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Abstract

This thesis deals with the application of Dual problem in quadratic programming and in-
troduces algorithms for solving minimizing problem of quadratic function subject to set pre-
scribed by quadratic constraint functions. We proceed from simple observations to a new
algorithm which was never presented before. Quadratic constraints are characteristic for
contact problems with Coulomb friction.

Keywords: Dual problem, Inverse dual problem, quadratic function, PDP

Abstrakt

Tato práce popisuje využitı́ Duálnı́ úlohy v kvadratickém programovánı́ a představuje algo-
ritmy pro minimalizaci kvadratické funkce vzhledem k množině popsané vazebnı́mi kvadrat-
ickými funkcemi. Od pozorovánı́ jednoduchých algoritmů přecházı́ k algoritmu novému,
který zatı́m nebyl nikde publikován. Kvadratické vazby jsou charakteristické pro kontaktnı́
úlohy s Coulombovským třenı́m.

Klı́čová slova: Duálnı́ úloha, Inverznı́ duálnı́ úloha, kvadratická funkce, PDP
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1 Introduction

In my master thesis I try to show application of Dual problem in minimizing quadratic func-
tions with separable quadratic constraints solutions. This problem arises in problems with
Coulomb friction. The motivation example is presented in Chapter 2.

Formulation of minimizing problem can be found in Chapter 3. In this chapter are given
also graphs of quadratic function and quadratic constraint set of one constraint problem.

I introduce Lagrange function in Chapter 4 and also its utilization in analytical solution
of a simle two dimensional problem. From presented example one can see the point of using
KKT conditions. In this chapter, I introduce two numerical algorithms used later - Conju-
gate gradient method and Modified proportioning with reduced gradient projections. These
algorithms are introduced without detail analysis. Further implementation can be found in
Appendix.

In Chapter 5, I examine KKT conditions for more dimensional problems. Using simple
modifications we can infer Dual problem and Inverse dual problem - two key components
of new algorithm.

In Chapter 6, I try to find meaning of Lagrange multiplier. Due to my observations, it can
be regarded as linear penalty, increasing of which we can attract aproximations to boundary
of constraint set.

Simple algorithms, which use first KKT condition and linear update, are introduced in
Chapter 7. Their convergence depends on the choice of input data. These algorithms are
helpful in costruction of a main algorithm.

Finally, I used all previous observations to introduce the new pretentious algorithm in
Chapter 8 - Projected Dual Problem method (PDP). This algorithm uses both of KKT con-
ditions and update Lagrange multipliers in the best way - it uses projection to boundary of
quadratic constraint set. Numerical tests are also presented.
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2 Motivation

We start with motivation example. This problem consists of solving minimizing problem of
quadratic function with linear inequalities and quadratic inequality constraints. But in this
thesis, I try to solve simpler problem only with quadratic constraints.

Example 2.0.1
Let us consider the steel brick lying on a rigid foundation as it is shown in figure.1

The brick occupies in the reference configuration the domain ω ⊂ R3, whose bound-
ary ∂ω is split into three nonempty disjoint parts γu, γp, and γc with different boundary
conditions: zero displacements γu, surface tractions γp and contact conditions γc (i.e., the
nonpenetration and the effect of friction).

The elastic behavior of the brick is described by Lamé equations that, after finite element
discretization, lead to a symmetric positive definite stiffness matrix K ∈ R3nc×3nc and to
a load vector f ∈ R3nc . Moreover, we introduce full rank matrices N,T1, T2 ∈ Rmc×3nc

projecting displacements at contact nodes to normal and tangential directions, respectively,
and we denote B =

(
NT , T T

1 , T T
2

)T ∈ R3nc×3nc . Here, we shall use the dual formulation in
terms of contact stresses.
We start with the contact problem with Tresca friction that reads as

minimize 1
2λ

TQλ− λTh,
subject to λν,i ≥ 0, λ2

t1,i
+ λ2

t2,i
≤ r2i , i = 1, . . . ,mc

λ =
(
λT
ν , λ

T
t1 , λ

T
t2

)T
, λν , λt1 , λt2 ∈ Rmc ,

where Q = BK−1BT , h = BK−1f , and ri ≥ 0 are given slip bound values at contact
nodes. Let us point out that λν and λt1 , λt2 represent normal and tangential contact stresses,
respectively.

1This example was introduced and numericaly solved in [5]. More details about model problem can be found
in [6].
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3 Problem definition

In this chapter I formulate minimizing problem and show how quadratic function and set
prescribed by quadratic function looks.

3.1 Quadratic function

Definition 3.1.1 (Quadratic function definition)

The quadratic function has prescription

f(x)
def
=

1

2
xTAx− bTx (1)

where

• n ∈ N is problem dimension

• f : R2n → R

• A ∈ R2n × R2n is symetric positive definite matrix

• b ∈ R2n is vector of right sides

Theorem 3.1.1 (Quadratic function gradient)

Gradient of function defined by equation (1) is

▽f = Ax− b

Remark: Minimum of 3.1.1 without constraints is equal to solution of system ▽f = o,
respectively Ax = b. That is the reason, why we called b the vector of right sides. ≈

Proof: Let us consider improvement x+ αv of point x, where x, v ∈ Rn, α ∈ R
Then

f(x+ αv)− f(x) =

(
1

2
(x+ αv)TA(x+ αv)− bT (x+ αv)

)
−
(
1

2
xTAx− bTx

)
=

= αxTAv − αbT v +
1

2
α2vTAv =

1

2
α2vTAv + α(Ax− b)T v
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• x̄ = min f(x) ⇒ Ax̄ = b
Necessary condition of min f(x) is ▽f = o
▽f(x) = Ax− b ⇒ Ax− b = o ⇒ Ax = b

• x̄ = min f(x) ⇐ Ax̄ = b
Ax̄ = b ⇒ Ax̄− b = o
f(x̄+ αv)− f(x̄) = 1

2α
2vTAv ≥ 0,∀α ∈ R∀v ∈ Rn

(A is positive definite)
⇒ f(x̄+ αv) ≥ f(x̄),∀α ∈ R∀v ∈ Rn

�

Theorem 3.1.2 (Existence of minimum)

Function f(x) given by equation (1) has one minimum.
System ▽f = o has only one solution.

3.2 Separated quadratic constraints

Definition 3.2.1 (Constraint function)

Let us define n quadratic constraint functions

gi(x)
def
= x22i−1 + x22i − r2i , i = 1, 2, . . . n (2)

where

• n ∈ N is number of constraint functions,

• gi : R2n → R,

• r ∈ Rn is vector of radii.

If we choose firm g(x) = 0 then the geometric representation of set described by quadratic
function is circle with radius r.
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Definition 3.2.2 (Constraint set)

Quadratic constraint functions define equality constraint set

ΩE
def
= {x ∈ R2n : gi(x) = 0, i = 1, 2, . . . n}. (3)

We can also define inequality constraint set

ΩI
def
= {x ∈ R2n : gi(x) ≤ 0, i = 1, 2, . . . n}. (4)

3.3 Minimizing function subject to constraint set

Definition 3.3.1 (Minimizing problem)

Unconstrained problem: Find

x̄
def
= min

x∈R2n
f(x) (5)

Equality problem: Find

x̄E
def
= min

x∈ΩE

f(x) (6)

Inequality problem: Find

x̄I
def
= min

x∈ΩI

f(x) (7)

Example 3.3.1
Find solution of Equality problem defined by equation 6 with

A =

[
2 −1
−1 2

]
, b =

[
3
4

]
, r = 1

Geometrically, quadratic function f(x) is a modified elliptic paraboloid.
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Isolines of this function (curves with same function value) are depicted in the following
figure.
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The geometric representation of equality constraint set ΩE of (6) is a circle with centre at
[0, 0] and radius r = 1.

If we combine isolines and constraint we can estimate the probable location of minimum,
as plotted in the next figure:
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4 Behind the new algorithm

4.1 Lagrange function

Definition 4.1.1 (Lagrange function)

Lagrange function has prescription

L(x, λ)
def
= f(x) + λg(x)

where

• f(x) : Rn → R is cost function

• g(x) : Rn → R is constraint function

• λ ∈ R is Lagrange multiplier

Theorem 4.1.1 (bounded local extremes subject to equality constraint set)

Let

• f, g : Rn → R be C1 in open set Ω ⊂ Rn, n > 1

• grad g(x) ̸= (0, . . . , 0) for each x ∈ Ω

• ΩE
def
= {x ∈ Ω : g(x) = 0}.

Then

1. (Necessary condition of existence of local bounded extreme)
If f has in c ∈ Ω local extreme subject to set ΩE , there exists λ ∈ R such that c is a
stationary point of L(x) = f(x) + λg(x), x ∈ Ω.

2. (Sufficient condition of existence of local bounded extreme)
Let c ∈ Ω be a stationary point of function L(x) = f(x) + λg(x) for some λ ∈ R,
let f and g have in c continuous second partial derivatives
and let d2Lc (for given λ) be positive definite quadratic form.
Then f has in c local minimum subject to ΩE .
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Theorem 4.1.2 (Sufficient condition subject to inequality constraint set)

Let f, g, L be same functions as in Definition 4.1.1.

Let ΩI
def
= {x ∈ Ω : g(x) ≤ 0}.

If

• c ∈ Ω is a stationary point of function L(x) = f(x) + λg(x) for some λ ≥ 0,

• f and g have in c continuous second partial derivatives,

• d2Lc (for given λ) is positive definite quadratic form

then f has in c local minimum subject to ΩI .

These theorems (i.e., sufficient conditions) gives us manual how to find bounded local
extremes subject to equality and inequality constraint set.

Definition 4.1.2 (Lagrange function for more constraints)

Lagrange function for problems with m constraints has prescription

L(x, λ)
def
= f(x) +

m∑
i=1

λigi(x)

where

• f(x) : Rn → R is cost function

• m ≥ 1 is number of constraints

• gi(x) : Rn → R is one of m constraint functions

• λ ∈ Rm is vector of Lagrange multipliers
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4.2 Analytical solution

In analytical solution we will proceed with standart ”bounded local extremes” search algo-
rithm. At first we consider Equality problem (see Definition 3.3.1). We assume a simple
problem with one quadratic constraint.

Assume Lagrange function for one condition

L(x, λ) = f(x) + λ.g(x).

For saddle point of this Lagrange function applies

min
x∈Ω

f(x) = min
x∈R2

L(x, λ) = x̄.

In saddle point also holds constraint condition

g(x̄) = 0

Derivative of Lagrange function in saddle point has zero value (it is stacionary point of
Lagrange function), so our task is to compute derivative of L(x, λ) and set it equal to zero.
Since Lagrange function is a function of two variables, we have to compute partial deriva-
tives and solve system of two equations.

I.) ▽xL(x, λ) = o

II.) ▽λL(x, λ) = o

These conditions are also called ”Karush-Kuhr-Tucker conditions” (alias ”KKT system”,
see Chapter 5).

So
I.) ▽xL(x, λ) = ▽xf(x) + λ▽xg(x) = Ax− b+ 2λx

II.) ▽λL(x, λ) = ▽λf(x) + ▽λλg(x) = g(x)

and derived KKT system is

I.) Ax− b+ 2λx = o (8)

II.) g(x) = 0 (9)

For Inequality problem, we simply modify second condition

II.) g(x) ≤ 0

Example 4.2.1
Consider Inequality problem with input data

A =

[
2 −1
−1 2

]
, b =

[
3
4

]
, r = 1.
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So our problem is to find

x̄ =
def
= min

x∈ΩI

f(x)

where
ΩI

def
= {x ∈ R2 : g(x) ≤ 0}

and one constraint is defined
g(x)

def
= x21 + x22 − r2

Left-hand side of first KKT equation (8) (we consider λ as parameter λ ∈ R, λ ≥ 0) has
the form [

2 −1
−1 2

]
.

[
x1
x2

]
−
[
3
4

]
+

[
2λx1
2λx2

]
=

[
2x1 − x2 − 3 + 2λx1
−x1 + 2x2 − 4 + 2λx2

]
Thus (8) is transformed to the next system

(2 + 2λ)x1 − x2 = 3
−x1 + (2 + 2λ)x2 = 4.

Using Kramer formulas we obtain

D =

∣∣∣∣ 2 + 2λ −1
−1 2 + 2λ

∣∣∣∣ = (2 + 2λ)2 − (−1)2 = 3 + 8λ+ 4λ2

D1 =

∣∣∣∣ 3 −1
4 2 + 2λ

∣∣∣∣ = 3(2 + 2λ)− (−1).4 = 10 + 6λ

D2 =

∣∣∣∣ 2 + 2λ 3
−1 4

∣∣∣∣ = 4.(2 + 2λ)− 3.(−1) = 11 + 8λ

and parametric solution is (for common case refer to Dual task in Chapter 5)

x1 =
D1

D
=

10 + 6λ

3 + 8λ+ 4λ2

x2 =
D2

D
=

11 + 8λ

3 + 8λ+ 4λ2

Now consider the constraint function

g(x) = x21 + x22 − 1 =

(
10 + 6λ

3 + 8λ+ 4λ2

)2

+

(
11 + 8λ

3 + 8λ+ 4λ2

)2

− 1

and put it equal to zero(
10 + 6λ

3 + 8λ+ 4λ2

)2

+

(
11 + 8λ

3 + 8λ+ 4λ2

)2

= 1

(10 + 6λ)2 + (11 + 8λ)2

(3 + 8λ+ 4λ2)2
= 1
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(10 + 6λ)2 + (11 + 8λ)2 = (3 + 8λ+ 4λ2)2

(100 + 120λ+ 36λ2) + (121 + 176λ+ 64λ2) = (3 + 8λ+ 4λ2)(3 + 8λ+ 4λ2)

221 + 296λ+ 100λ2 = 9 + 48λ+ 88λ2 + 64λ3 + 16λ4

0 = 16λ4 + 64λ3 − 12λ2 − 248λ− 212

This polynom has 4 roots - two of them are real, one is positive. Value of it is approxi-
mately

λ = 1.9877,

so the solution after substitution is

x̄ =

[
0.6318
0.7751

]
.

Example 4.2.2
Consider Inequality problem with input data

A =

[
4 −1
−1 2

]
, b =

[
1
1

]
, r = 1.

So our problem is to find

x̄ =
def
= min

x∈ΩI

f(x)

where
ΩI

def
= {x ∈ R2 : g(x) ≤ 0}

and one constraint is defined
g(x)

def
= x21 + x22 − r2

First, we refer (8):[
4 −1
−1 2

]
.

[
x1
x2

]
−
[
1
1

]
+

[
2λx1
2λx2

]
=

[
4x1 − x2 − 1 + 2λx1
−x1 + 2x2 − 1 + 2λx2

]
=

(
0
0

)
Now solve system

(4 + 2λ)x1 − x2 = 1
−x1 + (2 + 2λ)x2 = 1

using Kramer formulas

D =

∣∣∣∣ 4 + 2λ −1
−1 2 + 2λ

∣∣∣∣ = (4 + 2λ)(2 + 2λ)− (−1)2 = 7 + 12λ+ 4λ2

D1 =

∣∣∣∣ 1 −1
1 2 + 2λ

∣∣∣∣ = (2 + 2λ)− (−1) = 3 + 2λ

D2 =

∣∣∣∣ 4 + 2λ 1
−1 1

∣∣∣∣ = (4 + 2λ)− (−1) = 5 + 2.λ
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Parametric solution is
x1 =

D1

D
=

3 + 2λ

7 + 12λ+ 4λ2

x2 =
D2

D
=

5 + 2λ

7 + 12λ+ 4λ2
.

Constraint function

g(x) = x21 + x22 − 1 =

(
3 + 2λ

7 + 12λ+ 4λ2

)2

+

(
5 + 2λ

7 + 12λ+ 4λ2

)2

− 1

is set to zero and solved

(3 + 2λ)2 + (5 + 2λ)2 = (7 + 12λ+ 4λ2)2

(9 + 12λ+ 4λ2) + (25 + 20λ+ 4λ2) = 16λ4 + 96λ3 + 200λ2 + 168λ+ 49

0 = 16λ4 + 96λ3 + 192λ2 + 136λ+ 15

This polynom has two real roots, but all of them are negative, because minimum of orig-
inal problem naturaly satisfies quadratic inequality constraint.
Thus we search for λ ≥ 0 and because founded λ < 0, we simply choose λ = 0 and get

L(x, 0) = f(x) + 0.g(x) = f(x) ⇒ minL(x, λ) = min f(x)

We can find minimum of this Inequality problem using simple minimalization algorithm
without constraints.

x̄ = min
x∈ΩI

f(x) = min
x∈R2

f(x) ⇔ ▽xf(x̄) = 0

We solve equation
Ax̄− b = o

Ax̄ = b

using Gauss-Jordan elimination method we have[
4 −1 1
−1 2 1

]
∼
[

4 −1 1
−4 8 4

]
∼
[
4 −1 1
0 7 5

]
∼
[
28 −7 7
0 7 5

]
∼

∼
[
28 0 12
0 7 5

]
∼
[
1 0 3

7
0 1 5

7

]
We obtain the solution

x̄ =
1

7

[
3
5

]
which really satisfies constraint

g(x̄) = x̄21 + x̄22 − r2 =

(
3

7

)2

+

(
5

7

)2

− 1 =
9 + 25− 49

49
= −15

49
< 0 ⇒ x̄ ∈ ΩI
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4.3 Conjugate gradient method

The Conjugate gradient method is iterative method for solving system

Ax = b

where A is symmetric positive definite matrix and b is the vector of right sides.

Remark: The CG method is also used to find minimum of quadratic function with SPD
matrix. (see Remark after Theorem 3.1.1) ≈

More information about Conjugate Gradient method can be found in [1].

4.4 MPRGP

Modified proportioning with reduced gradient projections (MPRGP) is iterative method for
minimizing quadratic cost function

f(x) =
1

2
xTAx− bTx

subject to linear inequalities l ∈ Rm

∀i = 1, . . .m : xi ≥ li

More information about MPRGP can be found in [2].
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5 KKT system and dual problem

During analytical solution of minimizing problem in Section 4.2 we deduce that in minimum
of Lagrange function are accomplished two equations implied from partial derivatives of
this function. In this section we try to generalize these equations and then we make some
observations which we use into Dual problem definition.

In whole section we consider minimizing problem with quadratic function f : R2n → R
and n quadratic constraints which bind together succesively pairs of components of vector
of variables x.

5.1 KKT system

5.1.1 Minimum of Lagrange function

We consider Lagrange function (see Definition 4.1.1)

L(x, λ) = f(x) +
n∑

i=1

λigi(x)

λ ∈ Rn, L : R2n+n → R

and express KKT conditions in saddle point of L(x, λ) using Theorem ??

▽xL(x, λ) = ▽ f(x) +
n∑

i=1

λi ▽ gi(x) = o2n (10)

▽λL(x, λ) = g(x) = on (11)

Remark: on denote zero vector of n components. ≈

5.1.2 Duplication of Lagrange multipliers

Now consider first KKT condition (10)

▽f(x) +

n∑
i=1

λi ▽ gi(x) = o2n.

At first we express gradient of quadratic function

▽f(x) = Ax− b (12)

and gradient of separable quadratic constraints

▽gi(x) =



∂gi
∂x1

...
∂gi

∂x2i−1
∂gi
∂x2i

...
∂gi
∂x2n


=



0
...

2x2i−1

2x2i
...
0


∈ R2n (13)
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Then we substitute (12) and (13) into (10). We obtain

▽f(x) +

n∑
i=1

λi ▽ gi(x) = Ax− b+

n∑
i=1

(
λi(0, . . . , 2x2i−1, 2x2i, . . . , 0)

T
)
=

= Ax− b+ 2

(
2n∑
i=1

λ⌈ i
2
⌉xi

)
= Ax− b+ 2diag(λ̃)x

where
λ̃

def
= (λ1, λ1, λ2, λ2, . . . λn, λn)

T ∈ R2n. (14)

Hence
Ax− b+ 2 diag(λ̃)x = o2n. (15)

5.2 Dual problem

Let us assume modified first KKT condition (15) and express variable x:

Ax− b+ 2 diag(λ̃)x = o2n

Ax+ 2 diag(λ̃)x = b

(A+ 2 diag(λ̃))x = b

x = (A+ 2 diag(λ̃))−1b (16)

We call equation (16) Dual problem. It represents relation between variable x and corre-
sponding Lagrange multipliers λ (supposing the first KKT condition to be accomplished).
If we have λ, we can simply solve (16) with Conjugate gradient method (see Section 4.3) to
get solution x.

Definition 5.2.1 (Dual problem solution)

We say that a pair (x, λ) solve Dual problem, if equation

x = (A+ 2 diag(. . . , λi, λi, . . .))
−1b (17)

is fulfilled.

5.3 Inverse dual problem

5.3.1 Inverse problem

Now we consider situation, when we have approximation x and our task is to find corre-
sponding Lagrange multipliers λ that (x, λ) solve Dual problem (17) as good as possible.
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Remark: In Dual problem dimension of vector of Langrange multipliers λ is half of dimen-
sion of variable x. That is reason why not for all x ∈ R2n exists corresponding λ̃. ≈

From λ we require that λ̃ given by (14) satisfies (16) as good as possible:

• ∀i = 1, . . . n : λ̃2i−1 = λ̃2i = λi

• equation (17) from Dual problem is accomplished as good as possible

5.3.2 Error function

At first we express λ̃ from Dual problem (16)

Ax+ 2. diag(λ̃)x = b

2. diag(λ̃)x = (b−Ax)

2.diag(x)λ̃ = (b−Ax) (18)

From equation (18) we can derive error function, which describes distance of approxi-
mate solution λ̃ to exact solution of dual problem equation (16).

err
def
= 2.diag(x)λ̃− (b−Ax) (19)

Our aim is to have err as small as possible

∥err∥2 = errT err

Substitute and compose

errT err =
(
2.diag(x)λ̃− (b−Ax)

)T (
2.diag(x)λ̃− (b−Ax)

)
=

= 4.λ̃Tdiag(x)2λ̃− 4.λ̃Tdiag(x)(b−Ax) + (b−Ax)T (b−Ax) =

= 4.

2n∑
i=1

(
λ̃2
ix

2
i

)
− 4.

2n∑
i=1

(
λ̃ixi[b−Ax]i

)
+ (b−Ax)T (b−Ax) (20)

But we know λ̃2i−1 = λ̃2i = λi, so we can write (20) as follows

4.
n∑

i=1

(
λ2
i (x

2
2i−1 + x22i)

)
− 4.

n∑
i=1

(λi(x2i−1[b−Ax]2i−1 + x2i[b−Ax]2i))+ (b−Ax)T (b−Ax) =

= 4.λT diag(. . . , x22i−1+x22i, . . .)λ−4.(. . . , x2i−1[b−Ax]2i−1+x2i[b−Ax]2i, . . .)λ+(b−Ax)T (b−Ax)
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5.3.3 Final simplification

If we denote
Q

def
= 8. diag(. . . , x22i−1 + x22i, . . .) (21)

q
def
= 4.(. . . , x2i−1[b−Ax]2i−1 + x2i[b−Ax]2i, . . .)

T (22)

our next task is to minimize

∥err∥2 = 1

2
λTQλ− qTλ+ (b−Ax)T (b−Ax). (23)

Further work depends on original problem formulation (due to Definition 3.3.1)

• Equality problem
λ = min

λ∈R
∥err∥2

• Inequality problem
λ = min

λ≤R
∥err∥2

5.3.4 Minimum of error function without constraints

Let us consider Equality problem from Definition 3.3.1.
We look for λ ∈ Rn minimizing error function (23). So we have to find roots of first deriva-
tive.
At first we compute first derivative

∂
[
∥err∥2

]
∂λi

= Qλ− q

Remark: We used remark after Theorem (3.1.1) for minimizing quadratic function.
Q is symmetric positive definite matrix and

∂(b−Ax)T (b−Ax)

∂λ
= 0.

≈
Now we put first derivative of error function equal to zero

λ = Q−1q

and substitute (21) and (22)

λ =
1

8
.


. . . 0

1
x2
2i−1+x2

2i

0
. . .

 .4.


...

x2i−1[b−Ax]2i−1 + x2i[b−Ax]2i
...

 .

We express prescription for i-th element of λ

λi =
1

2(x22i−1 + x22i)
(x2i−1[b−Ax]2i−1 + x2i[b−Ax]2i) . (24)

Thence Inverse Dual problem for Equality problem (see Definition 3.3.1) can be solved
using equation (24). But for Inequality problem we use MPRGP algorithm (see Section 4.4).
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6 Lagrange multipliers

In this chapter we describe Lagrange multipliers and their relation to a proper parameter.
We consider Equality problem (see Definition 3.3.1). In our exploration figures will be very
useful.

6.1 Lagrange multiplier as linear penalty

6.1.1 Linear penalty introduction

Let us consider function f̃v(x) given by

f̃v(x)
def
= f(x) + vT g(x) (25)

where v ∈ Rn is appropriately chosen constant vector with positive components.
We refer to v as the linear penalty parameter.
We can derive these properties:

• if x ∈ ∂ΩI , then g(x) = o,
thus f̃v(x) = f(x) + vT g(x) = f(x) + vT o = f(x),

• if x ∈ ΩI \ ∂ΩI , then −c ≤ g(x) < o (meaning −ci ≤ gi(x) < 0,∀i = 1 . . . n),
hence f̃v(x) = f(x) + vT g(x) < f(x)

• if x ∈ R2n \ ΩI then g(x) > o (meaning gi(x) > 0,∀i = 1 . . . n),
therefore f̃v(x) = f(x) + vT g(x) > f(x).

Due to the observations we can say that linear penalty modifies value subject to constraints -
it increases values in R2n \ ΩI and decreases in ΩI \ ∂ΩI .

Example 6.1.1
Let us have specific values of Equality problem with one constraint

A =

[
2 −1
−1 2

]
, b =

[
1
1

]
, r = 1

and draw isolines of original function f(x) and function with linear penalty f̃v(x) subject to
one quadratic constraint. We try some different values of linear penalty parameter v.



6 LAGRANGE MULTIPLIERS 20.

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x2

v = 0

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1
x2

v = 0.2

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x2

v = 0.5

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

x2

v = 100

Example 6.1.2
Another values can be

A =

[
2 −1
−1 2

]
, b =

[
4
20

]
, r = 1

But now, for more illustrative example, we put a cross into figure on coordinates where,
for concrete value of v, the real minimum of f̃v(x) is.
We try to set v0 = 0, vi+1 = vi + 0.25, i = 0, 1..20.
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6.1.2 Lagrangie multipliers as linear penalty parameter

For next consideration we will need prescription of common Lagrange function

L(x, λ)
def
= f(x) + λT g(x)

Linear penalty has the same rules as Lagrange function, so logically, we can consider the
vector of Lagrange multipliers as linear penalty parameter.

From Example 6.1.2 we can note that if we increase Lagrange multiplier, the minimum
of L(x, λ) will be more closer to the center of the circle defined by constraint function g(x).

Written in limit form
lim
λ→∞

(argminL(x, λ)) → o

where convergence λ → ∞ means

∀i = 1 . . . n : λi → ∞.

6.2 Lagrange multipliers sequence

Let us consider a simple two-dimensional problem.
That means, we have only one constraint and also only one Langrange multiplier.
We already tried to find minimum of quadratic function, but this minimum is not from ΩE

(see Definition 3.2.2). There exists λ̄ which is efficient to construct function L(x, y) which
minimum is in this set. At this point x, the first KKT condition is accomplished (it is the
minimum of Lagrange function at all) also the second (this x is from ΩE). We refer to this
point as the x̄.
Let us get back to Example 6.1.2. In fact, we construct a sequence of Lagrange multipliers

λ1 < λ2 < . . . < λ̄ < . . . < ∞

and we stepwise by substitute members of this sequence to Lagrange function. Mini-
mum of this function started to move towards ΩE , but it didn’t stop in ΩE , but it continues
to zero point o (to the centre of the circle described by quadratic constraint). Now our task is
to find λ̄ corresponding to minimum x̄ of Lagrange function in ΩE .

6.3 Constant Update of Lagrange multipliers

We simply try to put some values of Langrange multipliers into Dual problem. Since we
want to show how Dual problem works, we choose simple equidistant arithmetic progres-
sion with convenient ϵ ∈ R difference.

λk+1 = λk + ϵ (26)
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Listing 1: Constant update Lagrangian method
1 lambdas = 0 : eps i lon : lambda max ;
2
3 for i = 1 : ( length ( lambdas ) )
4 x i ( i , : ) = cg (A + 2 ∗ diag ( [ lambdas ( i ) , lambdas ( i ) ] ) , b , x0 , e ) ;
5 end

Example 6.3.1
Consider input data

A =

(
2 −1
−1 2

)
, b =

(
−5
6

)
, r = 1, ϵ = 0.1, λ max = 5

If we try to plot aproximations xk, we get something like this:

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x 2

and in case that we evaluate quadratic function and quadratic constraint:
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6.3.1 Sequence of Update Lagrange algorithm aproximation using different input
data

Example 6.3.2
Let us consider testing data

A =

(
2 1
1 2

)
, r = 1, ϵ = 0.1, λ max = 2

and let us try to plot sequence of minima for different right side vectors. We choose
b ∈ {−5, . . . , 5} × {−5, . . . , 5}. Output:
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7 Simple update Lagrange methods

We consider Equality problem (see Definition 3.3.1) with one quadratic constraint. From
previous observations in Chapter 6 we know how to move aproximations towards equality
constraint set ΩE . But we do not know how to stop this progression. In this chapter we try
some simple algorithms which solve this problem.

7.1 Linear constraint update

Let us consider prescription
λk+1 = λk + ρ.g(xk)

where ρ is sufficiently small real constant.
This prescription tries to update Lagrange multiplier using sofisticated method - size of up-
date is adequate to distance of actual aproximation from ΩE .

Using this prescription we construct algorithm:

• input

– A ∈ R2 × R2 - SPD matrix

– b ∈ R2 - right side vector

– r ∈ R - radius of boundary

– e ∈ R - precision of algorithm

– x0 ∈ R2 - initial approximation

– λ0 = 0 - initial approximation of Lagrange multiplier

– k = 0 - iterator

• while xTk .x− r > e do

– xk+1 = cg(A+ 2 ∗ diag([λk, λk]), b, xk, e)

– λk+1 = λk + ρ.(xTk+1.xk+1 − r)

– k = k + 1

where cg(A, b, x0, e) is implemented algorithm of Conjugated gradient method, see Sec-
tion 4.3.
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Example 7.1.1
Let us choose the following input data

A =

[
2 −1
−1 2

]
, b =

[
4
20

]
, x0 =

[
1
1

]
, e = 10−4, r = 1.

Using different constant coeficients ρ, algorithm find solution subject to precision using dif-
ferent number of iterations:

ρ # of iterations
0.020 2779
0.021 2340
0.022 5000+
0.023 1791
0.023 1791
0.024 1872
0.025 1602
0.026 1542
0.027 1503
0.028 1843
0.029 1600
0.03 1232
0.031 1528
0.0311 922
0.0312 623
0.03121 2295
0.03122 1105
0.03123 735
0.03124 653
0.03125 541
0.03126 407
0.03127 200
0.03128 -
0.0313 -
0.032 -
0.04+ -

7.2 Adaptive linear constraint update

We modify previous algorithm - we find adequate coeficient ρ by testing and making shorter
in every iteration.

• input

– A ∈ R2 × R2 - SPD matrix

– b ∈ R2 - right side vector

– r ∈ R - radius of boundary
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– e ∈ R - precision of algorithm

– x0 ∈ R2 - initial approximation

– λ0 = 0 - initial approximation of Lagrange multiplier

– ρ = 1 - initial update coefficient

– k = 0 - iterator

• while xTk .xk − r > e do

– try to update: λtest = λk + ρ.(xTk+1.xk+1 − r)

– compute testing aproximation: xk+1 = cg(A+ 2 ∗ diag([λtest, λtest]), b, xk, e)

– while xTtest.xtest − r < e

∗ ρ = ρ
2

∗ try to update: λtest = λk + ρ.(xTk+1.xk+1 − r)

∗ compute testing aproximation: xtest = cg(A+ 2 ∗ diag([λtest, λtest]), b, xk, e)

– λk+1 = λtest

– xk+1 = xtest

Example 7.2.1
Consider input data

A =

[
2 −1
−1 2

]
, b =

[
1
1

]
, r = 1, x0 =

[
5
3

]
, eps = 10−4

Output of this algorithm:
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7.3 Bisection method

In this algorithm we try to find λmax using bisection method.
There exists sufficient by large λmax such that

g(x(λmax)) < 0
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Then our solution x̄ = x(λ̄) with λ̄ ∈ (0, λmax). We search this λ̄ using Bisection method with
stop condition

|g(x(λ̄))| < ϵ

where ϵ > 0 is required precision.

Listing 2: bisect
1 % f i n d any lambda max
2 lambda max = 0 ;
3 x max = cg (A + 2 ∗ diag ( [ lambda max , lambda max ] ) , b , x 00 , e ) ;
4 while ( x max ’∗ x max − c ) > e
5 lambda max = lambda max + 1 ; % t r y t o i n c r e a s e
6 x max = cg (A + 2 ∗ diag ( [ lambda max , lambda max ] ) , b , x 00 , e ) ;
7 end
8
9 % i n i t i a l i z a t i o n

10 a b i s e c t = 0 ; % l o w e r e s t i m a t i o n
11 b b i s e c t = lambda max ; % upper e s t i m a t i o n
12 s b i s e c t = ( a b i s e c t + b b i s e c t ) / 2 ; % p i v o t
13 x = cg (A + 2 ∗ diag ( [ s b i s e c t , s b i s e c t ] ) , b , x 00 , e ) ;
14
15 % main i t e r a t i o n s
16 while abs ( x ’∗ x − r ) > e
17 % compute new i n t e r v a l
18 i f x ’∗ x − r > 0
19 a b i s e c t = s b i s e c t ;
20 else
21 b b i s e c t = s b i s e c t ;
22 end
23
24 % compute new p i v o t
25 s b i s e c t = ( a b i s e c t + b b i s e c t ) / 2 ;
26 x = cg (A + 2 ∗ diag ( [ s b i s e c t , s b i s e c t ] ) , b , x 00 , e ) ;
27 end
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Output of this algorithm:
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7.4 Numerical tests

A1 =

[
2 1
1 2

]
, A2 =

[
2 −1
−1 2

]
, A3 =

[
3 1
1 1

]
, A4 =

[
2 2
2 3

]

b1 =

[
−5
6

]
, b2 =

[
4
5

]
, b3 =

[
−3
−3

]
, b4 =

[
0
4

]
input adaptive ULM bisection method

A b x1 x2 λ it x1 x2 λ it
A1 b1 -0.654301 0.756363 3.399414 523 -0.654208 0.756261 3.399414 12
A1 b2 0.585708 0.810689 1.723145 52 0.585623 0.810529 1.723145 12
A1 b3 -1.000000 -1.000000 0.621338 8 -0.707101 -0.707101 0.621338 12
A1 b4 -0.224782 0.974464 1.167847 70 -0.224741 0.974410 1.167847 14
A2 b1 -0.616196 0.787549 2.418091 73 -0.616200 0.787545 2.418091 13
A2 b2 0.645064 0.764311 2.693481 170 0.644944 0.764177 2.693481 13
A2 b3 -0.039247 -0.039247 1.621338 6 -0.707101 -0.707101 1.621338 13
A2 b4 0.224782 0.974464 1.167847 70 0.224741 0.974410 1.167847 14
A3 b1 -0.578076 0.816043 3.530762 926 -0.578042 0.815980 3.530762 13
A3 b2 0.438290 0.898793 2.037598 192 0.438317 0.898819 2.037598 11
A3 b3 -0.432857 -0.901445 0.923828 121 -0.432894 -0.901480 0.923828 9
A3 b4 -0.158926 0.987283 1.606201 252 -0.158925 0.987305 1.606201 13
A4 b1 -0.697204 0.721933 3.635254 1000 -0.694557 0.719450 3.635254 13
A4 b2 0.641243 0.767328 0.922363 31 0.641220 0.767341 0.922363 11
A4 b3 -0.948984 -0.315123 0.248535 34 -0.949028 -0.315105 0.248535 11
A4 b4 -0.419434 0.907905 1.164917 183 -0.419347 0.907851 1.164917 14
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8 Projected Dual problem (PDP) algorithm

In the most important chapter of this thesis we introduce new algorithm for solving Equality
and Inequality problems. At first we introduce projection to boundary of set and then use
observations in previous chapters to construct PDP algorithm.

8.1 Projection

Our following problem is to find the nearest Px ∈ R2 to x, which satisfy II. KKT condition
(11) in the best way.

Definition 8.1.1 (Projection)

∀x ∈ R2 \ {o} : Px
def
=

r

∥x∥2
x

Remark: We simply normalize vector of actual iteration x and then extend it to r, thus
g(Px) = 0 ⇔ Px ∈ ΩE , ∂ΩI .

≈
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Theorem 8.1.1
For every iteration xk ∈ R2 is Pxk from (8.1.1) the nearest point accomplishing II. KKT

condition (11).

∀xk ∈ R2∀y ∈ R2 : (g(y) = 0 ∧ y ̸= Pxk) ⇒ (∥xk − Pxk∥2 < ∥xk − y∥2)

Proof: For projection holds

∥xk∥2 = ∥Pxk∥2 + ∥xk − Pxk∥2

so
∥xk − Pxk∥2 = ∥xk∥2 − ∥Pxk∥2 = ∥xk∥2 − r

and because g(y) = 0 ⇒ ∥y∥2 = r, we have

∥xk∥2 − r = ∥xk∥2 − ∥y∥2 = ∥(xk − y) + y∥2 − ∥y∥2

For every norm ∥x+ y∥ ≤ ∥x∥+ ∥y∥, so we can write

∥(xk − y) + y∥2 − ∥y∥2 ≤ ∥xk − y∥2 + ∥y∥2 − ∥y∥2 = ∥xk − y∥

Equality is possible, only if xk − y = −y ⇒ xk = 0. For this point, projection (8.1.1) is not
defined.
So we can say

∥x− Pxk∥2 < ∥xk − y∥2
�

Definition 8.1.2 (Projection in more dimensions)

For every iteration

x ∈ R2n \ {x ∈ R2n : ∥(x2i−1, x2i)∥2 ̸= 0, i = 1, 2, . . . n}

we define projection

Px = (P (x1, x2), . . . P (x2i−1, x2i), . . . P (x2n−1, x2n))
T
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8.2 Idea of PDP

Previous algorithms in Chapter 7 (except Bisection method) update Lagrange multipliers
from previous iteration by multiple of value of quadratic contraint in this iteration. Now
we try to compute this update using more sofisticated process - we use Lagrange multiplier
corresponding to projection of previous iteration to boundary of constraint set.
We will use update prescription

λk+1 = λk + λ̇k

where

• λk is Lagrange multiplier from previous iteration

• λk+1 is Lagrange multiplier corresponding to next iteration

• λ̇k is update
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The algorithm consists of these steps:

• Initialization
Find minimum of quadratic function without constraints

x0 = min
x∈R2n

f(x)

using CG method. Set λ0 = 0.

• KKT conditions accomplishment
The algorithm is over, if both of KKT conditions are accomplished due to precision.
Because first KKT condition is accomplished in every iteration (every next iteration is
computed using dual problem solver), we simply test accomplishment of second KKT
condition.

• Projection computation
Compute projection of actual iteration using Definition 8.1.2.

• Update computation
Minimize inverse dual problem function - find Lagrange multiplier corresponding to
projection using:

– CG algorithm for finding λ̇k ∈ R without confidement - if original problem is with
equality constraints (or use prescription from Section 5.3.4),

– MPGRP algorithm for finding λ̇k > 0 - if original problem is with inequality con-
straints.

• Lagrange multipliers update
Compute next Lagrange multiplier by updating

λk+1 = λk + λ̇k

• Next aproximation computation
Find next aproximation xk+1 corresponding to λk+1, using Dual problem definition
5.2.1 - use CG algorithm.
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8.3 Inequality constraints

8.3.1 Characterization

Denote (xk, λk) k-th iteration (solution aproximation and corresponding vector of Langrange
multipliers in k-th iteration, this pair solve Dual problem, see Definition 5.2.1 ). Next iteration
(xk+1, λk+1) can be expressed from previous one.
We compute first iteration (x0, λ0):

• λ0 = 0

• x0 = min
x∈R2n

f(x) is minimum without constraints

(can be computed using CG method, see Section 4.3)

In each iteration we compute pair (xk+1, λk+1) using this method:
(We denote for simplicity (xk, λk) = (x, λ))

• projection of previous iteration

Pxk = [. . .
ri

∥(x2i−1, x2i)∥2
(x2i−1, x2i) . . .]

T

(projection in more dimensions see Definition 8.1.2)

• Langrange multiplier from projection

Q = 8. diag(. . . , (Px)22i−1 + (Px)22i, . . .)

q = 4.(. . . , (Px)2i−1[b−A(Px)]2i−1 + (Px)2i[b−A(Px)]2i, . . .)
T

λ̇k = min
λ≥0

1

2
λTQλ− qTλ

(minimum of Invert Dual problem error function with constraint λ ≥ 0, see equa-
tion (23) in Section 5.3.3) for solving this problem, we use minimalization algorithm
MPRGP, see Chapter 4.4.

• update Lagrange multipliers
λk+1 = λk + λ̇k

• compute next iteration using new multipliers

xk+1 = (A+ 2diag(. . . , [λk+1]i, [λk+1]i, . . .))
−1b

(for solving this system can be used CG method see Chapter 4.3)
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8.3.2 Algorithm in Matlab

Main algorithm:

Listing 3: pdp ineq
1 % i n i t i a l i z a t i o n
2 k = 0 ;
3 x k = cg (A, b , x 00 , eps ) ;
4 lambda k = zeros ( length ( x k ) , 1 ) ;
5
6 % main i t e r a t i o n s
7 while ˜ i s in omega ( x k , r , eps )
8 % p r o j e c t i o n
9 Px k = p r o j e c t i o n ( x k , r , eps ) ;

10
11 % f i n d up da t e
12 lambda dot k = get lambda (A + 2 ∗ diag ( lambda k ) , b , r , Px k , eps \ ) ;
13
14 % up da t e l a g r a n g e m u l t i p l i e r s
15 lambda k = lambda k + lambda dot k ;
16
17 % f i n d ne x t a p r o x i m a t i o n us ing Dual prob l em
18 x k = cg (A + 2∗diag ( lambda k ) , b , x k , eps ) ;
19
20 % i n c r e a s e i t e r a t i o n c o u n t e r
21 k = k + 1 ;
22 end

Stop condition:

Listing 4: is in omega
1 function [ re turn v a lue ] = is in omega ( x , r , eps )
2 re turn va lu e=true ;
3 for i = 1 : ( length ( x )/ 2 )
4 i f ( ˜ s a t i s f y q u a d r a t i c c o n s t r a i n ( x ( ( 2∗ i −1 ) : ( 2∗ i ) ) , r ( i ) , eps ) )
5 x (2∗ i −1)ˆ2 + x (2∗ i ) ˆ 2 − r ( i ) ˆ 2
6 re tu rn va lue = f a l s e ;
7 end
8 end
9 end
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Verify condition:

Listing 5: satisfy condition
1 function [ re turn v a lue ] = s a t i s f y q u a d r a t i c c o n s t r a i n ( x , r , eps )
2 i f x ( 1 ) ˆ 2 + x ( 2 ) ˆ 2 − r ˆ2 <= eps
3 re tur n va lue = true ;
4 else
5 re tur n va lue = f a l s e ;
6 end
7 end

Projection:

Listing 6: projection
1 function [ x ] = p r o j e c t i o n ( x , r , eps )
2 for i = 1 : ( length ( x )/ 2 ) % f o r a l l c o n s t r a i n t s
3 x couple = x ( ( 2∗ i −1 ) : ( 2∗ i ) ) ;
4 % compute p r o j e c t i o n t o a c t u a l boudary
5 x ( ( 2∗ i −1 ) : ( 2∗ i ) ) = ( r ( i ) ) / ( sq r t ( x couple ( 1 ) ˆ 2 + x couple ( 2 ) ˆ 2 ) ) . . .
6 ∗ x couple ;
7 end
8 end

Update computation:

Listing 7: compute update
1 function [ lambda out ] = get lambda (A, b , r , x , eps )
2 reziduum = b−A∗x ;
3 Q = zeros ( length ( x )/2 , length ( x ) / 2 ) ;
4 q = zeros ( length ( x ) / 2 , 1 ) ;
5 for i = 1 : length ( x )/2
6 Q( i , i ) = 8∗ ( x (2∗ i −1)ˆ2 + x (2∗ i ) ˆ 2 ) ;
7 q ( i ) = 4∗ ( x (2∗ i −1)∗reziduum (2∗ i −1) + x (2∗ i )∗ reziduum (2∗ i ) ) ;
8 end
9 % compute s o l u t i o n us ing MPRGP

10 lambda = mprgp (Q, q , zeros ( length ( x ) / 2 , 1 ) , eps ) ;
11
12 lambda out = zeros ( length ( lambda ) ∗ 2 , 1 ) ;
13 for i = 1 : length ( lambda )
14 lambda out (2∗ i −1) = lambda ( i ) ;
15 lambda out (2∗ i ) = lambda ( i ) ;
16 end
17 end
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8.4 Radius scaling

We shall remind minimizing problem with separable inequality quadratic constraints (??):
Find x̄ ∈ R2n such that

x̄
def
= min

x∈Ω
f(x)

f(x)
def
= 1

2x
TAx− bTx

Ω
def
= {x ∈ R2n : gi(x) ≤ 0, i = 1, 2, . . . n}

gi(x)
def
= x22i−1 + x22i − r2i

(27)

where

• n ∈ N is problem dimension, resp. number of constraint functions

• f : R2n → R is quadratic function

• A ∈ R2n × R2n is symetric positive definite matrix

• b ∈ R2n is vector of right-hand sides

• r ∈ Rn is vector of radii

Definition 8.4.1 (Identity of radius)

We say that problem 27 has identical radius r = ρ ∈ R if

∀i = 1, . . . n : ri = ρ

Let us consider constraint function gi(x) ≤ 0. We try to identity its radius

gi(x) ≤ 0

x22i−1 + x22i − r2i ≤ 0

x22i−1 + x22i ≤ r2i

ρ2x22i−1 + ρ2x22i ≤ ρ2r2i

ρ2

r2i
x22i−1 +

ρ2

r2i
x22i ≤ ρ2

x̃22i−1 + x̃22i ≤ ρ2

where we used subsitution
x̃2i−1 =

ρ
ri
x2i−1

x̃2i =
ρ
ri
x2i

(28)
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We can use this substitution to whole vector x:

x̃ = Rx, R
def
= diag(

ρ

r1
,
ρ

r1
, . . .

ρ

rn
,
ρ

rn
) (29)

Then x ∈ Ω is equivalent to Rx ∈ {x ∈ R2n : g̃i(x) ≤ 0, i = 1, 2, . . . n}, where

g̃i(x)
def
= x22i−1 + x22i − ρ2 (30)

Now we can express f(x̃) using the previous substitution

f(x̃) = f(Rx) =
1

2
(Rx)TA(Rx)− bT (Rx) =

1

2
xTRARx− (Rb)Tx =

1

2
xT Ãx− b̃Tx

where
Ã = RAR

b̃ = Rb
(31)

Theorem 8.4.1 (Problems equivalency)

Solution of problem 27 denoted as x̄ is equivalent (after substitution x̄ = R−1 ¯̃x) to solution
of problem with identical radius:
Find ¯̃x ∈ R2n such that

¯̃x
def
= min

x∈Ω
f̃(x)

f̃(x)
def
= 1

2x
T Ãx− b̃Tx

Ω
def
= {x ∈ R2n : g̃i(x) ≤ 0, i = 1, 2, . . . n}

g̃i(x)
def
= x22i−1 + x22i − ρ2

8.5 Numerical tests

Example 8.5.1
Let us consider input data:

A =

(
2 −1
−1 2

)
, b =

(
2
3

)
, r =

(
1
)
, eps = 0.0001

Algorithm is over in one iteration.
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Example 8.5.2
Let us consider input data:

A =


4 −1 −1 0
−1 4 −1 −1
−1 −1 4 −1
0 −1 −1 4

 , b = (1, 1,−20, 50)T , r = (1, 1)T , eps = 0.0001

Algorithm is over in two iterations.
Iteration progress and progress of constraint functions values:

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

progress of iterations due to g
1
(x) = x

1
2 + x

2
2 − 12 = 0

x
1

x 2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−0.701

−0.7

−0.699

−0.698

−0.697

−0.696

−0.695

values of g
1
(x) = x

1
2 + x

2
2 − 12

it

g

−1 −0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

progress of iterations due to g
2
(x) = x

3
2 + x

4
2 − 12 = 0

x
3

x 4

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

values of g
2
(x) = x

3
2 + x

4
2 − 12

it

g

Function value progress and progress of Lagrange function values:

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−52.005

−52

−51.995

−51.99

−51.985

−51.98

−51.975

−51.97
values of Lagrange funcion L(x,λ)

it

L

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−53.8

−53.6

−53.4

−53.2

−53

−52.8

−52.6

−52.4

−52.2

−52

−51.8
values of cost function f(x)

it

f
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We can verify our solution - induct solution into KKT conditions:

KKT1err = Ax− b+ 2 diag(λ̃)x = 10−13.


0

−0.0033
−0.0711
0.1421



g(x) =

(
−0.7006
−0.0058

)

Example 8.5.3
(with large variability of radius)2

Let us consider input data

A = fivediag(−1,−1, 4,−1,−1) ∈ R12×12

b = Ay

y = (2, 1, 0.5, 0, 0, 11, 10−5,−1,
√
2,−0.1, 4.1 ∗ 10−4, 143)T

r = (2, 1, 0.5, 2, 10−3, 154)T

eps = 10−4

Algorithm is over in 2 outer iterations.
Iteration progress and progress of constraint functions values:

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1.5

−1

−0.5

0

0.5

1

1.5

progress of iterations due to g
1
(x) = x

1
2 + x

2
2 − 22 = 0

x
1

x 2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

values of g
1
(x) = x

1
2 + x

2
2 − 22

it

g

2This example was introduced and solved in [4]
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−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

progress of iterations due to g
2
(x) = x

3
2 + x

4
2 − 12 = 0

x
3

x 4

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−2

0

2

4

6

8

10

12

values of g
2
(x) = x

3
2 + x

4
2 − 12

it

g

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

progress of iterations due to g
3
(x) = x

5
2 + x

6
2 − 0.52 = 0

x
5

x 6

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

values of g
3
(x) = x

5
2 + x

6
2 − 0.52

it

g

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

progress of iterations due to g
4
(x) = x

7
2 + x

8
2 − 22 = 0

x
7

x 8

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

values of g
4
(x) = x

7
2 + x

8
2 − 22

it

g
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−1 −0.5 0 0.5 1

x 10
−3

−8

−6

−4

−2

0

2

4

6

8

x 10
−4 progress of iterations due to g

5
(x) = x

9
2 + x

10
2  − 0.0012 = 0

x
9

x 10

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

−7 values of g
5
(x) = x

9
2 + x

10
2  − 0.0012

it

g

−150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

progress of iterations due to g
6
(x) = x

11
2  + x

12
2  − 1542 = 0

x
11

x 12

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−3284.38

−3284.375

−3284.37

−3284.365

−3284.36

−3284.355

−3284.35

values of g
6
(x) = x

11
2  + x

12
2  − 1542

it

g

Function value progress and progress of Lagrange function values:

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−4.0996

−4.0994

−4.0992

−4.099

−4.0988

−4.0986

−4.0984
x 10

4 values of Lagrange funcion L(x,λ)

it

L

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
−4.1002

−4.1

−4.0998

−4.0996

−4.0994

−4.0992

−4.099

−4.0988

−4.0986

−4.0984

−4.0982
x 10

4 values of cost function f(x)

it

f
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We can verify our solution - induct solution into KKT conditions:

KKT1err = Ax− b+ 2 diag(λ̃)x = 10−12.



−0.0013
0.0007
0.0066
−0.0036
−0.4334
0.4405
0.0027
−0.0089
−0.0120
−0.0089

0
0



g(x) = 103.



−0.0017
−0.0002
0.0000
−0.0000
0.0000
−3.2844


Inner iterations:

• Initialization
- number of CG iterations: 13

• 1. iteration
- number of MPRGP iterations: 22
- number of CG iterations: 18

• 2. iteration
- number of MPRGP iterations: 9
- number of CG iterations: 11
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9 Conclusion

In this thesis, we used observations from simple algorithms to construct new very effective
algorithm for solving problem of minimizing of quadratic function with separated quadratic
constraints. We call it PDP. It represent a new way how to use Dual problem and projection
to boundary of a set - it uses Inverse Dual problem to find corresponding update of Lagrange
multipliers. It is probably the best update of Lagrange multiplier of previous iteration.

First numerical tests imply good convergence, but proof was not constructed yet. Also
precondition can improve number of inner CG and MPRGP iterations.

In fact, contact problems imply minimizing problems with quadratic constraints, more-
over linear equalities and inequalities. That is the reason, why PDP algorithm is useless in
these cases. It has to be modified, probably using classic MPRGP algorithm.



10 REFERENCES 47.

10 References
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Appended CD includes these folders with matlab functions:

• Chapter 3

– algorithm for generating figures in Chapter 3

• Chapter 4

– chapter4/cg - implementation of CG algorithm

– chapter4/mprgp - implementation of MPRGP algorithm

• Chapter 5

– chapter5/dual problem - figures in Section 5.2

– chapter5/invert dual problem - usage of Invert Dual problem

• Chapter 6

– chapter6/constant update lagrange - constant update of Lagrange mul-
tipliers

– chapter6/sequence - sequence of Lagrange multipliers

• Chapter 7

– chapter7/linear update - Linear update of Lagrange multipliers

– chapter7/adaptive linear update - Adaptive linear update of Lagrange
multipliers

– chapter7/bisection - Bisection algorithm

• Chapter 8

– chapter8/pdp_eq - implementation of PDP algorithm for Equality problem

– chapter8/pdp_ineq - implementation of PDP algorithm for Inequality prob-
lem


