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2.1 Soustava linearnich rovnic

DEFINICE 1
Soustavou m linearnich rovnic o n neznamych
xi, ..., T, NAZyVame mnozinu rovnic ve tvaru:

ap1ry + ... + aipxr, = b

: : : (5)

amir1 + ... + apnxr, = b,
Cislaa;;, e =1,...,m,j =1,...,n nazyvame koefici-
enty soustavy a b;, ¢ = 1,...,m nazyvame pravé strany.
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2.1 Soustava linearnich rovnic

PRIKLAD 1 Soustava z piikladu IV z Gvodni pfednasky:

2”&1 — U9 = 0.1112

— U —|—2U2 —U3 = 0.1112

— U9 —|—2U3 — Uy = 0.1112

—us +2uy —us = 0.1112

— Uy —|—2U5 = 0.1112

Jedna se o soustavu 5 rovnic o 5 neznamych uq, . .., us, kde

an = 2, a2 = —1, a3 =0, ayq = 0, ais = 0,
asy = —1, ap =2, a3 = —1, ag =0, ass = 0,
as; = 0, azy = —1, azz =2, azs = —1, azs =0,

as1 = 0, aso = 0, as3 = —1, asq =2, ags = —1,
asy = 0, asy = 0, a53 = U, asy = —1, ass = 2,

2. Upravy a feSeni soustav linedrnic

by = 0.1112
by = 0.1112
bs = 0.1112
by = 0.1112
bs = 0.1112
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2.2 Ekvivalentni upravy

Z:4kladni mySlenka feSeni soustavy linearnich rovnic spociva
v nahrazeni dané soustavy jinou soustavou, ktera ma stejné reseni a

je jednodussi.

DEFINICE 2

Ekvivalentnimi upravami soustavy linearnich rovnic nazyvame

nasledujici upravy:

E1 Vzajemna vyména libovolnych dvou rovnic soustavy,

E2 Nasobeni obou stran né€které rovnice soustavy nenulovym
Cislem,

E3 PriCteni nasobku nékteré rovnice soustavy K jiné rovnici.
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2.2 Ekvivalentni upravy

Ekvivalentni Gpravy maji tu vlastnost, Ze jejich pomoci muZeme

z upravené soustavy ziskat zpét piivodni soustavu.

W Jestlize soustava S’ vznikla ze soustavy .S vzdjemnou vyménou
1-t€ a j-té rovnice podle pravidla E1, pak tataz uprava pouzita

na S’ nas privede zpétk S.

B JestliZe soustava S’ vznikla ze soustavy .S ndsobenim ¢-tého
fadku nenulovym Cislem « podle pravidla E2, pak nasobenim

téhoz radku soustavy S’ Cislem i obdrZime zpatky soustavu S.

W Jestlize soustava S’ vznikla ze soustavy S prictenim «-ndsobku
i-té rovnice k j-té rovnici (i # j), pak pricteni (—a)-ndsobku
i-té rovnice soustavy S’ k j-té rovnici soustavy S’ vede opét

k.S.
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2.2 Ekvivalentni upravy

Dve¢ soustavy linearnich rovnic nazyvame ekvivalentni soustavy,

jestlize jednu z nich 1ze ziskat z druhé ekvivalentnimi upravami.

VETA 1

Jsou-li dv€ soustavy linearnich rovnic ekvivalentni, potom maji

stejné feseni.

PRIKLAD 2 21 4+x0 = 0 (1)
1 — 3332 = —10 (2)

Vhodna uprava soustavy je napriklad vynasobeni (2) dvéma, podle pravidla E2, a

pricteni (1) k upravené (2), v souladu s pravidlem E3. Upravena soustava bude mit

tvar 21 +x2 = 0 (3)

—dry = —20 (4)
Z. rovnice (4) vypocCteme x2 = 4 a po dosazeni do rovnice (3) dostaneme
—2x1 +4 = 0 odkud 1 = 2.
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2.3 Maticovy zapis

Soustavu (S') budeme tsporné zapisovat do tabulky

a, ... A1n bl

a/ml o o o a/mn bm

kterou nazyvame rozsitend matice soustavy (S). Matici A a vektor b

a, ... A1n bl

a/ml « o o a/mn bm

nazyvame matici soustavy (S) a pravou stranou soustavy (.S) .

Pokud vektor x ma za slozky nezndmé x4, . . ., z,, miZeme soustavu

zapsat v maticové podobé Ax = b.
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2.3 Maticovy zapis

Ekvivalentnim upravam soustavy rovnic odpovidaji operace s radky
rozSifené matice soustavy, které nazyvame elementdrni (fddkové)

operace:
(el) Vzijemna vyména libovolnych dvou radkau.
(e2) Nasobeni nékterého radku nenulovym Cislem.

(e3) PriCteni nasobku nekterého radku k jinému radku.

Mame-1i dv€ matice, z nichz jedna vznikla z druhé pomoci
elementarnich radkovych operaci, rikame, ze matice jsou rddkové

ekvivalentni.
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2.3 Maticovy zapis

VETA 2
Maji-li dvé soustavy linearnich rovnic fadkove ekviva-

lentni rozsifené matice, potom maji stejné reseni.

PRiKLAD 3 Upravu soustavy (1),(2) na (3),(4) miZeme
zapsat pomoci elementarnich operaci ve tvaru

—2
1

1
-3

0
—10

—2
2

1
—6

0
—20

2. Upravy a i

—2
0

eSeni sous

1
—9

—20

tav linearnich rovnic — p. 10/27



2.4 Uprava na schodovy tvar

DEFINICE 3
Budeme fikat, ze matice je ve schodovém tvaru, jestlize ma prvni
nenulové prvky radkl zvané vedouct prvky usporadany jako schody

klesajici zleva doprava. Pozaduje se pritom, aby vedouci prvky ne-

byly nad sebou a aby vSechny pfipadné nulové radky byly dole.

PRIKLAD 3

i 7 0 2 2 0 3 2
2 0 2

A= , B=1002], C=100 0
0 0 2

- - 0 0 0 0 0 O
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2.4 Uprava na schodovy tvar

Pomoci elementarnich fadkovych operaci miizeme prevést lib.

matici na schodovy tvar.

Je-li v matici soustavy [A |b] prvek a;; nenulovy, pak vyndsobime-li

i-ty fadek této matice ¢islem —ay;/a;; a pticteme-li ho ke k-tému

radku, bude mit upravena matice v k-tém radku a j-tém sloupci

prvek

ay; + (—awj/ai;) ai; = 0.

Pokud je prvek ai; nenulovy, lze takto transformovat matici [A|b]

na tvar

a1

0

ai12
1
A99

A1n
1
CLQn

by
by

N

m
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2.4 Uprava na schodovy tvar

Pokud bude také prvek ai, nenulovy, mizeme obdobné dosdhnout pomoci
elementarnich radkovych operaci, aby 1 pod nim byly v upravené matici nuly.
Bude-li poka?dé a’; ' # 0, dostaneme nakonec matici ve schodovém tvaru (nebo

téZ v tzv. trojiihelnikovém tvaru) s nenulovymi prvky a1, as,, . . ., aZgl.
i ail a9 “o aik “ . A1n bl ]
0 a3z ... Qg ... a3, b
0 0 ai b o artt ot
k
0 0 0 e 0 bii1
0 0 0 0 0
0 0o ... 0 e 0 0

Pokud ajz._l = 0 a je mozno nalézt prvek aj-i—l # 0,7 > 1, staci vzdjemné vyménit
pred upravou ¢-ty a j-ty radek. V opaCném pripad¢ dostaneme obecné€jSi schodovy
tvar.
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2.4 Uprava na schodovy tvar

POZOR! Neprovadime-li postupné upravy na upravené matici,

muzeme se dopustit chyby. Napfiklad dpravami

O DO —

O ==

—_ =

—_ O =

—I3

OO

—_— )

OO

—1
1

—
+T9

OO

O = =

OO

nedostaneme rozsifenou matici soustavy ekvivalentni s ptivodni

matici soustavy. Této chybé se miZeme vyhnout tak, Ze zvolime

jeden radek, ktery neupravujeme, ale pouzijeme ho k uprave

ostatnich. Napriklad upravy nasledujici upravy jsou jiz ekvivalentni.

DO DN —

O = =

—_— )t

—_ O =

—211 —
—21'1

1
0
0

1
—1
—2

1
—1
—1

>
—21'2

I 1
—1| =2
Ly 3




2.5 Zpétna substituce

Uvazujme, Ze rozSifend matice soustavy je ve schodovém tvaru

i a1 a2 c. a1k c. A1n bl ]
0 a3y ... Qs ... a3, b3
00 Ty G | by
0 0 0 0 |bf,,

0 0 0 0 0

0 0 ... 0 ... 0 |0 |

1. Jestlize posledni nenulovy fadek rozSifrené matice soustavy ma
nenulovy pouze posledni prvek b +1» pak tomuto radku odpovida

rovnice k

kterd nema pro b? 11 7 OfeSeni. V tomto ptipad€ tedy dana soustava

nemd reseni.
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2.5 Zpétna substituce

PRIKLAD 4 Soustava nemd vesSeni
Rozsifena matice soustavy byla elementarnimi radkovymi

operacemi prevedena na schodovy tvar:

102 —1] 17
01 —1| 2
00 0]-3]

Tato rozsifena matice soustavy odpovida soustave:

1+ 209 —x3 = 1
To — T3 = 2
0 = =3
Posledni rovnici 0 = —3 nelze splnit pro zadnou volbu z1, 25, x3 a

soustava tudiZz nema reseni.
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2.5 Zpétna substituce

Uvazujme, Ze rozSifend matice soustavy je ve schodovém tvaru

ailr a2 aik A1n by ]

0 a%2 a’%k a%n b%

: : - a1 CL%Q - a%n b%
0 0 az; CLZ# bZ—l 0 as as,, b3
00 0 0 | by s A
0 0 0 0 0 0 0 az;l bz—l
0 0 0 0 | 0 |

2. Jestlize k =n, b, =0aal ' #0,i=1,...,n, pak n-td rovnice
ma tvar 1 1

a, T, =0b"",

ze které snadno vypocteme x,,. Po dosazeni do predchozich rovnic

zbude v (n — 1)-ni rovnici opét jedind neznama. Budeme-li takto

postupovat dale, urCime jediné reSeni soustavy.

2. Upravy a feSeni soustav linedrnich rovnic — p. 17/27




2.5 Zpétna substituce

PRIKLAD 5 Soustava md jediné reseni
Rozsifena matice soustavy byla elementarnimi radkovymi

operacemi prevedena na schodovy tvar:

102 —1] 1 7
01 —1] 2
00 1 |-3]

Tato rozsifena matice soustavy odpovida soustave:

I1 —|—2$2 —Xr3 = 1 A _
To —T3 = 2 = = —|—$2232 _g_gg ; % =
Xr3 — —3 2
r1 +2x0 = —2

= =r1+2(-1)=-2=1,=0

Soustava ma jediné reseni x; = 0,29 = —1, 23 = —3.
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2.5 Zpétna substituce

[ aii a9 c e a1k c o A1n bl i
0 as ... Qg ... ai, b
0 0 ai bt art ot
0 0 0 0 0
0 0 0 0 0
0 0 ... 0 ... 0| o0 |

3. Jestlize rozSifena matice ma obecny schodovy tvar, pak z kazdé
rovnice soustavy vyjadrime neznamou, ktera odpovida vedoucimu
prvku. Postupnym dosazovanim od posledniho radku dostaneme
vzorce pro neznamé odpovidajici vedoucim prvkim vyjadiené
pomoci neznamych na pravé stran€. V tomto pripad€ ma soustava

nekonecneé mnoho reseni.
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2.5 Zpétna substituce

PRIKLAD 6 Soustava md nekonecné mnoho reseni

Rozsifena matice soustavy byla elementarnimi radkovymi

operacemi prevedena na schodovy tvar:

0

X1

O DN =

= 1—=x Ta — T
o+ T3 4

1 1 —1
0 0 1
0 O 0
Tato rozsifena matice soustavy odpovida soustave:
r1 +x9 —x3 +x4 = 1
T3 —Ty = 2 =
0 = 0

X3

— 2—|—CC4

=x1=1—20+ 2+ 14) —24=3— 15
Soustava ma nekoneCné mnoho feSeni 1 = 3 — 29,23 = 2 + 24

prizemz x5, x4 volime libovolné.

2. Upravy a feSeni soustav linedrnich rovnic — p. 20/27



2.6 Gaussova eliminace

Gaussova eliminacni metoda:

1. dopredna redukce, t). redukce na schodovy tvar

2. zpétnd substituce, tj. feseni soustavy se schodovou matici

PRIKLAD 7 Soustava, kterd nemd vesent.

Resme soustavu

21 0| 2 2 1 0| 2 2 1 0] 27
1 2 -1 1 |2—r;—= 10 3 =2 0 — |1 0 3 =2 0
4 5 -2 |—-1] —2r4 03 —2|-5]-1r, |0 O Of-=5]

Posledni rovnici Ox; + Oz 4+ Ox3 = —5 nelze splnit zddnou volbou

201 + X9
1+ 2T9 — X3
41 4+ dxy — 213
Ekvivalentnimi radkovymi upravami dostaneme postupné

x1, T, T3. Soustava proto nema resend.

= 2
1

—1

2. Upravy a feSeni sou
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2.6 Gaussova eliminace

PRIKLAD 8 Soustava s jedinym reSenim.

Resme soustavu

Ekvivalentnimi radkovymi upravami dostaneme postupnée

"0 2 3
01 1
10 1

2
0
4

219 + 313
To + T3

I1 —|— X3

ReSenim rovnic dostaneme postupné

2

0
4

1 0 1|47

0 1 1|0

_O 2 3 2_ —QTQ
Xr3 == 2
Lo = —563:—2
r1 = 4—5173:2

coz je jediné feSeni nasi soustavy.

2. Upravy a feSeni sous

—

OO

O = O

—_
O O =
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2.6 Gaussova eliminace

PRIKLAD 9 Soustava, kterd md nekonecné mnoho vesent.

Resme soustavu

T1 + Lo + T3
L1 — 43
To + 2563

1
1
0

Ekvivalentnimi radkovymi upravami dostaneme postupnée

11
1 0
0 1

1
—1
2

| -

1
0

—Iq

1
0
0

1
—1
1

1
—2
2

| -

0

0

+T9

Posledni matice je rozsifenou matici soustavy

X1+ To + T3
— X9 — 2563

0

1
0
0

2. Upravy a feSeni sous

—

11
0 —1
0 0

1
—2
0

OO
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2.6 Gaussova eliminace

PRIKLAD 9 Pokracovdni

r1+x0+x3 = 1 (1)
— X9 — 2333 = 0 (2)
0 = 0 (3)
Z rovnice (2) vypolteme x5 pomoci 3, tj. xo = —2x3. Po dosazeni

za x9 do rovnice (1)) dostaneme xr; = 1 + z3.
Soustava ma tedy nekoneCné mnoho reseni ve tvaru x3 libovolné,
Ty = —2x3,x1 = 1 + x3. MiiZzeme je zapsat také pomoci

libovolného parametru p ve tvaru x5 = p,xo = —2p,x1 = 1 + p.

Poznamka: Ma-li soustava nekone¢né mnoho fesSeni, je mnoZina
reSeni urCena jednoznacné, nikoliv vSak jeji parametrizace.

¥ _ _ 1 1 ST gy
Napriklad xo = p,x3 = —gpaxy = —5p + 1 je jiny tvar tého?
reSeni.
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2.7 Gaussova-Jordanova metoda

DEFINICE 4
Budeme rikat, ze matice je v normovaném schodovém tvaru, jestlize

je v takovém schodovém tvaru, ze vSechny prvky nad vedoucimi

prvky jsou nulové a navic vedouci prvky jsou rovny jedné.

Gaussova—Jordanova metoda:
1. dopredna redukce, t). redukce na schodovy tvar
2. uprava na normovany schodovy tvar
(a) déleni fadki matice vedoucimi prvky

(b) nulovani prvkl nad vedoucimi prvky pomoci elementar-
nich radkovych operaci (el),(e2) a (e3)
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2.7 Gaussova-Jordanova metoda

PRIKLAD 10 Napiiklad dodate¢nou tpravou rozsifené
matice soustavy z prikladu 8 dostaneme

10 1|47-r5 [1 0 0] 2
01 10 |-r30 |0 1 0]=2
00 1|2 00 1| 2

ReSeni soustavy se nachazi v poslednim sloupci matice

vpravo, nebof rovnice, které odpovidaji roz$ifené matici
soustavy napravo, jsou r; = 2,r9 = —2a r3 = 2
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2.8 Pracnost reseni

B Gaussova eliminace je velmi efektivni pro rucni rfeSeni malych
soustav a pro pocitaCové feSeni soustav stovek az tisici rovnic.

B Metoda je velmi efektivni 1 pro pocitaCové feSeni vétSich
soustav se specidlni strukturou rozloZeni nenulovych prvka.

B Pro rozsahlejsi soustavy existuji efektivn€jSi metody, které se
rozvijeji 1 v souCasné dobe.

B Gaussova eliminace neni vhodna pro paralelni pocitaCovou

implementaci.

Pracnost reseni soustavy metodou Gaussovy eliminace (m = n):

1. Dopfednd redukce: ¢(2n + 1)(n + 1)n ndsobeni, tj. cca 1’

pro velka n
2. Zpétnd substituce: +n(n + 1) ndsobeni, tj. cca sn? pro velkd n.
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