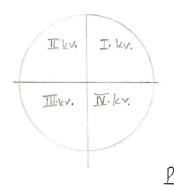

Goniometrické funkce



x	M'M X	Casix	Agx	colgx
11 2	$1 = \frac{\sqrt{4}}{2}$	0	nenidef.	0
Ŧ	1/3 Z	<u>1</u> z	V3	1
Щ. 4	VZ Z	6	1	1
11-6	1 = 2	13	1/13	13
0	$0 = \frac{Vo}{Z}$	Λ	0	nenidef.

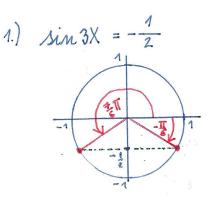
Vlastnosti gon tei: -mintx) = minx cus x = cos(+x) - Mint = lim 1-X

1) VXEIR:	и́м X = - ИмІ-х)	licha (sucha funlece)
2.) ¥ xelR:	Los X = Cos(-X)	(sud) funkce)
3.) ¥xelR:	$m'm^2 X + \cos^2 X = 1$	(Pro xeloigos)jeta Pythagavava veta)

"Kvadvant

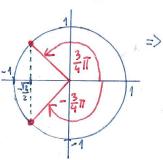
Whelx patri do : I. kvadvantu (=) XE (0+ &ZTT, TT+ &ZTT), kde le Z II. kvedventu (=> X E (=+h.211 , TI+h.217), Role keZ III· kvadrantale XE (IT+RZIT, 3IT+RZIT), Role Rel \overline{W} - kvadrantu $\Rightarrow X \in \left(\frac{3}{2}\overline{\Pi} + hZ\overline{\Pi}, 2\overline{\Pi} + h.2\overline{\Pi}\right)$, lede $ke\overline{Z}$

 $X = \frac{31}{6} \prod$ Př:

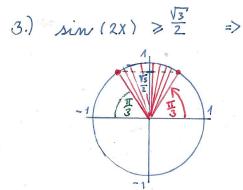

U+T

 $X = \frac{1}{6}\overline{1} + \frac{30}{6}\overline{1} = \frac{1}{6}\overline{1} + 5\overline{1} = \frac{1}{6}\overline{1} + \overline{1} + 2\cdot 2\overline{1} =>$ =)

X & III. kvedron tu =>

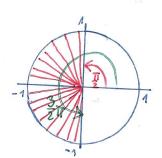

AF+T= ST. tzv. Zokladní veli kost úhla X Skasně: Základní veli kost úhlu xelkje úhol xe <0, 217): X = X + kIT ; kde keZ

Pr. Malerne le viechna X E R splinijici :



 $\Rightarrow 3X = -\frac{1}{6} + \frac{1}{6}211 / 3, \text{ melor } 3X = \frac{7}{6}11 + \frac{1}{6}211 / 3 \\ x = -\frac{1}{18} + \frac{1}{6}\frac{211}{3} ; \text{ leeZ}, \text{ melor } x = \frac{7}{10}11 + \frac{1}{6}\frac{31}{3}; \text{ leeZ}.$

2.) $\cos(5X+1) = -\frac{\sqrt{2}}{2}$



$5X+1 = \frac{3}{4}\overline{11} + \frac{1}{4}2\overline{11}$	nelvo	5 X+1 = - 31+ le 2TT	
$5x = \frac{3}{4}\pi - 1 + \frac{1}{2}\pi$	nebo	$5x = -\frac{3}{4}\pi - 1 + k2\pi$	
$X = \frac{3}{20} \prod \frac{1}{5} + k \frac{2 \prod}{5} k$	Emelo	$X = -\frac{3}{20}\Pi - \frac{1}{5} + k \frac{2\Pi}{5} , k$	i e Z

 $\Rightarrow 2X \in \left\langle \frac{\pi}{3} + k^{2}\Pi, \frac{2\pi}{3} + k^{2}\Pi \right\rangle / 2$ $\times \in \left\langle \frac{\pi}{6} + k^{2}\Pi, \frac{2\pi}{6} + k^{2}\Pi \right\rangle , k \in \mathbb{Z}$

4.) $\cos(1-x) < 0 =>$

$$\begin{split} & \underline{\mathbb{T}} + k2\Pi < 1 - \chi < \frac{3}{2}\Pi + k2\Pi \\ & \underline{\mathbb{T}} - 1 + k2\Pi < -\chi < \frac{3}{2}\Pi - 1 + k2\Pi \quad 1 \cdot (-1) \\ & 1 - \frac{\pi}{2} - k2\Pi > \chi > 1 - \frac{3}{2}\Pi - k2\Pi \\ & \underline{\chi} \in \left(1 - \frac{3}{2}\Pi - k2\Pi ; 1 - \frac{\pi}{2} - k2\Pi\right); \quad k \in \mathbb{Z}. \end{split}$$

Exponencialni funkce

 $f_{\mu}(X) = \alpha_{\mu}^{X}$ exponent = raiklad $\in IR^{+} - \xi_{1}\xi_{3}$ = l^{x.lna}

 $D(f) = |R| + H(f) = (0, \infty);$ - je prosta -je omezenz zdola - neni suda ani licha - heni periodicka

 $f(x)=2^{X}$ Př.: Nacrhnéle graf funkce $f(x) = 2^{\times} a \quad g(x) = \left(\frac{4}{2}\right)^{\times}$ 日一色

Pri: Vyreste exponencialus romici: 1.) $5^{3x+2} = 25^{x+1}$ 3.) $3^{X-2} = (\frac{4}{3})^{-2X}$ 5.) $2^{\times} 5^{\times} = 0.1 (10^{\times -1})^5$ $5^{3x42} = (5^2)^{x+1}$ $3^{X-2} = (\bar{3}^{*})^{ZX}$ $10^{\times} = 10^{-1} \cdot 10^{5\times-5}$ $10^{\times} = 10^{5\times-6}$ 3X+2 = 2X+2x - 2 = 2XX = D X=-2 x = 5x - 6 $X = \frac{6}{4} = \frac{3}{2}$ 2.) $8^{\times} = 16^{2-\times}$ 4.) $2^{3X-4} = \left(\frac{4}{3}\right)^{X+1}$ 6.) $4^{\times}.5^{\times +1} = 5.20^{2-\times}$ $(2^3)^{X} = (2^4)^{ZX}$ $2^{3X-4} = (2^{-3})^{X+4}$ $20^{\times} \cdot 5 = 5 \cdot 20^{2 - \times}$ 3X = 8-4X3X-4 = -3X-3X = 2 - X $X = \frac{1}{6}$ $X = \frac{8}{7}$ x = 1

Pr. Vyreste exponencialm' rovnici:

1.) $3^{X+1} = 2^{2X+3}$ $3 \cdot 3^{X} = 8 \cdot 2^{2X}$ $3 \cdot 3^{X} = 8 \cdot 4^{X}$ $\frac{3^{X}}{4^{X}} = \frac{8}{3}$ $(\frac{3}{4})^{X} = \frac{8}{3}$] ln $ln (\frac{3}{4})^{X} = ln \frac{8}{3}$ $X \cdot ln (\frac{3}{4}) = ln \frac{8}{3}$ $X = \frac{ln (\frac{3}{4})}{ln (\frac{8}{3})}$

$$5^{2X-3} = 8^{3X+7} / lu$$

$$ln 5^{2X-3} = ln 8^{3X+7}$$

$$ln 5 = (3X+7) ln 8$$

$$(2ln 5)X - 3 ln 5 = (3 \cdot ln 8) \times + 7 \cdot ln 8$$

$$(2ln 5)X - 3 ln 5 = (3 \cdot ln 8) \times + 7 \cdot ln 8$$

$$(2ln 5 - 3ln 8) = 7 \cdot ln 8 + 3ln 5$$

$$\times (2ln 5^{2} - ln 8^{3}) = ln 8^{7} + ln 5^{3}$$

$$\times ln \frac{5^{2}}{8^{3}} = ln 8^{7} \cdot 5^{3}$$

$$\times = \frac{ln 8^{7} \cdot 5^{3}}{\frac{5^{2}}{8^{3}}}$$

2.)

2.)
$$2^{8X-1} \leq (\frac{1}{3})^{4X+6}$$

 $2^{8X-1} \leq (3^{-1})^{4X+6}$
 $2^{8X-1} \leq 3^{-4X-6}$ /lu
 $\ln 2^{8X-1} \leq \ln 3^{-4X-6}$
 $(8X-1) \ln 2 \leq (-4X-6) \ln 3$
 $8X \ln 2 - \ln 2 \leq -4X \ln 3 - 6 \ln 3$
 $X \ln 2^8 - \ln 2 \leq X \ln 3^4 - \ln 3^6$
 $X \ln 2^8 - \ln 3^4 \leq \ln 2 - \ln 3^6$
 $X \ln 2^8 - \ln 3^4 \leq \ln 2 - \ln 3^6$
 $X \ln 2^8 - \ln 3^4 \leq \ln \frac{2}{36}$
 $X \ln (2^8 \cdot 3^4) \leq \ln 2 - \ln 3^6$
 $X \ln (2^8 \cdot 3^4) \leq \ln (2 \cdot 3^6)$
 $X \leq \frac{\ln (2 \cdot 3^6)}{\ln (2^8 \cdot 3^4)}$
 $X \in (-\infty, \frac{\ln (2 \cdot 3^6)}{\ln (2^8 \cdot 3^4)} >$

Logaritmicka funkce

loga X = M <=> at=X Rahlad logari Imu e 12- E13 $D(f) = (0, \infty)$; H(f) = IR- je prosta i - neni: suda licha. periodicka , omezena - logax = lnx Pr. : nacr Lué le graf funkce fix)= log_2(x); g(x)= log_2 x M=log2X 16 4 8 J= log = X Pri: Vyresse logarilmickon roomici: 4.) $X = \log_3 18 + \log_3 \frac{3}{2}$ $X = \log_3 18 \cdot \frac{3}{2} = \log_3 2\frac{1}{7} = \frac{3}{2}$ 1.) X = log_216 $X = log_2(2^4) = 4$ 2.) X = logs 27 5.) X = log 10 500 - log 10 5 $x = log_3(3^3) = 3$ X = log10 500 = log10 102 = 2 3.) $X = \log_{\frac{1}{2}} 3$ 6.) $X = \log_{4} 5 + \log_{5} \frac{1}{125}$ $X = \log_{\frac{1}{2}} (9^{\frac{1}{2}}) = \log_{\frac{1}{2}} (\frac{1}{9})^{\frac{1}{2}} - \frac{1}{2}$ X = -1 + (-3) = -4

Pri Vyreste logaritmickon roon

1)
$$\log_2 (4x+8) = 2$$

 $4x+8 = 2^2$
 $4x+8 = 2^2$
 $4x = -4$
 $x = -1$
2) $\log_{10} x - \log_{10} 5 = 2$
 $\log_{10} \frac{x}{5} = 2$
 $\frac{x}{5} = 10^2$
 $x = 500$

Prin Upries le merovnici :
1)
$$log_{3}(-3X+9) > 2$$

I) x musi spliovet : $-3X+9 > 0$
 $-3X > -9 /:(-3)$
 $X < 3$
II) $log_{3}(-3X+9) > 2$
 $log_{3}(-3X+9) > 2$
 $log_{3}(-3X+9) > log_{3}(3^{2})$
 $\int J = log_{3} \times je$ rostouci funkce:
 $log_{3}(-3X+9) > log_{3}(3^{2})$
 $\int J = log_{3} \times je$ rostouci funkce:
 $log_{3}(-3X+9) > 3^{2}$
 $-3X+9 > 3^{2}$ $l-9$
 $-3X+9 > 3^{2}$ $l-9$
 $-3X > 0$ $l:(-3)$
 $X < 0$
=) Z I) α II.) : $X \in (-\infty, 0)$

Unici:
3)
$$\log_{3} (X^{2}-8X) = 2$$

 $X^{2}-8X = 3^{2}$
 $X = (-\infty,0) \cup (8,\infty)$
 $X^{2}-8X-9 = 0$
 $(X-3)(X+1) = 0$
 $X = < \frac{3}{-1}$
4.) Pozn.: U hobols Lypu prihladu:
 $\log_{4} (aX^{2}+bX+c) = d$
musi I) $X \in I = (\frac{-1-b(1-y_{0})}{2a} - \frac{-b+b(1-y_{0})}{2a})$ pro $a<0$
 $a = aX^{2}+bX+c = 12^{d} \Rightarrow aX^{2}+bX+c-k^{d} = 0$
 $a = aX^{2}+bX+c = 12^{d} \Rightarrow aX^{2}+bX+c-k^{d} = 0$
 $\sum_{k=1}^{2} \frac{-b+b(1-y_{0})}{2a} \in I$
 $E: pro a>0 = a \log_{10}(ck)^{2}$
 $E: pro a>0 = a \log_{10}(ck)^{2}$
 $E: \int \log_{4} (-5X+10) > 3$
 $I: \int \log_{4} (-5X+10) > 3$
 $\log_{4} (-5X+10) > 2 \log_{4} (\frac{4}{2})^{3}$
 $(\log_{4} (-5X+10) > \log_{4} (\frac{4}{2})^{3}$

 $-5_{K+10} < (\frac{3}{2})^3$

 $\Rightarrow \langle I \rangle_a I \rangle : X \in (\frac{72}{40}, 2)$

1

 $-5X+10 < \left(\frac{1}{2}\right)^{3}$ -5X+10 < $\frac{1}{3}$ $\times > \frac{\frac{1}{3}-10}{-5} = \frac{-79}{-5} = \frac{79}{40}$

3)
$$\frac{\sin^{2}(5x) - \sin(5x) = 0}{A^{2} - A = 0}$$

$$A^{2} - A = 0$$

$$A (A-1) = 0 \Rightarrow A = \begin{pmatrix} 0 = \sin(5x) \\ 1 = \sin(5x) \\ 1 = \sin(5x) \end{pmatrix}$$

$$\Rightarrow I) \quad \sin(5x) = 0 \quad \text{nebo} \quad II) \quad \sin(5x) = 1$$

$$3x = kT , k \in \mathbb{Z} \quad 3x = \overline{2} + kT , k \in \mathbb{Z}$$

$$\frac{x = k\overline{3} : k \in \mathbb{Z} , neb = x = \overline{2} + k\overline{3} : k \in \mathbb{Z}}{x = k\overline{3} : k \in \mathbb{Z} , neb = x = \overline{2} + k\overline{3} : k \in \mathbb{Z}}$$
4)
$$\int_{q} \frac{1}{x + (4+\sqrt{5})} \int_{q} x + \sqrt{5} = 0$$

$$Ma' \text{ sungsl richid powel profix } x \in D(dg) \Rightarrow x + \overline{2} + kT , k \in \mathbb{Z}$$

$$(A_{g} x + 1)(A_{g} x + \sqrt{5}) = 0$$

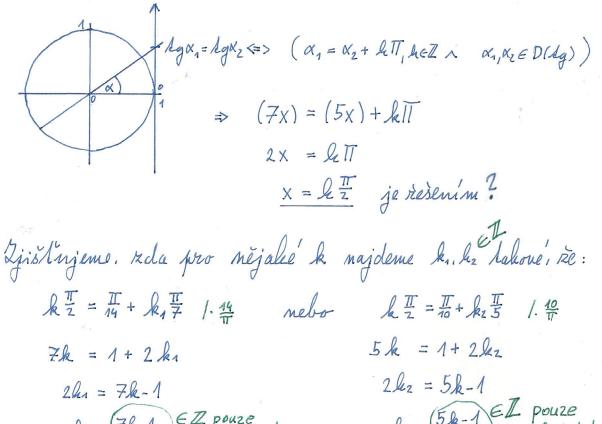
$$\int_{q} x = \begin{pmatrix} -1 \\ -\sqrt{3} \end{pmatrix}$$

$$=) \quad x = -\overline{4} + k_{1}T , k \in \mathbb{Z} \quad \text{nebo} \quad x = -\overline{3} + k_{2}T ; k_{2} \in \mathbb{Z}$$

$$Mushum ale abomboloval, rada hakova' x mallet'' do D(dg). Tan. meshanese nalhordow. Re:$$

$$x = -\overline{4} + k_{1}T = \overline{2} + kT \int_{q} \frac{1}{4} \text{ mebo} \quad x = -\overline{3} + k_{1}T = \overline{2} + kT \int_{q} \frac{2}{4} \text{ meshanese } \frac{1}{4} \frac{1}{4} \frac{1}{4} = 2 + 4k \qquad -2 + 4k = 3 + 6k$$

$$(4a^{-1}) = 3$$


$$\frac{1}{4} \frac{1}{4} \frac{1}{4} = 2$$

$$\frac{1}{4} \frac{1}{4} \frac{1}{4} = 5$$

$$\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4} = 2$$

$$\frac{1}{4} \frac{1}{4} \frac{1}{4}$$

5.) Ag(7X) = Ag(5X)

=> Pror k-liche plan, ze k = nem zelsemm a pro k=2k, lde zeZ je k == 2z = zesenim. => ****

X = R.T, here $R \in \mathbb{Z}$