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2.1 Soustava lineárních rovnic

DEFINICE 1
Soustavou m lineárnı́ch rovnic o n neznámých
x1, . . . , xn nazýváme množinu rovnic ve tvaru:

a11x1 + . . . + a1nxn = b1
... · · ·

... ...
am1x1 + . . . + amnxn = bm

(S)

Čı́sla aij, i = 1, . . . ,m, j = 1, . . . , n nazýváme koefici-
enty soustavy a bi, i = 1, . . . ,m nazýváme pravé strany.
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2.1 Soustava lineárních rovnic

PŘÍKLAD 1 Soustava z přı́kladu IV z úvodnı́ přednášky:

2u1 −u2 = 0.1112
−u1 +2u2 −u3 = 0.1112

−u2 +2u3 −u4 = 0.1112
−u3 +2u4 −u5 = 0.1112

−u4 +2u5 = 0.1112

Jedná se o soustavu 5 rovnic o 5 neznámých u1, . . . , u5, kde

a11 = 2, a12 = −1, a13 = 0, a14 = 0, a15 = 0,
a21 = −1, a22 = 2, a23 = −1, a24 = 0, a25 = 0,
a31 = 0, a32 = −1, a33 = 2, a34 = −1, a35 = 0,
a41 = 0, a42 = 0, a43 = −1, a44 = 2, a45 = −1,
a51 = 0, a52 = 0, a53 = 0, a54 = −1, a55 = 2,

b1 = 0.1112
b2 = 0.1112
b3 = 0.1112
b4 = 0.1112
b5 = 0.1112
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2.2 Ekvivalentní úpravy

Základní myšlenka řešení soustavy lineárních rovnic spočívá

v nahrazení dané soustavy jinou soustavou, která má stejné řešení a

je jednodušší.

DEFINICE 2

Ekvivalentnı́mi úpravami soustavy lineárnı́ch rovnic nazýváme

následujı́cı́ úpravy:

E1 Vzájemná výměna libovolných dvou rovnic soustavy,

E2 Násobenı́ obou stran některé rovnice soustavy nenulovým

čı́slem,

E3 Přičtenı́ násobku některé rovnice soustavy k jiné rovnici.
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2.2 Ekvivalentní úpravy

Ekvivalentní úpravy mají tu vlastnost, že jejich pomocí můžeme

z upravené soustavy získat zpět původní soustavu.

Jestliže soustava S′ vznikla ze soustavy S vzájemnou výměnou

i-té a j-té rovnice podle pravidla E1, pak tatáž úprava použitá

na S′ nás přivede zpět k S.

Jestliže soustava S′ vznikla ze soustavy S násobením i-tého

řádku nenulovým číslem α podle pravidla E2, pak násobením

téhož řádku soustavy S′ číslem 1

α
obdržíme zpátky soustavu S.

Jestliže soustava S′ vznikla ze soustavy S přičtením α-násobku

i-té rovnice k j-té rovnici (i 6= j), pak přičtení (−α)-násobku

i-té rovnice soustavy S′ k j-té rovnici soustavy S′ vede opět

k S.
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2.2 Ekvivalentní úpravy

Dvě soustavy lineárních rovnic nazýváme ekvivalentní soustavy,

jestliže jednu z nich lze získat z druhé ekvivalentními úpravami.

VĚTA 1

Jsou-li dvě soustavy lineárnı́ch rovnic ekvivalentnı́, potom majı́

stejné řešenı́.

PŘÍKLAD 2 −2x1 + x2 = 0 (1)

x1 − 3x2 = −10 (2)

Vhodná úprava soustavy je napřı́klad vynásobenı́ (2) dvěma, podle pravidla E2, a

přičtenı́ (1) k upravené (2), v souladu s pravidlem E3. Upravená soustava bude mı́t

tvar −2x1 + x2 = 0 (3)

−5x2 = −20 (4)

Z rovnice (4) vypočteme x2 = 4 a po dosazenı́ do rovnice (3) dostaneme

−2x1 + 4 = 0 odkud x1 = 2.
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2.3 Maticový zápis

Soustavu (S) budeme úsporně zapisovat do tabulky




a11 . . . a1n b1
...

. . .
...

...
am1 . . . amn bm



 ,

kterou nazýváme rozšířená matice soustavy (S). Matici A a vektor b

A =





a11 . . . a1n
...

. . .
...

am1 . . . amn



 , b =





b1
...
bm



 ,

nazýváme maticí soustavy (S) a pravou stranou soustavy (S) .

Pokud vektor x má za složky neznámé x1, . . . , xn můžeme soustavu

zapsat v maticové podobě Ax = b.
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2.3 Maticový zápis

Ekvivalentním úpravám soustavy rovnic odpovídají operace s řádky

rozšířené matice soustavy, které nazýváme elementární (řádkové)

operace:

(e1) Vzájemná výměna libovolných dvou řádků.

(e2) Násobení některého řádku nenulovým číslem.

(e3) Přičtení násobku některého řádku k jinému řádku.

Máme-li dvě matice, z nichž jedna vznikla z druhé pomocí

elementárních řádkových operací, říkáme, že matice jsou řádkově

ekvivalentní.
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2.3 Maticový zápis

VĚTA 2
Majı́-li dvě soustavy lineárnı́ch rovnic řádkově ekviva-
lentnı́ rozšı́řené matice, potom majı́ stejné řešenı́.

PŘÍKLAD 3 Úpravu soustavy (1),(2) na (3),(4) můžeme
zapsat pomocı́ elementárnı́ch operacı́ ve tvaru





−2 1 0

1 −3 −10





·2
7→





−2 1 0

2 −6 −20





+r1
7→





−2 1 0

0 −5 −20




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2.4 Úprava na schodový tvar

DEFINICE 3

Budeme řı́kat, že matice je ve schodovém tvaru, jestliže má prvnı́

nenulové prvky řádků zvané vedoucı́ prvky uspořádány jako schody

klesajı́cı́ zleva doprava. Požaduje se přitom, aby vedoucı́ prvky ne-

byly nad sebou a aby všechny přı́padné nulové řádky byly dole.

PŘÍKLAD 3

A =





2 0 2

0 0 2



 , B =









0 2 2

0 0 2

0 0 0









, C =









0 3 2

0 0 0

0 0 0








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2.4 Úprava na schodový tvar

Pomocí elementárních řádkových operací můžeme převést lib.

matici na schodový tvar.

Je-li v matici soustavy [A|b] prvek aij nenulový, pak vynásobíme-li

i-tý řádek této matice číslem −akj/aij a přičteme-li ho ke k-tému

řádku, bude mít upravená matice v k-tém řádku a j-tém sloupci

prvek

akj + (−akj/aij) aij = 0.

Pokud je prvek a11 nenulový, lze takto transformovat matici [A|b]

na tvar








a11 a12 . . . a1n b1
0 a122 . . . a12n b12
...

...
. . .

...
...

0 a1m2 . . . a1mn b1m








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2.4 Úprava na schodový tvar

Pokud bude také prvek a122 nenulový, můžeme obdobně dosáhnout pomocí

elementárních řádkových operací, aby i pod ním byly v upravené matici nuly.

Bude-li pokaždé ai−1

ii 6= 0, dostaneme nakonec matici ve schodovém tvaru (nebo

též v tzv. trojúhelníkovém tvaru) s nenulovými prvky a11, a
1
22, . . . , a

k−1

kk .



























a11 a12 . . . a1k . . . a1n b1
0 a122 . . . a1

2k . . . a12n b12
...

...
...

...
...

0 0 ak−1

kk . . . ak−1

kn bk−1

k

0 0 . . . 0 . . . 0 bkk+1

0 0 . . . 0 . . . 0 0

...
...

...
...

...
0 0 . . . 0 . . . 0 0



























Pokud ai−1

ii = 0 a je možno nalézt prvek ai−1

ji 6= 0, j > i, stačí vzájemně vyměnit

před úpravou i-tý a j-tý řádek. V opačném případě dostaneme obecnější schodový

tvar.
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2.4 Úprava na schodový tvar

POZOR! Neprovádíme-li postupné úpravy na upravené matici,

můžeme se dopustit chyby. Například úpravami
[

1 1 1 1
2 1 1 0
2 0 1 1

]

−r3
−r2

7→

[

1 1 1 1
0 1 0 −1
0 −1 0 1

]

+r2
7→

[

1 1 1 1
0 1 0 −1
0 0 0 0

]

nedostaneme rozšířenou matici soustavy ekvivalentní s původní

matici soustavy. Této chybě se můžeme vyhnout tak, že zvolíme

jeden řádek, který neupravujeme, ale použijeme ho k úpravě

ostatních. Například úpravy následující úpravy jsou již ekvivalentní.
[

1 1 1 1
2 1 1 0
2 0 1 1

]

−2r1
−2r1

7→

[

1 1 1 1
0 −1 −1 −2
0 −2 −1 −1

]

−2r2
7→

[

1 1 1 1
0 −1 −1 −2
0 0 1 3

]
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2.5 Zpětná substituce

Uvažujme, že rozšířená matice soustavy je ve schodovém tvaru


























a11 a12 . . . a1k . . . a1n b1
0 a122 . . . a1

2k . . . a12n b12
...

...
...

...
...

0 0 ak−1

kk . . . ak−1

kn bk−1

k

0 0 . . . 0 . . . 0 bkk+1

0 0 . . . 0 . . . 0 0

...
...

...
...

...
0 0 . . . 0 . . . 0 0



























1. Jestliže poslední nenulový řádek rozšířené matice soustavy má

nenulový pouze poslední prvek bkk+1
, pak tomuto řádku odpovídá

rovnice
0 = bkk+1,

která nemá pro bkk+1 6= 0 řešení. V tomto případě tedy daná soustava

nemá řešení.
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2.5 Zpětná substituce

PŘÍKLAD 4 Soustava nemá řešenı́

Rozšı́řená matice soustavy byla elementárnı́mi řádkovými

operacemi převedena na schodový tvar:
[

1 2 −1 1
0 1 −1 2
0 0 0 −3

]

Tato rozšı́řená matice soustavy odpovı́dá soustavě:

x1 + 2x2 − x3 = 1

x2 − x3 = 2

0 = −3

Poslednı́ rovnici 0 = −3 nelze splnit pro žádnou volbu x1, x2, x3 a

soustava tudı́ž nemá řešenı́.
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2.5 Zpětná substituce

Uvažujme, že rozšířená matice soustavy je ve schodovém tvaru


























a11 a12 . . . a1k . . . a1n b1
0 a122 . . . a1

2k . . . a12n b12
...

...
...

...
...

0 0 ak−1

kk . . . ak−1

kn bk−1

k

0 0 . . . 0 . . . 0 bkk+1

0 0 . . . 0 . . . 0 0

...
...

...
...

...
0 0 . . . 0 . . . 0 0



























7→









a11 a12 . . . a1n b1
0 a122 . . . a12n b12
...

...
. . .

...
...

0 0 . . . an−1
nn bn−1

n









2. Jestliže k = n, bnn+1 = 0 a ai−1

ii 6= 0, i = 1, . . . , n, pak n-tá rovnice

má tvar
an−1

nn xn = bn−1

n ,

ze které snadno vypočteme xn. Po dosazení do předchozích rovnic

zbude v (n− 1)-ní rovnici opět jediná neznámá. Budeme-li takto

postupovat dále, určíme jediné řešení soustavy.
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2.5 Zpětná substituce

PŘÍKLAD 5 Soustava má jediné řešenı́

Rozšı́řená matice soustavy byla elementárnı́mi řádkovými

operacemi převedena na schodový tvar:
[

1 2 −1 1
0 1 −1 2
0 0 1 −3

]

Tato rozšı́řená matice soustavy odpovı́dá soustavě:

x1 +2x2 −x3 = 1
x2 −x3 = 2

x3 = −3
⇒

x1 +2x2 −(−3) = 1
x2 −(−3) = 2

⇒

⇒
x1 +2x2 = −2

x2 = −1 ⇒ x1 + 2(−1) = −2 ⇒ x1 = 0

Soustava má jediné řešenı́ x1 = 0, x2 = −1, x3 = −3.
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2.5 Zpětná substituce



























a11 a12 . . . a1k . . . a1n b1
0 a122 . . . a1

2k . . . a12n b12
...

...
...

...
...

0 0 ak−1

kk . . . ak−1

kn bk−1

k
0 0 . . . 0 . . . 0 0

0 0 . . . 0 . . . 0 0

...
...

...
...

...
0 0 . . . 0 . . . 0 0



























3. Jestliže rozšířená matice má obecný schodový tvar, pak z každé

rovnice soustavy vyjádříme neznámou, která odpovídá vedoucímu

prvku. Postupným dosazováním od posledního řádku dostaneme

vzorce pro neznámé odpovídající vedoucím prvkům vyjádřené

pomocí neznámých na pravé straně. V tomto případě má soustava

nekonečně mnoho řešení.
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2.5 Zpětná substituce

PŘÍKLAD 6 Soustava má nekonečně mnoho řešenı́

Rozšı́řená matice soustavy byla elementárnı́mi řádkovými

operacemi převedena na schodový tvar:
[

1 1 −1 1 1
0 0 1 −1 2
0 0 0 0 0

]

Tato rozšı́řená matice soustavy odpovı́dá soustavě:

x1 +x2 −x3 +x4 = 1
x3 −x4 = 2

0 = 0
⇒

x1 = 1− x2 + x3 − x4

x3 = 2 + x4
⇒

⇒ x1 = 1− x2 + (2 + x4)− x4 = 3− x2

Soustava má nekonečně mnoho řešenı́ x1 = 3− x2, x3 = 2 + x4

přižemž x2, x4 volı́me libovolně.
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2.6 Gaussova eliminace

Gaussova eliminační metoda:

1. dopředná redukce, tj. redukce na schodový tvar

2. zpětná substituce, tj. řešení soustavy se schodovou maticí

PŘÍKLAD 7 Soustava, která nemá řešenı́.

Řešme soustavu 2x1 + x2 = 2

x1 + 2x2 − x3 = 1

4x1 + 5x2 − 2x3 = −1

Ekvivalentnı́mi řádkovými úpravami dostaneme postupně
[

2 1 0 2
1 2 −1 1
4 5 −2 −1

]

·2− r1
−2r1

7→

[

2 1 0 2
0 3 −2 0
0 3 −2 −5

]

−r2
7→

[

2 1 0 2
0 3 −2 0
0 0 0 −5

]

Poslední rovnici 0x1 + 0x2 + 0x3 = −5 nelze splnit žádnou volbou

x1, x2, x3. Soustava proto nemá řešení.
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2.6 Gaussova eliminace

PŘÍKLAD 8 Soustava s jediným řešenı́m.

Řešme soustavu 2x2 + 3x3 = 2

x2 + x3 = 0

x1 + x3 = 4

Ekvivalentnı́mi řádkovými úpravami dostaneme postupně
[

0 2 3 2
0 1 1 0
1 0 1 4

]

r3
l
r1

7→

[

1 0 1 4
0 1 1 0
0 2 3 2

]

−2r2
7→

[

1 0 1 4
0 1 1 0
0 0 1 2

]

Řešenı́m rovnic dostaneme postupně

x3 = 2

x2 = −x3 = −2

x1 = 4− x3 = 2

což je jediné řešenı́ našı́ soustavy.
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2.6 Gaussova eliminace

PŘÍKLAD 9 Soustava, která má nekonečně mnoho řešenı́.

Řešme soustavu x1 + x2 + x3 = 1

x1 − x3 = 1

x2 + 2x3 = 0

Ekvivalentnı́mi řádkovými úpravami dostaneme postupně
[

1 1 1 1
1 0 −1 1
0 1 2 0

]

−r1 7→

[

1 1 1 1
0 −1 −2 0
0 1 2 0

]

+r2
7→

[

1 1 1 1
0 −1 −2 0
0 0 0 0

]

Poslednı́ matice je rozšı́řenou maticı́ soustavy

x1 + x2 + x3 = 1

−x2 − 2x3 = 0

0 = 0
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2.6 Gaussova eliminace

PŘÍKLAD 9 Pokračovánı́

x1 + x2 + x3 = 1 (1)
−x2 − 2x3 = 0 (2)

0 = 0 (3)
Z rovnice (2) vypočteme x2 pomocı́ x3, tj. x2 = −2x3. Po dosazenı́

za x2 do rovnice (1) dostaneme x1 = 1 + x3.

Soustava má tedy nekonečně mnoho řešenı́ ve tvaru x3 libovolné,

x2 = −2x3, x1 = 1 + x3. Můžeme je zapsat také pomocı́

libovolného parametru p ve tvaru x3 = p, x2 = −2p, x1 = 1 + p.

Poznámka: Má-li soustava nekonečně mnoho řešení, je množina

řešení určena jednoznačně, nikoliv však její parametrizace.

Například x2 = p, x3 = −1

2
p a x1 = −1

2
p+ 1 je jiný tvar téhož

řešení.
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2.7 Gaussova-Jordanova metoda

DEFINICE 4

Budeme řı́kat, že matice je v normovaném schodovém tvaru, jestliže

je v takovém schodovém tvaru, že všechny prvky nad vedoucı́mi

prvky jsou nulové a navı́c vedoucı́ prvky jsou rovny jedné.

Gaussova–Jordanova metoda:

1. dopředná redukce, tj. redukce na schodový tvar

2. úprava na normovaný schodový tvar

(a) dělení řádků matice vedoucími prvky

(b) nulování prvků nad vedoucími prvky pomocí elementár-

ních řádkových operací (e1),(e2) a (e3)
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2.7 Gaussova-Jordanova metoda

PŘÍKLAD 10 Napřı́klad dodatečnou úpravou rozšı́řené
matice soustavy z přı́kladu 8 dostaneme





1 0 1 4

0 1 1 0

0 0 1 2





−r3
−r3 7→





1 0 0 2

0 1 0 −2

0 0 1 2





Řešenı́ soustavy se nacházı́ v poslednı́m sloupci matice
vpravo, nebot’ rovnice, které odpovı́dajı́ rozšı́řené matici
soustavy napravo, jsou x1 = 2, x2 = −2 a x3 = 2
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2.8 Pracnost řešení

Gaussova eliminace je velmi efektivní pro ruční řešení malých

soustav a pro počítačové řešení soustav stovek až tisíců rovnic.
Metoda je velmi efektivní i pro počítačové řešení větších

soustav se speciální strukturou rozložení nenulových prvků.
Pro rozsáhlejší soustavy existují efektivnější metody, které se

rozvíjejí i v současné době.
Gaussova eliminace není vhodná pro paralelní počítačovou

implementaci.

Pracnost řešení soustavy metodou Gaussovy eliminace (m = n):

1. Dopředná redukce: 1

6
(2n+ 1)(n+ 1)n násobení, tj. cca 1

3
n3

pro velká n

2. Zpětná substituce: 1

2
n(n+ 1) násobení, tj. cca 1

2
n2 pro velká n.
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