Jednov'bevrov' A-test Maménili jsme hoduoly $x_{1}, x_{2}, \ldots, x_{n}$ mahodué velicing $X \rightarrow N\left(\mu, \sigma^{2}\right)$.
Vy winijeme heshovon slatishiku:
a) Testujeme hy potézu:
$H_{0}: \mu=\mu_{0}$...néjaká konkr.hodnota

Pokudse $\mu=\mu_{0} \Rightarrow T=\frac{\bar{x}-\mu_{0}}{s} \rightarrow A_{m \cdot 1}$ a hoduoty T by mèly by't "pobliz" nuly. Pokud

$$
T_{o s s}=\frac{\bar{x}-\mu_{0}}{s} V_{n}
$$

je daleko od $0 \Rightarrow$ bud dos̀lo k a málo" provdé podobnému

$$
p-\text { bodnot }_{1}=2 \cdot \min \left\{F_{T}\left(x_{\text {oss }}\right) \cdot 1-F_{T}\left(x_{\text {ooss }}\right)\right\}
$$

soncè orzazoujch ploch
jevu, uebo Ho neni' proudiva'

$$
\begin{aligned}
\text { phoduota }<\alpha \Rightarrow & \text { prijimáme } H_{a}: \mu \neq \mu_{0} \\
& \left(\text { (zamita'me } H_{0}\right)
\end{aligned}
$$

b) Testujeme hypote'zu:

$$
H_{0}: \mu=\mu_{0}
$$

Pokud $T_{\text {DBS }}>0 \Rightarrow \frac{\bar{x}-\mu_{0}}{s} \Gamma_{m}>0 \Rightarrow \bar{x}-\mu_{0}>0$

$\Rightarrow \bar{x}-\mu_{0}>0 \quad$ p.hodnoto $=1-F_{T}\left(x_{\text {oss }}\right)<\alpha \Rightarrow$ prijmemetta
$\Rightarrow \bar{x}=\mu>\mu_{0} \quad$.
\Rightarrow Pokud Torss ie kednéndaleko" od $0 \Rightarrow$ data nazna c̀ujı': $H_{A}: \mu>\mu_{0}$
i) Testujeme hypotèzu:

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \\
& H_{A}: \mu<\mu_{0}
\end{aligned}
$$

$$
x_{\text {ocss }}<0 \Rightarrow \text { data naznačuji, z̀e } \mu<\mu_{0} \text {, ale }
$$ ne dost silué lue statistick viznamuě na uladiné vjzznamuosti α), nebot*

$$
F_{T}\left(X_{\text {ess }}\right)=p \text {-hadnota }>x \Rightarrow \text { nezamita'me Ho }
$$

Predpoklady testu: $X \rightarrow N\left(\mu, \sigma^{2}\right)$

Pr. Predpokládejme, ře jsme měrili velikosh dihového arychlenn' ma urč̈l'm músté Kemě. Provedli jume celkem 10 mirem' , pruimèrna'boduola vysila $\bar{x}=9,71 \mathrm{~m} \cdot \bar{s}^{2}$ a v'birova' smi'rodatra' odclylka $s=0,05 \mathrm{~m} \cdot \mathrm{~s}^{-2}$.
Predpollàdejme, nèl dala pocha'rejin' is marma'mi'ho rondélem' (Hj. hie dyby mérieni' majì normálmi radeilem').
Rorhodnête, rda je Lalo hoduola stalisticky wfirnamué nièsis', nere uda'vana'hoduola $g=9,81 \mathrm{~m} . \mathrm{s}^{2}$ (maslejne' cem. Stice).
\Rightarrow Pouzijeme jeduovýbèrouj' 1-test
Predpoklady testu : mormalihadat-pralle kadán' spluèno.

$$
\begin{aligned}
& H_{0}: \mu=9,81 \mathrm{~m} \cdot \mathrm{~s}^{-2} \\
& H_{A}: \mu<9,81 \mathrm{~m} \cdot \mathrm{~s}^{-2}
\end{aligned}
$$

Pokud ploti $\mathrm{H}_{0} \Rightarrow$

$$
X=\frac{\bar{X}-\mu}{S} \Gamma_{M} \longrightarrow \alpha_{m-1}
$$

Pozorovaná hoduota X:

$$
x_{\text {ops }}=\frac{\bar{x}-\mu_{0}}{s} \sqrt{m}=\frac{9,71-9,81}{0,05} \sqrt{10}=-2 \sqrt{10}=-6,32
$$

p-hoduota:

$$
\text { p-hoduota }=F\left(X_{\text {OBS }}\right)=F(-2 \cdot \sqrt{\sqrt{01}})=7.10^{-5}
$$

Závér: p-hoduota $\ll 0,05$. Protonahladiné nzzuamnosti, 0,05 namiláme $H_{0}: \mu=9,81$. To jest, naméniena' hoduola 9,71 m. -' ${ }^{-2}$ je'slalistichy m'enamne'menst'i, meré uda'vana' hoduola $9,81 \mathrm{~m} \cdot \mathrm{Bs}^{-2}$

Pr. VY'inobee hord', àe jeho molory bypu A dosahuje' vipriemèru maxima'lm'ho vy'konu 100 kW .
a) Testryjle hypole'su, rio w'inobee ri'ka' pravdu. INamiriene' hoduchy makimálmich vy'komi json or souborue " 10 cu PAST Sahoda. xlsx "list.r notory.")
Označme X... maximallu' vylkon motorn typu A

Moinnétestym: A test (preferujeme)

Pi'edpokladj: $\quad X \rightarrow N\left(\mu, \sigma^{2}\right)$

Wilcoxonuiv test (omedisunu Xo,s)

Vy'bèrze spoj; symetr. rozdéle ni $^{\prime}$ $n>30$

Znaménkou' test 10 mediónu Xo,s) Imánejmensi's silu provdép. 2 zt zami'tuemeth.
 $m>10$

Vyreăit odlehlla pozorovani'Iodstranit/ne), ovérit normalitu exploraciné (histogram, sikmost, špicàost $\langle\langle-2,2\rangle, 99$ grat) atestem (shapiro -wilk.) vjkony = read_excel ("HocuPast Jahoda. x lsx", sheet = "motory") baxplot (rykouy \$vykon), hist (-11-), moments:: skewnes ($(-1-)$, 99 mormen((-11), 99 line ($(11-)$ shapiro. test (-11-) moments: :kurtosis (-11-)

Zudelen' Aesti: 1. Test (oboustranny')
1.) Mypotéza (nulovà): $H_{0}: \mu=100 \mathrm{~kW}$
2.) Alternativnihyp.: $H_{A}: M \neq 100 \mathrm{~kW}$
3.) Hladina v'gzzamuosti: $(\alpha=0,05-u$ klas. testu $)$
4.) Testovà statistika: $T=\frac{\bar{x}-\mu}{s} \sqrt{m} \longrightarrow \Lambda_{m-n}$

(u cistého testu vy'zua mnos ti rozhodu eme podle p-value)
5.) Vypocet ToBs : $T_{\text {OBS }}=\frac{\bar{x}-\mu_{0}}{s} \sqrt{m}$

$$
T_{\text {OBS }}=-0,3956
$$

$$
\begin{aligned}
& \bar{x}=\operatorname{mean}(-1-)=99,18 \overline{3} \\
& \mu_{0}=100 \\
& s=\operatorname{lengh}(1-1-)=30 \\
& s=\operatorname{sd}(-11-) \doteq 11,309
\end{aligned}
$$

$\Rightarrow N a$ hladiné vy'znamnosti $\alpha=0,05$ neramitáme hy potézu. že $\mu=100 \mathrm{~kW}$.
b) Pomore' cishék Lestu vírnamnoshi oviride. rda je shiedm' hodnola maximálmich wj'kowi molori ban A statisticky vy'znamne mensi' men " 105 kW.
V al jsme ovérili mommalilu dad \Rightarrow nuiniene pouzi'd 1 -Lest. Cisty test vyznam nosti:
1.) Nulova' hypotéza: $H_{0}: \mu=105=\mu_{0}$
2.) Atternatiuni hypotéza: $H_{A}: ~ \mu<105$
3.) Testova' statistike: $T=\frac{\overline{\bar{x}}-\mu}{S} \sqrt{M} \longrightarrow d_{M-1}$
4.) Výpocet pororovanéhoduoty T :

$$
\begin{array}{r}
\bar{x}=99,183, \mu_{0}=105, s=11,309, m=30, \Rightarrow \\
T_{\text {OBS }}=\frac{\bar{x}-\mu_{0}}{s} \sqrt{m}=-2,8173
\end{array}
$$

5.) Vypočet p-hoduoty:

$$
\begin{aligned}
& \text { p-hoduota }= F_{T}(\text { ToBs })=0,004 \\
& \text { pt }(-2,8173,29) \\
& T_{\text {OBS }}^{\prime \prime} \quad n-1
\end{aligned}
$$

6.) Razhodnuti:

Prodorè p-hoduota $=0,004<0,05$. namíláme nulovou hoppobéku ve prospécle allernatiny, tè skutec'ma'stredu' hodnala mavimáluich ry'koni je meusi' nesi 105 kW .
(Ho zamitàme na libovolué hladinè vy'zuدmnosti vètsínež 0,004.)

Pr. Ma'me w'bín 216 pacientri a mèriti jsme obsah albuminu v jiejich krvi. Ovirhe, nde se strédu' hoduola muorstvz' albuminu statisticloy n'rnamne' lis's' od hoodnoly $35 \mathrm{~g} / \mathrm{l}$.

Test: Jednov'běrovi' d-test
Data: Neobsahuji' odlehlá pozorovalui' \rightarrow OK
Predpoklady testu: šikmost $=-0,33 \in\langle-2,2\rangle \Rightarrow$ OK
st. Špičatost $=-0,43 \in\langle-2,2\rangle \Rightarrow$ OK (standardizovanà) q-q graf \rightarrow OK hisfogram $\rightarrow O K$
Shaniro-Wilkair test nou mality: pohoduota $=0,24 \Rightarrow$ nezamita'me normalitu

$$
\begin{aligned}
& H_{0}: \mu=35 \\
& H_{A}: c u \neq 35
\end{aligned}
$$

$$
\begin{aligned}
& X=\frac{\bar{X}-\mu}{S} \sqrt{\mu} \longrightarrow \mathcal{A}_{\mu-1} \\
& X_{\text {obs }}=\frac{34.487-35}{0.394} \sqrt{216}=-19.249 \\
& \text { p-hoduota }=2 \cdot F(\text { xobs }) \doteq 0 \ll 0.05
\end{aligned}
$$

\Rightarrow Zamita'me nulovou hypot dau,iestredni hodnota je rouna 35 gl statistickg v'znamnè se od te'to hodnoty liši.'

Pr. Vr souborm "10cv..." list "preziti" gron doly prieshili' 100 pacientii s diagno'rou C l'éeny'ch novy'm lékem.
U pacienti ber poda'va'mi novitho lèkn je primmèrna' doba piéril' 22,2 mésíce. Lre ma rákladé dat tvidil,

Moinélesly: L-test $N E \Rightarrow$ Wilcoxnurv $N E \Rightarrow$ Inaménkovy

$$
\begin{array}{ll}
\Rightarrow \quad & H_{0}: X_{0,5}=22,5 \\
& H_{A}: X_{0,5}>22,5
\end{array}
$$

\Rightarrow BSDA :: SIGN. test (preziti\$ hoduot), bez, md $=22.2$,

$$
\text { alternative }=\text { "greater" }, \text { conf. } \text { level }=0.95 \text {) }
$$

p-ralue $=0.93 \Rightarrow$ nezamitáme H_{0}, preztitineni' yýznamnève tši'
Co druha' alternativa?! namèrené $X_{0.5}=20=$ median (hodu... , narma TRUE)

$$
\begin{aligned}
& H_{0}: X_{0,5}=22,5 \\
& H_{A}: X_{0,5}<22,5
\end{aligned}
$$

\Rightarrow BSDA:: SIGN.test (pverti; \$ hoduoty. bez, mod=22.2, alternative $=$ "less", conf. level $=0.95$)

$$
\text { D-value } \doteq 0,08>0,05 \Rightarrow \text { nezamita'me Ho anive pros Dèch }
$$

alternativy ize préciti, je kratsi'

Jednovy'bérovy'F-test: $\quad X \rightarrow N\left(\mu, \sigma^{2}\right)$ a máme namèneny $\left(0\right.$ smérodatué odchylce) hoduoly $x_{1}, x_{2} \ldots \ldots x_{m}$. Te mich weceime ny'birovou smèrodalnom odelylkus. Teshyjence. nda korelieka' sme'rodatna' odchylha T je romna néjake'mu cinslu Fo. Viynarijeme Leshovon statistiken:
a)

$$
\begin{aligned}
& H_{0}: \sigma=\sigma_{0} \\
& H_{A}: \sigma \neq \sigma_{0} \\
& x=\frac{(m-1) \cdot s^{2}}{\sigma_{0}^{2}} \rightarrow X_{m-1}^{2} \\
& X_{\text {oos }}=\frac{(m-1) \cdot s^{2}}{\sigma_{0}^{2}}
\end{aligned}
$$

b)

$$
\begin{aligned}
& H_{0}: \sigma=\sigma_{0} \\
& H_{A}: \sigma<\sigma_{0}
\end{aligned}
$$

 vgchàt!' bud' holué male', neto velléé'

(hoduoty Xjsmon, male" hdyns is is $\left\langle<\sigma_{0}\right.$)
c)

$$
\begin{aligned}
& H_{0}: \sigma=\sigma_{0} \\
& H_{A}: \sigma>\sigma_{0}
\end{aligned}
$$

Predpokledy testu: $\quad X \rightarrow N\left(\mu, \sigma^{2}\right)$

Pri Nameřici jsme hoduoby maximálnide n'jkomi makari Sypu A. Imìnodalua' odchylka ny'komi jodnotliny'cle mosoici by memila prebloccicil 5 kW .

Méremim uyjkomi 30 motarii jsme njistili vijbinovon smèrodaknon odshylkn $11,31 \mathrm{~kW}$. Teslujle hy node'su, he smèrodalna' odelyy tha je novna 5 kW proti allernalive', hè je veitsí. Namiriena' dala pochíneja' is normálmíko rododelemí.

$$
\begin{aligned}
& H_{0}: \sigma=5 \mathrm{~kW} \\
& H_{A}: \sigma>5 \mathrm{~kW} \\
& x=\frac{(m-1) \mathrm{s}^{2}}{\sigma^{2}} \longrightarrow \chi_{N-1}^{2} \\
& x_{\text {oss }}=\frac{29 \cdot 11,31^{2}}{5^{2}}=148,35
\end{aligned}
$$

Smérodatna' odchylka je nahladiné vjznamnosti OMS statisticky_vizuamné vétsí než 5 kW (p-hodnota $<0,05$)
(nepset do odpovédi, ie p-hoduots $=0$, tak to jistè neni!!
"मis Vy'robee Mda'va'. Re smírodatua' odchylka praimitru pislovich krowtiki je 0.05 mm . Pro ove'riem' by ny namereny priměry osumdesalikikrowitiui (soubor cu 10... list krouzky).
onírbe, inda namiřèna' dala weidè' o slatisticley ugfenamne: menšs' skudiène' smèrodatué odchylee; nerre jé delelarovana'.

Jednoug'be'voug F-test
\checkmark datech jsou odlehlá puzorova'ni- rozhodli jsme se odstranitje. $\Rightarrow M=80-2=78$

Data pochàzejí2 hormálniho rozdéleni \Rightarrow OK
$H_{0}: \sigma=0,05 \mathrm{~mm}$
$H_{A}: \sigma<0.05 \mathrm{~mm}$

$$
\begin{aligned}
& x=\frac{(m-1) s^{2}}{\sigma^{2}} \rightarrow x_{m-1}^{2} \\
& x_{\text {oins }}=\frac{77 \cdot 0,0245^{2}}{0,05^{2}}=19,01 \\
& p \text {-hoduota }=F\left(x_{0 B S}\right)=1,35 \cdot 10^{-12} \\
& \operatorname{pchisq}(19,01,77) \\
& x_{0 B S}^{\prime \prime} \\
& m-1 \\
& m
\end{aligned}
$$

(ans

Zàvér: Prolože ph-hodnota $\ll 0,05$, zamiláme na hladine ov'rnamnosti muloven lypertorn. Sriedn' hoduala rosply la priméni herowikic je statisticloy wjienamné mensí' wele' $0,05 \mathrm{~mm}$.

Test hypote'zy orelativn' ' četuosti: Nechl' $X_{i}=10 \Leftrightarrow 1$ i-h'yobith ma' mladuost A (Parame tru binom. rozdelen: π)

Ornacime $P(X=1)=\pi$... pravdipt, ise i-by obeid ma' mlashoost A.

$$
\Rightarrow E X_{i}=\mu=\pi, \sqrt{D X_{i}}=\sigma=\sqrt{\pi(1-\pi)}
$$

Provedame n mïrien' a obdrkime hodnoly $x_{1}, x_{2}, \ldots, x_{n}$.
\Rightarrow Relation' céluose abjekliis vlashushi' A je:

$$
\begin{aligned}
& P=\frac{\sum_{i}^{m} x_{i}}{\mu}=\bar{X} \quad \text { Podle CLV: } \\
& Z=\frac{\bar{X}-\mu}{\sigma} \cdot \sqrt{m}=\frac{P-\pi}{\sqrt{\pi(1-\pi)}} \sqrt{m} \rightarrow N(0,1)
\end{aligned}
$$

a) Testujeme hypote'z: $H_{0}: \pi=\pi_{0}$

$$
\begin{gathered}
H_{A}: \pi \neq \pi_{0} \\
Z=\frac{P-\pi}{\sqrt{\pi(1-\pi)}} \sqrt{M} \rightarrow N(0,1) \\
Z_{\operatorname{OBS}}=\frac{1-\pi_{0}}{\sqrt{\pi_{0}(1-\pi)}} \sqrt{M}
\end{gathered}
$$

(μ je mamèricuá rel celuosl)

$$
p \text {-hodnotz }=2 \cdot \min \left\{F\left(X_{\text {oBS }}\right), 1-F\left(X_{\text {oBS }}\right)\right\}<\begin{aligned}
& \left\langle\frac{\alpha}{2} \Rightarrow \text { Zamitaime } H_{0}\right. \\
& \geq \frac{\alpha}{2} \Rightarrow \text { Neazmitáme } H_{0}
\end{aligned}
$$

b) Testujeme hypotéza: $H_{0}: \pi=\pi_{0}$

$$
p-\text { hoduota }=1-F\left(X_{\text {oss }}\right)
$$

c) Testujeme hypotézu: $H_{0}: \Pi=\pi_{0}$

$$
H_{A}: \pi<\pi_{0}
$$

$$
\text { p-hoduota }=F\left(X_{\text {oLS }}\right)
$$

Pred poklady testu: $m>30, m>\frac{9}{p(1-p)}$

Test rexaktn'í orelativn'četnosti: Provedeme u mènem' (polensii) a mhouméus. (Parametru binom.rozdèlení TI) kolik objekli ma' vlashuosh A (m'spich) \Rightarrow
$X \ldots$ poc̀et u'spédhí pri n pokusech $\rightarrow B_{i}(m, \pi)$ (m.N. s binomiakim nazdílen'm praudépodobmosti)
a) Testujeme hypotézu:

$$
H_{0}: \pi=\pi_{0}
$$

$$
H_{A}: \Pi \neq \Pi_{0}
$$

$X \rightarrow \mathrm{Bi}\left(m_{1} \Pi_{0}\right)$...pokued plati'Ho
Xobs... pociet obĕkte sulast. A mezi m mévenými

b) Testujeme hypotézu:

$$
\begin{aligned}
& H_{0}: \pi=\pi_{0} \\
& H_{A}: \pi>\pi_{0}
\end{aligned}
$$

$$
p \text {-volue }=P\left(X \geqslant X_{O B S}\right)=1-P\left(X<X_{\text {OBS }}\right)=1-P\left(X \leqslant X_{O B S}-1\right)
$$

c) Testujeme hypotézu:

$$
\begin{aligned}
& H_{\infty}: \pi=\pi_{0} \\
& H_{A}: \pi<\pi_{0}
\end{aligned}
$$

$$
p \text {-value }=P\left(X \leq X_{\text {OBS }}\right)
$$

Pr. Malemalicky' model uda'va', Ré pravdípodobnose pooperaín'icle komplikaci'je 30%. Teshujle hy potinu, he model je spra'vng', vith-li, he it 50 pacientic mélo 18 pooperaciè' komplihace.
a) Aproxi mace pomoci' CLV :

Predpoklady: $M=50>30$ i $m=50>\frac{9}{\frac{19}{50}\left(1-\frac{12}{50}\right)}=\frac{9}{\frac{18}{50} \cdot \frac{32}{50}}=\frac{50.50}{R \cdot 32}=\frac{2500}{64}=39,06$

$$
\begin{aligned}
& H_{0}: \Pi=0,3 \\
& H_{A}: \Pi>0,3 \quad\left(\mu=\frac{18}{50}=\frac{36}{100}=0,36 \ldots \text { dota naznačuji, 2e } \pi>0,3\right)
\end{aligned}
$$

$$
\begin{aligned}
& Z=\frac{P-\pi}{\sqrt{\pi(1-\pi)}} \sqrt{n} \rightarrow N(0,1) \\
& Z_{\text {ooss }}=\frac{1-\pi_{0}}{\sqrt{\pi_{0}\left(1-\pi_{0}\right)}} \sqrt{m}=\frac{0,36-0,3}{\sqrt{0,3 \cdot 0,7}} \sqrt{50}=0,926 \\
& p \text {-value }=1-F\left(Z_{o b s}\right)=0,177
\end{aligned}
$$

\Rightarrow Na hladimé oj'rnamnoshi 0,05 neramila'me mulovou hy polien, the properacim' homplikace se vy shy hay'' s pravdépodobosstio, 3.
b) Pomoa' binomického rozdélen.':

$$
\begin{aligned}
& H_{0}: \pi=0,3 \\
& H_{A}: \pi>0,3 \\
& X \longrightarrow B_{i}(n ; \pi)=B_{i}(50 ; 0,3) \\
& x_{\text {OBS }}=18 \\
& \text { P-hodnota }=P(X \geq 18)=1-P(X \leq 17)=0,218 \\
&
\end{aligned}
$$

$V R-k u:$ binom test (18,50, 0,3, alternative $=$ "greater")
\Rightarrow Na leladiné wisnamnasti 0,05 nezami'ta'me mulovan hypareizn, 次e pooperacim' leamplikace se ny shy huji' s prandépodobnoshí 0,3.

