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1.1 Aritmetické vektory

DEFINICE 1
n-rozmerny aritmeticky vektor je usporadana n-tice
Cisel, jejiz prvky se nazyvaji slozky. Tyto usporadané n-
tice budeme zapisovat do hranatych zavorek do radku
nebo sloupct.

PRIKLAD 1 Vektor prihybi vodice z piikladu IV z
tvodni pfednasky muZzeme definovat predpisem

u = [ug, u1, us, Us, U4, Us, Us|. Resenim tlohy je pak
vektor u = [0, 0.2780, 0.4448, 0.5004, 0.4448, 0.2780, 0]
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1.1 Aritmetické vektory

Jestlize v je aritmeticky vektor, pak ¢-tou slozku vektoru v budeme
znacit |v|;. Napft. [u]; = ug = 0.

Pocet slozek aritmetického vektoru nazyvame jeho rozmérem nebo
téZ dimenzi. Napriklad vektor x = [1, 2| je dvourozmérny, vektor u
je sedmirozmeérny.

DEFINICE 2
Dva aritmetick€ vektory u a v povazujeme za stejné

(piSeme u = v), jestlize maji steynou dimenzi n a stejné
odpovidajici slozky, tj. [u]; = |v|i,...,[u]l, = [V],.
Vektory u a v, které nejsou stejné, jsou ruzné (piseme

u == v)

Jestlizeu = [1,2] av = |2, 1], pak [u|; = 1, [v]; = 2, takZze u # v.
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1.1 Aritmetické vektory

Dvou a tffrozmé&rné vektory Vicerozmerne vektory:
- polohové vektory

0

Voln€ a vazané vektory Znéazornéni vektoru [1,2, 1, 2]
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1.2 Operace s aritmetickymi vektory

DEFINICE 3

U1, ..., U] je vektor au definovany predpisem

au = [, ..., Qly).

Soucin skaldru (cisla) o a aritmetického vektoru u =

Pro slozky au tedy plati
[Oéll]i :Oé[U]i, 1= 1,...,77/,

napriklad
31,2 =13-1,3-2] = [3,6],

3[1,2]],=3-1=3, [3[1,2]],=3-2=6.
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1.2 Operace s aritmetickymi vektory

DEFINICE 4

Soucet aritmetickych vektorit u = |uq,...,u,] a v =

V1, ..., U] stejné dimenze je vektor u + v definovany
predpisem

U+ v =|uy+ vy, .., U, + Uy

Pro slozky u + v tedy plati

u + v]; = [u]; + [v];,

Napriklad

11,2] + (2,3

[1,2] +
[




1.2 Operace s aritmetickymi vektory

VETA 1

Pro libovolna Cisla «, 5 a vektory u,v,w stejné dimenze
plati:

u+ (v+w)=(u+v)+w (1)
u+v=v-+u (2)
a(u+v) =au+ av 3)
(a+ B)u = au+ Su 4)
a(fu) = (af)u (5)
lu=u (6)

DUKAZ: (0) [1u]; = 1[u]; = |ul;
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1.2 Operace s aritmetickymi vektory

Vlastnosti (3),(4),(5) jsou velmi dulezité pri vypoctech s velmi
velkymi vektory.

Operace au + av totiz potrebuje 2n operaci nasobeni skalaru se
slozkami obou vektoru a n operaci souctu slozek vektoru, tj. celkem
3n operaci, vyraz a(u + v) potiebuje n pfi souctu obou vektord a n
operaci nasobeni sloZek vektort skaldrem, tj. celkem 2n operaci,

tedy pouze % puvodniho poctu operaci.
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1.3 Nulovy a opacny vektor

DEFINICE 5
Vektor o = |0, ..., 0| se nazyva nulovy vektor. Nulovy

vektor dimenze n budeme znacit o,,.

Je-li vektor u = |uyq, ..., u,| libovolny aritmeticky vektor,
pak se vektor —u = |—uq,...,—u,] = (—1)u nazyva
opacny vektor k vektoru u.

Je-11 u libovolny n-rozmérny vektor, pak u + o,, = u.
Opacny vektor splituje u + (—u) = o.

Jestlize u a v jsou libovolné aritmetické vektory stejné dimenze, pak

jediny vektor x, ktery splnuje u + x = v lze zapsat ve tvaru
Xx=v+(—u)=(—u)+v.

Rozdil aritmetickych vektorti: v — u = v + (—u)
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1.4 Matice

DEFINICE 6
Necht jsou dany prvky aii, aia, . . ., Gmy z dané mnoZiny F. Matice
typu (m,n) (strucné m x n matice) je obdélnikova tabulka
Q11 A1n |
A= ;
| Um1 Gy i
kterd ma mn prvkii a;; uspofddanych do m rdadkii v a n sloupcii
Sf‘, takze B
A = : :[S‘f‘,...,sﬁ*],
A -
r = an, ... i, i = :
L Omj
Strucné piSeme t€Z A = [a;;].
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1.4 Matice

B Prvky mnoziny J nazyvame také skaldry (1ze je sCitat a

nasobit obdobné jako Cisla).

B Mnozinu vSech matic typu (m,n) s prvky z mnoziny F
budeme znacCit /™" (Matice realné, komplexni,

polynomidlni).
W Jestlize m = n, pak se A nazyva c¢tvercovd matice fadu n.
W Matici typu (1, n) nazyvame rddkovym vektorem tadu n.
W Matici typu (m, 1) nazyvame sloupcovym vektorem tadu m.
B Prvky a1, ..., as,s = min{m, n} tvoii diagondlu matice A.

m Prvek v i-tém fadku a j-tém sloupci matice A znac¢ime |A;;.
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1.4 Matice

Matice z prikladu Il z udvodni yg. e prikladu IV z uvodni

prednasky: predn4sky:

11100000 -
00011100 :
00000011 0

A=[10010000 I e
01001000 i I
00100010 00 0
100000101 _ - :

B Realna Ctvercova matice
fadu 5,t. A € R®°,

W Diagonala: 2,2,2, 2, 2.
|| [A]43 = —1.

B Realna matice typu (7,8), tj.
AeR™S,

W Diagonala: 1,0,0,1,1,0,0.
o [A]63 = 1.
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1.4 Matice

DEFINICE 7
Matice A a B povazujeme za stejné (piSeme A = B),

jestlize jsou stejného typu a maji stejné odpovidajici
prvky, tj. [A];; = |BJ;;. Matice A a B, které nejsou
stejné, jsou ruzné (piSeme A £ B).

PRIKLAD 2

)20 [ e
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1.5 Nasobeni matice skalarem a sc¢itani matic

DEFINICE 8
Soucin skaldru o a matice A je matice A stejného typu

jako A definovana predpisem

A = alAly;.

PRIKLAD 3
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1.5 Nasobeni matice skalarem a sc¢itani matic

DEFINICE 9
Soucet matic A a B stejného typu je matice A + B

stejného typu jako A a B definovana predpisem
A+ BJ;; = [A];; +[B];;.

PRIKLAD 4

IR eI bl
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1.5 Nasobeni matice skalarem a sc¢itani matic

VETA 2

Pro libovolné Ciselné matice A, B, C stejného typu a pro

libovolné skalary o, 8 plati vztahy:

A+B+C)=(A+B)+C

A+B=B+A

a(A + B) = aA -

- aB

(a+ B)A = aA -

- BA

a(fA) = (af)A

I1A=A

(1)
(2)
3)
(4)
(5)
(6)

DUKAZ: (6) [1A]ij = 1[14]7:]' — [A]ij
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1.5 Nasobeni matice skalarem a sc¢itani matic

Obdobné¢ jako v pripad€ vektoru, vlastnosti (3),(4),(5) jsou velmi

dulezité pri vypoctech s velmi velkymi maticemi.

Operace aA + SA se ¢tvercovou matici fadu n totiZ potiebuje 2n?
operaci nasobeni skaléard se sloZkami matice a n® operaci souctd
sloZek matic, tj. celkem 3n? operaci, vyraz (a + [3) A potiebuje 1 pii
souétu obou skalart a n? operaci ndsobeni slozek matice skaldrem,

tj. celkem n? + 1 operaci, tedy pouze % puvodniho poctu operaci.
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1.6 Nulova matice a odecitani matic

DEFINICE 10
Matice

"0 ... 07
O _ . .

0 ... 0
se nazyva nulovd matice. Nulova matice typu (m,n) se

znaci O,,,,,.
Je-i A libovolna matice, pak matice —A se nazyva

opacnd matice K matici A a plati
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1.6 Nulova matice a odecitani matic

VETA 3
Pro libovolnou matici A a nulovou matici stejného typu

plati

A+O0=A (D
A+(-A)=0 (2)
—A=(-1A (3)
DUKAZ:
@): [A + OJ;; = [Ali; + [Oli; = [Ali; + 0 =[Alyy,
(2):

A+ (—A)l;; = [Ali; + [-Ali; = [A]i; + (—[A]i;) = 0= [0},
@): [-Al;; = —[Ali; = (-D[A];; = [(-1)A];.
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1.6 Nulova matice a odecitani matic

Jestlize matice A a B jsou libovolné matice stejného typu, pak
jedinou matici X, ktera splnuje A + X = B, Ize zapsat ve tvaru

X=B+(-A)=(—A)+B.

Definujeme odecitani matic nebo t€z rozdil matic predpisem
B-—A=B+(—-A).
PRIKLAD 5
1 -2 2 1
i CR I

B-—A=B+ (—A)

|
1
O =
|
ON}
1
_|_
1
|
— DN
Lo |
p—
1
|
1
ro |
p—
|
[\Dw
1



1.7 Transponované matice

DEFINICE 11
K dané matici A typu (m, n) definujeme matici transponovanou A"
typu (n, m) predpisem

PRIKLAD 6 [

VETA 4

Pro matice stejného typu a libovolny skalar plati:

(A+B) =A" +B'", (1)
(aA) = aA'. (2)
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1.8 Nasobeni matice a vektoru

Soustava z prikladu IV z uvodni prednasky:

2%1

+2us

—|—2”LL3

—I—QU4

+2u5

0.1112
0.1112
0.1112
0.1112
0.1112

S vyuZzitim definice nasobeni vektoru skaldrem a souctu vektoru:

+Us

—1
2
—1

0
0

‘|"LL3

+Uy

‘|‘U5

1. Matice a maticové
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1.8 Nasobeni matice a vektoru

Predchozi rovnici 1ze prepsat:

Ze sloupcovych vektoru s

A

.., Sk

A A A A
U187 + U2S5; + u3S3 + U4S; + UsS

Ao

sestavime matici

2
—1

0
0
0

—1
2
—1

0
0

0
—1
2

0
—1

—1

0
0
0
—1
2

(%)

Leva strana rovnice () definuje soucin matice A a vektoru u, takze

Au = b,

kde u =

, b

| 0.1112

- 0.1112
0.1112
0.1112
0.1112
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1.8 Nasobeni matice a vektoru

DEFINICE 12

y = Ax = 118

S R i %%~ N

Soucinem matice A = |a;;| typu (m,n) a sloupcového vektoru x =

;| dimenze n nazyvame vektor dimenze m definovany predpisem

Rozepsanim definice po slozkach dostaneme

Toto pravidlo si miiZzeme zndzornit pomoci:

y

Yi

[y]z — [AX]Z = ;11 + -

_ LA
c+ Ain Ty, =T, X,

ové operace — p. 25/42



1.8 Nasobeni matice a vektoru

Jako pfiklady nasobeni matice a vektoru si uved’ me
ail ai2 Ty | _ | 61171+ Q1272
as1 a92 T2 as1r1 + a9y |’

2 1 0] o] _[21 + 12 + 03]_
13 12T 11+ 32 4 1037

VETA 5
Pro libovolné matice A, B typu (m,n), n-rozmérné vektory u, v a

skalar « plati:

A(ou) = a(Au) = (a¢A)u (1)
Au+v)=Au—+ Av (2)
(A+B)u= Au+ Bu (3)

DUKAZ: @) [A(u+v)] =12 (u+v) = an(us +v1) 4+ + ain(un +v,) =

1
= (@inu1 + -+ + Qi) + (@101 + - F Ainvn) =
A A
=r;u+r;v=Au]; + [Av],;,
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1.9 Nasobeni matic

A, B libovolné ¢tvercové matice radu 3, x vektor dimenze 3.
A(Bx) = A [z18] + 98y + w38y | = 21AS] + 22Asy + x3Asy

Odtud mdZeme definovat matici AB = [As?’, Asy’, As?P].

DEFINICE 13
JestliZze A je matice typu (m, p) a B je matice typu (p, n),
pak soucin matic A a B je matice AB typu (m,n) defi-

novana predpisem
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1.9 Nasobeni matic

RozepiSeme-1i si definici nasobeni matic po slozkach, dostaneme

[ABJ;j = anbyj + - + aiby; = ;87

a
- A_B AB - - AR -
r{'s; ri's, ri'B
AB = : : = .
A_B A_B A
| ISy r>S. _ B |

Toto pravidlo si miiZzeme zndzornit pomoci:

AB ] A ) B
] ; by
[AB] L CLZl CL,L'p .]
i = N L
- - i | L bp; -
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1.9 Nasobeni matic

PRIKLAD 7 Pfiklady ndsobeni matic:

) &)

b21 b22

a11b11 + a12091
a91b11 + a99b91

a12
a99

T2 170 - 2.141-0
2 3 _2.143.0
.-
| 0 -1
=2 -1
1271 g_j—
0 1

a11012 + a12b99
(91019 + 29099 |’

2-2+1-1
0-2—1-1

—2.24+3-1_

nelze nasobit!!!
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1.9 Nasobeni matic

Z. definice l1ze ihned vidét, ze pro libovolné matice A, B a vektor x je
A (Bx) = (AB)x pokud jsou tyto vyrazy definovany. Obecnéji plati
nasledujici vztahy.

VETA 6

Pro libovolny skalar oo a matice A, B, C plati:

A(aB) =a(AB) = (c¢A)B (1)
AB+C)=AB+ AC (2)
(A+B)C=AC+BC 3)

kdykoliv jsou uvedené vyrazy definovany.
DUKAZ (2): [A(B+C)]., = tAsP+C — pA(sB 4 s0) =

ij | U

=r1}'s} + 18} = [AB];; + [AC];
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1.9 Nasobeni matic

Nasobeni matic je velmi vypocetn¢ nakladné. Je proto
velmi duleZité operace délat co nejefektivné;i.

Operace nasobeni matic se Ctvercovymi maticemi radu n
totiz potiebuje n?(2n — 1) = 2n’ — n?* operaci, tj. vyraz
AC + BC potiebuje 4n® — 2n? pfi soudinech matic a n
operaci pro soucet matic, tj. celkem 4n° — n? operaci,
zatimco vyraz (A + B)C potiebuje 2n° tedy pfiblizné
puvodniho poctu operaci.

2

1
2
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1.9 Nasobeni matic

VETA 7
Pro nasobeni matice A typu (m, p), matice B typu (p, ¢) a matice C
typu (g, n) plati také tzv. asociativni zdkon, ;.

A(BC) = (AB)C

DUKAZ: A(BC)=A [BsC,... BsC] = [ABsO),...,A(Bs)] =
= [(AB)s?,...,(AB)s;/| = (AB)C.

Indukci 1ze dokdzat obdobné tvrzeni 1 pro soucin vice nez tfi matic.
Odtud specialné vyplyva, ze mocnina ctvercové matice
AF= AA.. A
k

je definovana jednoznacné€ nebot’ nezalezi na uzavorkovani.
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1.9 Nasobeni matic

DEFINICE 14

Ctvercova matice

1 0
0 1

0 0

- O O

1

se nazyva jednotkovd matice. Jednotkova matice fadu n se znaci 1,,.

VETA 8

dimenze plati

Al = A,

TA = A.

Jestlize A je libovolna matice, pak pro jednotkové matice prislusné

DUKAZ:

Napf [A]]Z]:Cbzlo—F‘|‘CL7,]1++CL'LTLO:CL’LJ:[A]’LJ
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1.9 Nasobeni matic

Pro matice
1 92 0 1
A=|5d) B0
plati
1 270 1 0 1 0 1111 2 3 4
AB:[S 4”0 o]:[o 3]’BA:[0 0”3 4]:[0 0]

takze AB == BA.
Navic plati

> | 0 1 0 1|
B —[o 0] [0 0]—0
Pro nasobeni matic tedy neplati komutativni zdkon a mocnina

nenulové matice muze byt nulovd matice!
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1.9 Nasobeni matic

VETA 9
JestliZe je A matice typu (m, p) a B je matice typu (p, n),
pak plati:

(AB)' =B'A’
DUKAZ:
[(AB)T] ij :[AB]J@ — rfs? —
:a’jlblZ — e e e - a’jpbpi —
=b1;a;1 + - -+ Opiajp =

—(sB) (r2) = [B'AT], .

L J
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1.10 Blokové matice

Pomoci vhodné zvolenych horizontalnich Ci vertikdlnich Car
muzeme rozdélit matice na submatice nebo bloky. Naptiklad
nasledujici matici typu (3, 4) mizeme rozd¢lit na ¢tyri bloky

A- 12_:[0131.

3 1
0 E F

N

|

Oy DN

Matice, jejichZ prvky jsou usporddany do blokt, nazyvame blokové
matice.

Pro blokové matice pouzivame obdobnou terminologii jako pro
bézné matice, takze mluvime o blokové diagondle nebo o blokovych

radcich.
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1.10 Blokové matice

Operace s blokovymi maticemi 1ze provadét po blocich jak popisuje

nasledujici véta. Tohoto 1ze vyuzit pri paralelnich vypoctech.

VETA 10
JestliZe jsou blokové matice A a B rozdéleny stejnym zptisobem na

bloky, pak plati:

aC oD
OzA:[ozE ozF]’

" [Cc D P Q] [C+P D+Q
A+B_[E F]+[R s] [E+R F+S
Ar_[C D] _[CT ET

- E F — DT FT
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1.10 Blokové matice

Blokové matice jsou zakladnim prostredkem pro paralelizaci

vypoctl. Pfedpokladejme, Ze mame nasledujici blokové matice:

cgp] ee[n gl ¥y

Reseni dlohy Z = A + aB lze pak fesit po blocich nésledovné
Procesor1 V =(C + aP, bloky C, P ‘e
Procesor 2 W = D + a(), bloky D, Q ;:
Procesor 3 X = F + aR, bloky E, R -
Procesor4 Y = '+ a(), bloky F, Q

ooooooooooo



1.10 Blokové matice

VETA 11
Jestlize [ A .. A - By ... By, |
A — . B= : : :
At ... A,y

B, ... B,

jsou dvé blokové matice rozdélené na bloky tak, Ze pocet sloupct
bloku A;; je stejny jako pocet fadku bloku By, pak se libovolny
blok C;; souCinu AB vycisli podle pravidla

C'L'j — AilBlj —|— o —|— Aipoj-

Specialn€ pro nasobeni blokové matice a blokového vektoru plati:

MRS
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1.10 Blokové matice

Nasobeni blokovych matic Ize takt€z paralelizovat, avSak situace je

komplikované;jsi:
| C D P Q |V W
R oseR ) XY

Reseni tlohy Z = AB lze pak fesit po blocich nésledovné
Procesor1 V = CP + DR, bloky C, D, P, R

Procesor 2 W = CQ + DS, bloky C, D, Q, S

Procesor 3 X = EP + FR, bloky E, F, P, R

Procesor 4 Y = EQ + FS,bloky E, F, Q, S

V tomto pripade je vSak paralelizace vice problematicka, nebot
jednotlivé procesy navzajem sdileji pristup k maticim.
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1.10 Blokové matice

Vyhodné¢ 1ze paralelizovat nasobeni matice a vektoru:

S

Reseni dlohy z = Av lze pak fesit po blocich nasledovné
Procesor 1 z; = Bx + Cy, bloky B, C
Procesor 2 z, = Dx + Ey, bloky D, E
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1.10 Blokové matice

Specifickym pripadem jsou tzv. blokové diagondlni matice:

A, O .. O

O A, .. O
A= ; . ;

0 .. O A,

Resenf dlohy z = Av lze pak fesit jesté vyhodnéji po blocich
nasledovne:
Procesor 1 z; = A vy, blok A,

Procesor 2 Zy — AQVQ, blok AQ

Procesorn z, — A, v,, blok A,
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