - implementation of PDP algorithm for Inequality prob-
lem



