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1.1 Aritmetické vektory

DEFINICE 1
n-rozměrný aritmetický vektor je uspořádaná n-tice

čı́sel, jejı́ž prvky se nazývajı́ složky. Tyto uspořádané n-
tice budeme zapisovat do hranatých závorek do řádků
nebo sloupců.

PŘÍKLAD 1 Vektor průhybů vodiče z přı́kladu IV z
úvodnı́ přednášky můžeme definovat předpisem

u = [u0, u1, u2, u3, u4, u5, u6]. Řešenı́m úlohy je pak

vektor u = [0, 0.2780, 0.4448, 0.5004, 0.4448, 0.2780, 0]
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1.1 Aritmetické vektory

Jestliže v je aritmetický vektor, pak i-tou složku vektoru v budeme

značit [v]i. Např. [u]1 = u0 = 0.

Počet složek aritmetického vektoru nazýváme jeho rozměrem nebo

též dimenzí. Například vektor x = [1, 2] je dvourozměrný, vektor u

je sedmirozměrný.

DEFINICE 2
Dva aritmetické vektory u a v považujeme za stejné

(pı́šeme u = v), jestliže majı́ stejnou dimenzi n a stejné
odpovı́dajı́cı́ složky, tj. [u]1 = [v]1, ..., [u]n = [v]n.
Vektory u a v, které nejsou stejné, jsou různé (pı́šeme
u 6= v).

Jestliže u = [1, 2] a v = [2, 1], pak [u]1 = 1, [v]1 = 2, takže u 6= v.
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1.1 Aritmetické vektory

Dvou a třírozměrné vektory
- polohové vektory

Volné a vázané vektory

Vícerozměrné vektory:

Znázornění vektoru [1, 2, 1, 2]
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1.2 Operace s aritmetickými vektory

DEFINICE 3
Součin skaláru (čı́sla) α a aritmetického vektoru u =
[u1, ..., un] je vektor αu definovaný předpisem

αu = [αu1, ..., αun].

Pro složky αu tedy platí

[αu]i = α[u]i, i = 1, ..., n,

například

3[1, 2] = [3 · 1, 3 · 2] = [3, 6],
[
3[1, 2]

]

1
= 3 · 1 = 3,

[
3[1, 2]

]

2
= 3 · 2 = 6.
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1.2 Operace s aritmetickými vektory

DEFINICE 4
Součet aritmetických vektorů u = [u1, ..., un] a v =
[v1, ..., vn] stejné dimenze je vektor u + v definovaný
předpisem

u+ v = [u1 + v1, ..., un + vn].

Pro složky u+ v tedy platí

[u + v]i = [u]i + [v]i, i = 1, ..., n.

Například

[1, 2] + [2, 3] = [1 + 2, 2 + 3] = [3, 5],
[
[1, 2] + [2, 3]

]

1
= 1 + 2 = 3,

[
[1, 2] + [2, 3]

]

2
= 2 + 3 = 5.
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1.2 Operace s aritmetickými vektory

VĚTA 1
Pro libovolná čı́sla α, β a vektory u,v,w stejné dimenze

platı́:

u+ (v +w) = (u+ v) +w (1)

u+ v = v + u (2)

α(u+ v) = αu+ αv (3)

(α + β)u = αu+ βu (4)

α(βu) = (αβ)u (5)

1u = u (6)

DŮKAZ: (6) [1u]i = 1[u]i = [u]i
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1.2 Operace s aritmetickými vektory

Vlastnosti (3),(4),(5) jsou velmi důležité při výpočtech s velmi

velkými vektory.

Operace αu+ αv totiž potřebuje 2n operací násobení skaláru se

složkami obou vektorů a n operací součtů složek vektorů, tj. celkem

3n operací, výraz α(u+ v) potřebuje n při součtu obou vektorů a n

operací násobení složek vektorů skalárem, tj. celkem 2n operací,

tedy pouze 2

3
původního počtu operací.
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1.3 Nulový a opačný vektor

DEFINICE 5
Vektor o = [0, . . . , 0] se nazývá nulový vektor. Nulový

vektor dimenze n budeme značit on.
Je-li vektor u = [u1, ..., un] libovolný aritmetický vektor,

pak se vektor −u = [−u1, ...,−un] = (−1)u nazývá
opačný vektor k vektoru u.

Je-li u libovolný n-rozměrný vektor, pak u+ on = u.

Opačný vektor splňuje u+ (−u) = o.

Jestliže u a v jsou libovolné aritmetické vektory stejné dimenze, pak

jediný vektor x, který splňuje u+ x = v lze zapsat ve tvaru

x = v + (−u) = (−u) + v.

Rozdíl aritmetických vektorů: v − u = v + (−u)
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1.4 Matice

DEFINICE 6

Necht’ jsou dány prvky a11, a12, . . . , amn z dané množiny F. Matice

typu (m,n) (stručně m× n matice) je obdélnı́ková tabulka

A =

[
a11 . . . a1n

...
. . .

...
am1 . . . amn

]

která má mn prvků aij uspořádaných do m řádků rAi a n sloupců

sAj , takže

A =





rA1
...
rAm



 =
[
sA1 , . . . , s

A

n

]
,

rAi =
[
ai1, . . . , ain

]
, sAj =

[ a1j
...

amj

]

.

Stručně pı́šeme též A = [aij ].
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1.4 Matice

Prvky množiny F nazýváme také skaláry (lze je sčítat a

násobit obdobně jako čísla).

Množinu všech matic typu (m,n) s prvky z množiny F

budeme značit Fm,n. (Matice reálné, komplexní,

polynomiální).

Jestliže m = n, pak se A nazývá čtvercová matice řádu n.

Matici typu (1, n) nazýváme řádkovým vektorem řádu n.

Matici typu (m, 1) nazýváme sloupcovým vektorem řádu m.

Prvky a11, . . . , ass, s = min{m,n} tvoří diagonálu matice A.

Prvek v i-tém řádku a j-tém sloupci matice A značíme [A]ij .
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1.4 Matice

Matice z příkladu II z úvodní

přednášky:

A =











1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1
1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 1











Reálná matice typu (7,8), tj.

A ∈ R
7,8.

Diagonála: 1, 0, 0, 1, 1, 0, 0.

[A]63 = 1.

Matice z příkladu IV z úvodní

přednášky:

A =








2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2








Reálná čtvercová matice

řádu 5, tj. A ∈ R
5,5.

Diagonála: 2, 2, 2, 2, 2.

[A]43 = −1.
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1.4 Matice

DEFINICE 7
Matice A a B považujeme za stejné (pı́šeme A = B),

jestliže jsou stejného typu a majı́ stejné odpovı́dajı́cı́
prvky, tj. [A]ij = [B]ij . Matice A a B, které nejsou
stejné, jsou různé (pı́šeme A 6= B).

PŘÍKLAD 2
[
1

2

]

6= [1, 2],

[
1 2

3 4

]

6=

[
2 1

3 4

]

.
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1.5 Násobení matice skalárem a sčítání matic

DEFINICE 8
Součin skaláru α a matice A je matice αA stejného typu

jako A definovaná předpisem

[αA]ij = α[A]ij .

PŘÍKLAD 3

2

[
1 2

2 1

]

=

[
2 4

4 2

]

.

1. Matice a maticové operace – p. 15/42



1.5 Násobení matice skalárem a sčítání matic

DEFINICE 9
Součet matic A a B stejného typu je matice A + B

stejného typu jako A a B definovaná předpisem

[A+B]ij = [A]ij + [B]ij .

PŘÍKLAD 4
[

1 2

2 1

]

+

[
0 3

2 4

]

=

[
1 5

4 5

]

.
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1.5 Násobení matice skalárem a sčítání matic

VĚTA 2
Pro libovolné čı́selné matice A, B, C stejného typu a pro

libovolné skaláry α, β platı́ vztahy:

A+ (B+C) = (A+B) +C (1)

A+B = B+A (2)

α(A+B) = αA+ αB (3)

(α + β)A = αA+ βA (4)

α(βA) = (αβ)A (5)

1A = A (6)

DŮKAZ: (6) [1A]ij = 1[A]ij = [A]ij
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1.5 Násobení matice skalárem a sčítání matic

Obdobně jako v případě vektorů, vlastnosti (3),(4),(5) jsou velmi

důležité při výpočtech s velmi velkými maticemi.

Operace αA+ βA se čtvercovou maticí řádu n totiž potřebuje 2n2

operací násobení skalárů se složkami matice a n2 operací součtů

složek matic, tj. celkem 3n2 operací, výraz (α+ β)A potřebuje 1 při

součtu obou skalárů a n2 operací násobení složek matice skalárem,

tj. celkem n2 + 1 operací, tedy pouze 1

3
původního počtu operací.
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1.6 Nulová matice a odečítání matic

DEFINICE 10
Matice

O =

[
0 . . . 0
...

. . .
...

0 . . . 0

]

se nazývá nulová matice. Nulová matice typu (m,n) se
značı́ Omn.
Je-li A libovolná matice, pak matice – A se nazývá
opačná matice k matici A a platı́

[−A]ij = −[A]ij
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1.6 Nulová matice a odečítání matic

VĚTA 3
Pro libovolnou matici A a nulovou matici stejného typu

platı́

A+O = A (1)

A+ (−A) = O (2)

−A = (−1)A (3)

DŮKAZ:

(1): [A+O]ij = [A]ij + [O]ij = [A]ij + 0 = [A]ij ,

(2):

[A+ (−A)]ij = [A]ij + [−A]ij = [A]ij + (−[A]ij) = 0 = [O]ij,

(3): [−A]ij = −[A]ij = (−1)[A]ij = [(−1)A]ij.
1. Matice a maticové operace – p. 20/42



1.6 Nulová matice a odečítání matic

Jestliže matice A a B jsou libovolné matice stejného typu, pak

jedinou matici X, která splňuje A+X = B, lze zapsat ve tvaru

X = B+ (−A) = (−A) +B.

Definujeme odečítání matic nebo též rozdíl matic předpisem

B−A = B+ (−A).

PŘÍKLAD 5

B =

[

1 −2
3 0

]

, A =

[

2 1
1 −2

]

,

B−A = B+ (−A) =

[

1 −2
3 0

]

+

[

−2 −1
−1 2

]

=

[

−1 −3
2 2

]

.
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1.7 Transponované matice

DEFINICE 11

K dané matici A typu (m,n) definujeme matici transponovanou A⊤

typu (n,m) předpisem

[
A⊤

]

ij
=

[
A
]

ji
.

PŘÍKLAD 6
[

1 2 3
4 5 6

]⊤

=

[
1 4
2 5
3 6

]

VĚTA 4

Pro matice stejného typu a libovolný skalár platı́:

(A+B)⊤ = A⊤ +B⊤ , (1)

(αA)⊤ = αA⊤ . (2)
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1.8 Násobení matice a vektoru

Soustava z příkladu IV z úvodní přednášky:

2u1 −u2 = 0.1112
−u1 +2u2 −u3 = 0.1112

−u2 +2u3 −u4 = 0.1112
−u3 +2u4 −u5 = 0.1112

−u4 +2u5 = 0.1112

S využitím definice násobení vektoru skalárem a součtu vektorů:

u1








2
−1
0
0
0







+u2








−1
2
−1
0
0







+u3








0
−1
2
−1
0







+u4








0
0
−1
2
−1







+u5








0
0
0
−1
2







=








0.1112
0.1112
0.1112
0.1112
0.1112








1. Matice a maticové operace – p. 23/42



1.8 Násobení matice a vektoru

Předchozí rovnici lze přepsat:

u1s
A

1 + u2s
A

2 + u3s
A

3 + u4s
A

4 + u5s
A

5 = b (∗)

Ze sloupcových vektorů sA1 , . . . , s
A

5 sestavíme matici

A =
[
sA1 , s

A

2 , s
A

3 , s
A

4 , s
A

5

]
=








2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2








Levá strana rovnice (∗) definuje součin matice A a vektoru u, takže

Au = b, kde u =








u1

u2

u3

u4

u5







,b =








0.1112
0.1112
0.1112
0.1112
0.1112







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1.8 Násobení matice a vektoru

DEFINICE 12

Součinem matice A = [aij ] typu (m,n) a sloupcového vektoru x =

[xi] dimenze n nazýváme vektor dimenze m definovaný předpisem

y = Ax = x1s
A

1 + · · · + xns
A

n .

Rozepsáním definice po složkách dostaneme

[y]i = [Ax]i = ai1x1 + · · · + ainxn = rAi x.

Toto pravidlo si můžeme znázornit pomocí:

y A x





yi




 =






ai1 . . . ain
−→










x1

...
xn









y
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1.8 Násobení matice a vektoru

Jako příklady násobení matice a vektoru si uved’me
[

a11 a12
a21 a22

] [

x1

x2

]

=

[

a11x1 + a12x2

a21x1 + a22x2

]

,

[

2 1 0
−1 3 1

] [ 1
2
3

]

=

[

2 · 1 + 1 · 2 + 0 · 3
−1 · 1 + 3 · 2 + 1 · 3

]

=

[

4
8

]

.

VĚTA 5

Pro libovolné matice A, B typu (m,n), n-rozměrné vektory u, v a

skalár α platı́:
A(αu) = α(Au) = (αA)u (1)

A(u+ v) = Au+Av (2)

(A+B)u = Au+Bu (3)

DŮKAZ: (2)
[
A(u+ v)

]

i
= r

A

i
(u+ v) = ai1(u1 + v1) + · · ·+ ain(un + vn) =

= (ai1u1 + · · ·+ ainun) + (ai1v1 + · · ·+ ainvn) =

= r
A

i
u+ r

A

i
v = [Au]i + [Av]i,
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1.9 Násobení matic

A, B libovolné čtvercové matice řádu 3, x vektor dimenze 3.

A(Bx) = A
[
x1s

B

1 + x2s
B

2 + x3s
B

3

]
= x1AsB1 + x2AsB2 + x3AsB3

Odtud můžeme definovat matici AB =
[
AsB1 ,AsB2 ,AsB3

]
.

DEFINICE 13

Jestliže A je matice typu (m, p) a B je matice typu (p, n),

pak součin matic A a B je matice AB typu (m,n) defi-

novaná předpisem

AB =
[
AsB1 , . . . ,AsBn

]
.
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1.9 Násobení matic

Rozepíšeme-li si definici násobení matic po složkách, dostaneme

[AB]ij = ai1b1j + · · · + aipbpj = rAi s
B

j

a

AB =





rA1 s
B

1 . . . rA1 s
B

n
...

. . .
...

rAms
B

1 . . . rAms
B

n



 =





rA1 B
...

rAmB



 .

Toto pravidlo si můžeme znázornit pomocí:

AB A B
[

[AB]ij

]

=






ai1 . . . aip
−→










b1j
... ↓
bpj




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1.9 Násobení matic

PŘÍKLAD 7 Přı́klady násobenı́ matic:
[

a11 a12
a21 a22

] [

b11 b12
b21 b22

]

=

[

a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]

,

[
2 1
0 −1

−2 3

] [

1 2
0 1

]

=

[
2 · 1 + 1 · 0 2 · 2 + 1 · 1
0 · 1− 1 · 0 0 · 2− 1 · 1

−2 · 1 + 3 · 0 −2 · 2 + 3 · 1

]

=

[
2 5
0 −1

−2 −1

]

,

[

1 2
0 1

] [ 2 1
0 −1

−2 3

]

nelze násobit!!!
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1.9 Násobení matic

Z definice lze ihned vidět, že pro libovolné matice A, B a vektor x je

A(Bx) = (AB)x pokud jsou tyto výrazy definovány. Obecněji platí

následující vztahy.

VĚTA 6

Pro libovolný skalár α a matice A, B, C platı́:

A(αB) = α(AB) = (αA)B (1)

A(B+C) = AB+AC (2)

(A+B)C = AC+BC (3)

kdykoliv jsou uvedené výrazy definovány.

DŮKAZ (2):
[
A(B + C)

]

ij
= rAi s

B+C

j = rAi (s
B

j + sCj ) =

= rAi s
B

j + rAi s
C

j = [AB]ij + [AC]ij
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1.9 Násobení matic

Násobení matic je velmi výpočetně nákladné. Je proto
velmi důležité operace dělat co nejefektivněji.

Operace násobení matic se čtvercovými maticemi řádu n

totiž potřebuje n2(2n− 1) = 2n3 − n2 operací, tj. výraz

AC+BC potřebuje 4n3 − 2n2 při součinech matic a n2

operací pro součet matic, tj. celkem 4n3 − n2 operací,

zatímco výraz (A+B)C potřebuje 2n3 tedy přibližně 1
2

původního počtu operací.
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1.9 Násobení matic

VĚTA 7

Pro násobenı́ matice A typu (m, p), matice B typu (p, q) a matice C

typu (q, n) platı́ také tzv. asociativnı́ zákon, tj.

A(BC) = (AB)C

DŮKAZ: A(BC) = A
[
BsC1 , . . . ,BsCn

]
=

[
A(BsC1 ), . . . ,A(BsCn )

]
=

=
[
(AB)sC1 , . . . , (AB)sCn

]
= (AB)C.

Indukcí lze dokázat obdobné tvrzení i pro součin více než tří matic.

Odtud speciálně vyplývá, že mocnina čtvercové matice

Ak = AA · · ·A
︸ ︷︷ ︸

k

je definována jednoznačně nebot’ nezáleží na uzávorkování.
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1.9 Násobení matic

DEFINICE 14

Čtvercová matice

I =







1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1







se nazývá jednotková matice. Jednotková matice řádu n se značı́ In.

VĚTA 8

Jestliže A je libovolná matice, pak pro jednotkové matice přı́slušné

dimenze platı́

AI = A, IA = A.

DŮKAZ:

Např. [AI]ij = ai1 · 0 + · · · + aij · 1 + · · · + ain · 0 = aij = [A]ij
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1.9 Násobení matic

Pro matice

A =

[

1 2
3 4

]

, B =

[

0 1
0 0

]

platí

AB =

[

1 2
3 4

][

0 1
0 0

]

=

[

0 1
0 3

]

,BA =

[

0 1
0 0

][

1 2
3 4

]

=

[

3 4
0 0

]

takže AB 6= BA.

Navíc platí

B2 =

[

0 1
0 0

] [

0 1
0 0

]

= O.

Pro násobení matic tedy neplatí komutativní zákon a mocnina

nenulové matice může být nulová matice!
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1.9 Násobení matic

VĚTA 9
Jestliže je A matice typu (m, p) a B je matice typu (p, n),
pak platı́:

(AB)⊤ = B⊤A⊤

DŮKAZ:
[
(AB)⊤

]

ij
=[AB]ji = rAj s

B

i =

=aj1b1i + · · ·+ ajpbpi =

=b1iaj1 + · · ·+ bpiajp =

=
(
sBi

)
⊤
(
rAj

)
⊤ =

[
B⊤A⊤

]

ij
.
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1.10 Blokové matice

Pomocí vhodně zvolených horizontálních či vertikálních čar

můžeme rozdělit matice na submatice nebo bloky. Například

následující matici typu (3, 4) můžeme rozdělit na čtyři bloky

A =

[
1 0 1 2
2 1 3 1
5 4 0 1

]

=

[

C D
E F

]

.

Matice, jejichž prvky jsou uspořádány do bloků, nazýváme blokové

matice.

Pro blokové matice používáme obdobnou terminologii jako pro

běžné matice, takže mluvíme o blokové diagonále nebo o blokových

řádcích.
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1.10 Blokové matice

Operace s blokovými maticemi lze provádět po blocích jak popisuje

následující věta. Tohoto lze využít při paralelních výpočtech.

VĚTA 10

Jestliže jsou blokové matice A a B rozděleny stejným způsobem na

bloky, pak platı́:

αA =

[

αC αD
αE αF

]

,

A+B =

[

C D
E F

]

+

[

P Q
R S

]

=

[

C+P D+Q
E+R F+ S

]

.

A⊤ =

[

C D
E F

]⊤

=

[

C⊤ E⊤

D⊤ F⊤

]
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1.10 Blokové matice

Blokové matice jsou základním prostředkem pro paralelizaci

výpočtů. Předpokládejme, že máme následující blokové matice:

A =

[

C D
E F

]

, B =

[

P Q
R S

]

, Z =

[

V W
X Y

]

Řešení úlohy Z = A+ αB lze pak řešit po blocích následovně

Procesor 1 V = C + αP , bloky C, P

Procesor 2 W = D + αQ, bloky D, Q

Procesor 3 X = E + αR, bloky E, R

Procesor 4 Y = F + αQ, bloky F, Q
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Algoritmy, u kterých výpočetní čas přímo úměrně klesá s počtem

procesorů, se nazývají paralelně škálovatelné.
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1.10 Blokové matice

VĚTA 11

Jestliže
A =





A11 . . . A1p

...
. . .

...
Am1 . . . Anp



 , B =





B11 . . . B1n

...
. . .

...
Bp1 . . . Bpn





jsou dvě blokové matice rozdělené na bloky tak, že počet sloupců

bloků Aik je stejný jako počet řádků bloků Bkj , pak se libovolný

blok Cij součinu AB vyčı́slı́ podle pravidla

Cij = Ai1B1j + · · · +AipBpj .

Speciálně pro násobení blokové matice a blokového vektoru platí:

[

B C
D E

] [

y
z

]

=

[

By + Cz
Dy + Ez

]

.
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1.10 Blokové matice

Násobení blokových matic lze taktéž paralelizovat, avšak situace je

komplikovanější:

A =

[

C D
E F

]

, B =

[

P Q
R S

]

, Z =

[

V W
X Y

]

Řešení úlohy Z = AB lze pak řešit po blocích následovně

Procesor 1 V = CP+DR, bloky C, D, P, R

Procesor 2 W = CQ+DS, bloky C, D, Q, S

Procesor 3 X = EP+ FR, bloky E, F, P, R

Procesor 4 Y = EQ+ FS, bloky E, F, Q, S

V tomto případě je však paralelizace více problematická, nebot’

jednotlivé procesy navzájem sdílejí přístup k maticím.
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1.10 Blokové matice

Výhodně lze paralelizovat nasobení matice a vektoru:

A =

[

B C
D E

]

, v =

[

x
y

]

Řešení úlohy z = Av lze pak řešit po blocích následovně

Procesor 1 z1 = Bx+Cy, bloky B, C

Procesor 2 z2 = Dx+ Ey, bloky D, E
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1.10 Blokové matice

Specifickým případem jsou tzv. blokově diagonální matice:

A =







A1 O ... O
O A2 ... O
...

. . .
...

O ... O An







Řešení úlohy z = Av lze pak řešit ještě výhodněji po blocích

následovně:

Procesor 1 z1 = A1v1, blok A1

Procesor 2 z2 = A2v2, blok A2

...

Procesor n z2 = Anvn, blok An
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