Pr. Delte polynom polynomem:
1.)

$$
\begin{aligned}
& \left(x^{2}+2 x+5\right):(x+1)=x+1 \\
& -\left(x^{2}+x\right) \\
& 0+x+5 \\
& \quad-(x+1) \\
& 4
\end{aligned}
$$

2.)

$$
\left.\begin{array}{l}
\quad\left(4 x^{5}-2 x^{3}+x+1\right):\left(x^{3}-1\right)=4 x^{2}-2 \\
\sim \\
\quad \begin{array}{l}
\left(4 x^{5}-4 x^{2}\right) \\
0-2 x^{3}+4 x^{2}+x+1 \\
-\left(-2 x^{3}+2\right) \\
0+4 x^{2}+x-1
\end{array}
\end{array}\right\} \Rightarrow \frac{4 x^{5}-2 x^{3}+x+1}{x^{3}-1}=\frac{\left(x^{3}-1\right)\left(4 x^{2}-2\right)+4 x^{2}+x-1}{x^{3}-1}=
$$

2発: $(x+1)(x+1)+4=x^{2}+2 x+1+4=x^{2}+2 x+5$

2k: $\left(x^{3}-1\right)\left(4 x^{2}-2\right)+4 x^{2}+x-1=4 x^{5}-2 x^{3}-4 x^{2}+2+4 x^{2}+x-1=$

$$
=4 x^{5}-2 x^{3}+x+1
$$

3.)

$$
\begin{aligned}
& \left(3 x^{8}-2 x^{5}+x^{4}-5\right):\left(x^{5}+x+1\right)=3 x^{3}-2 \\
& -\left(3 x^{8}+3 x^{4}+3 x^{5}\right) \\
& \begin{array}{l}
0-2 x^{5}-2 x^{4}-3 x^{3}-5 \\
-\left(-2 x^{5}-2 x-2\right) \\
-2 x^{4}-3 x^{3}+2 x-3
\end{array} \\
& \begin{aligned}
2 k: & \left(x^{5}+x+1\right)\left(3 x^{3}-2\right)-2 x^{4}-3 x^{2}+2 x-3= \\
& =3 x^{8}-2 x^{5}+3 x^{4}-2 x+3 x^{3}-2-2 x^{4}-3 x^{3}+2 x-3= \\
& =3 x^{8}-2 x^{5}+x^{4}-5
\end{aligned}
\end{aligned}
$$

$$
\int \frac{3 x^{8}-2 x^{5}+x^{4}-5}{x^{5}+x+1}=\underline{\underline{3 x^{3}-2+\frac{-2 x^{4}-3 x^{3}+2 x-3}{x^{5}+x+1}}}
$$

Integrace racionálnich funkci!

Kaidow polynomickow funker $q(x)=a_{n} x^{n}+a_{n-1} x^{m-1}+\ldots+a_{1} x+a_{0}$, hde $a_{m}, \ldots, a_{0} \in \mathbb{R}$ bee napsal ve traun:

$$
\begin{equation*}
q(x)=a_{m}\left(x-\alpha_{1}\right)^{m_{1}} \cdots\left(x-\alpha_{k}\right)^{m_{R}}\left(x^{2}+\beta_{1} x+f_{1}\right)^{m_{1}} \cdots\left(x^{2}+\beta_{1} x+j_{e}\right)^{m_{e}}, \tag{*}
\end{equation*}
$$

kede $\alpha_{i}$ jsou movaájem nirmíkareny (reaike') polynomu $q(x) ; \beta_{i}, j j j \in \mathbb{R}$; polynowy $x^{2}+\beta_{i} x+y_{i}$ nemajn' reálue' kareng; $\left.M_{i}, m_{j} \in \mathbb{N u} \cup 0\right\}$.

Pr: $\quad g(x)=x^{6}-x^{2}=x^{2}\left(x^{4}-1\right)=x^{2}\left(x^{2}-1\right)\left(x^{2}+1\right)=(x-0)^{2}(x-1)^{1}(x+1)^{1}\left(x^{2}+1\right)$

$$
D: 0^{3}-4 \cdot 1 \cdot 1<0 \Rightarrow
$$



Veklac (Rozklad na parciálni zlomky): Necht $p(x)$ a $q(x)$ jsow polynomicke' funkee, lede shupeñ $p(x)$ jo mensi', nein slupeñ $g(x)$. Jestlize $g(x)$ ma' $\operatorname{Mar}(*)$, pake exishaji' $a_{i j}, b_{r s}, C_{n s} \in \mathbb{R}$ :

$$
\begin{aligned}
& \frac{p(x)}{q(x)}=\left(\frac{a_{11}}{\left(x-x_{k}\right)^{1}}+\frac{a_{12}}{\left(x-x_{1}\right)^{2}}+\cdots+\frac{a_{1 m_{1}}}{\left.\left(x-x_{1}\right)_{1} n_{1}\right)}+\ldots+\left(\frac{a_{k 1}}{\left(x-x_{k}\right)^{1}}+\frac{a_{k 2}}{\left(x-x_{k}\right)^{2}}+\cdots+\frac{a_{k k m_{k}}}{\left.\left(x-x_{k}\right)^{\cdots}\right)^{2}}\right)+\right. \\
& +\left(\frac{l_{11} x+C_{11}}{\left(x^{2}+\beta_{11} x+y_{1}\right)^{4}}+\frac{l_{12} x+C_{12}}{\left(x^{2}+\beta_{1} x+f_{11}\right)^{2}}+\cdots+\frac{l_{10} x+C_{1 m_{1}}}{\left(x^{2}+\beta_{1} x+y_{1}\right)^{m_{2}}}\right)+ \\
& +\frac{b_{e l} x+c_{e 1}}{\left(x^{2}+\beta_{e} x+c_{e}\right)^{1}}+\frac{b_{22} x+c_{e 2}}{\left(x^{2}+\beta_{e} x+c_{e}\right)^{2}}+\cdots-\frac{b_{e} m_{e} x+c_{e m_{e}}}{\left(x^{2}+\beta_{e} x+c_{e}\right)^{m_{e}}}
\end{aligned}
$$

Pr : Urcète integràl $\int \frac{4 x-3}{x^{2}+6 x+8} d x$

Rorklad ma parciailm' rlomky:

$$
\frac{4 x-3}{x^{2}+6 x+8}=\frac{4 x-3}{(x+2)(x+4)}=\frac{a}{x+2}+\frac{b}{x+4}=\frac{a(x+4)+b(x+2)}{(x+2)(x+4)}
$$

Uríme $a_{1} b: \quad 4 x-3=a(x+4)+b(x+2) \Rightarrow$ dosadme ra $x$ :

$$
\begin{aligned}
& x=-2 \quad \Rightarrow \quad 4(-2)-3=a(-2+4)+b(-2+2) \\
& -11=2 a \\
& a=\frac{-11}{2} \\
& x=-4 \Rightarrow 4(-4)-3=a(-4+4)+b(-4+2) \\
& -19=-2 b \\
& b=\frac{19}{2} \\
& \Rightarrow \frac{4 x-3}{x^{2}+6 x+8}=\frac{-\frac{11}{2}}{x+2}+\frac{\frac{19}{2}}{x+4} \\
& \begin{array}{r}
\int \frac{4 x-3}{x^{2}+6 x+8} d x=\int \frac{-\frac{11}{2}}{x+2}+\frac{\frac{19}{2}}{x+4} d x=-\frac{11}{2} \int \frac{1}{(x+2} d x+\frac{19}{2} \int \frac{1}{x+4} d x= \\
d x=d x \quad y=x+4 \\
y=d x
\end{array} \\
& =-\frac{11}{2} \int \frac{1}{1} d \alpha+\frac{19}{2} \int \frac{1}{y} d y=-\frac{11}{2} \ln |d|+\frac{19}{2} \ln |y|= \\
& =-\frac{11}{2} \ln |x+2|+\frac{19}{2} \ln |x+4|
\end{aligned}
$$

Puri: Urcéte integral

$$
\begin{aligned}
& \int \frac{5 x}{x^{2}+x-6} d x \Rightarrow \\
& \frac{5 x}{x^{2}+x-6}=\frac{5 x}{(x+3)(x-2)}=\frac{A}{x+3}+\frac{B}{x-2}=\frac{A(x-2)+B(x+3)}{(x+3)(x-2)} \\
& \Rightarrow \quad 5 x=A(x-2)+B(x+3) \\
& \lfloor x=2 \quad \quad 10=5 B \quad \Rightarrow B=2 \\
& x=-3, \quad-15=-5 A \quad \Rightarrow A=3 \\
& \Rightarrow \int \frac{5 x}{x^{2}+x-6} d x=\int \frac{3}{x+3}+\frac{2}{x-2} d x=3 \ln |x+3|+2 \ln |x-2|
\end{aligned}
$$

Pr Uriete $\int \frac{5 x-12}{x^{2}-5 x+6} d x$

$$
\left.\begin{array}{c}
\left.\begin{array}{rl}
\frac{5 x-12}{x^{2}-5 x+6}=\frac{5 x-12}{(x-2)(x-3)}=\frac{a}{x-2}+\frac{b}{x-3}=\frac{a(x-3)+b(x-2)}{(x-2)(x-3)} \\
x=3 \Rightarrow 5 \cdot 3-12 & =a \cdot 0+b \cdot 1 \\
3 & =b \\
x=2 \mid \Rightarrow 5-2-12 & =a(-1)+b \cdot 0 \\
-2 & =-a \\
a & =2
\end{array}\right\} \Rightarrow \frac{5 x-12}{x^{2} 5 x+6}=\frac{3}{x-2} \\
\mid x
\end{array}\right]
$$

$$
\begin{aligned}
& \Rightarrow \int \frac{5 x-12}{x^{2}-5 x+6} d x=\int\left(\frac{3}{x-2}+\frac{2}{x-3}\right) d x \\
& \int \frac{3}{x-2} d x=\left|\begin{array}{l}
1=x-2 \\
d l=d x
\end{array}\right|=\int \frac{3}{1} d l=3 \ln |1|=3 \ln |x-2| \\
& \int \frac{2}{x-3} d x=|d l=x-3|=\int \frac{2}{1} d l=2 \ln |1|=2 \ln |x-3| \\
& \Rightarrow \int \frac{5 x-12}{x^{2}-5 x+6} d x=2 \ln |x-2|+3 \ln |x-3|
\end{aligned}
$$

Pr: Uriete integral

$$
\int \frac{8 x^{2}+4 x-6}{x^{3}+x^{2}-2 x} d x
$$

$$
\begin{array}{rlrl}
\frac{8 x^{2}+4 x-6}{x^{3}+x^{2}-2 x} & =\frac{8 x^{2}+4 x-6}{x\left(x^{2}+x-2\right)}=\frac{8 x^{2}+4 x-6}{x(x-1)(x+2)}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{x+2}=\frac{A(x-1)(x+2)+B(x+2) x+C x(x-1)}{x(x-1)(x+2)} \\
& \Rightarrow & 8 x^{2}+4 x-6 & =A(x-1)(x+2)+B x(x+2)+C x(x-1) \\
x=0 & -6 & =-2 A & \\
x=11 & 6 & =3 B & \\
x=B=3 \\
X x & =-2] & 18 & =6 C
\end{array}
$$

$\Rightarrow \int \frac{8 x^{2}+4 x-6}{x^{3}+x^{2}-2 x} d x=\int \frac{3}{x}+\frac{2}{x-1}+\frac{3}{x+2} d x$
$\int \frac{3}{x} d x=3 \ln |x|$
$\int \frac{2}{x-1} d x=\left|\begin{array}{l}d=x-1 \\ d=d x\end{array}\right|=\int \frac{2}{t} d d=2 \ln |d|=2 \ln |x-1|$
$\int \frac{3}{x+2} d x=\left|\begin{array}{l}1=x+2 \\ d l=d x\end{array}\right|=\int \frac{3}{1} d d=3 \ln |d|=3 \ln |x+2|$
$\Rightarrow \int \frac{8 x^{2}+4 x-6}{x^{3}+x^{2}-2 x} d x=\underline{\underline{\ln |x|+2 \ln |x-1|+3 \ln |x+2|}}$
pru Ureete integral $\int \frac{7 x^{2}+3 x+5}{x^{3}+x} d x$.
aroklad na parciálm' alomby:

$$
\begin{aligned}
& \frac{7 x^{2}+3 x+5}{x^{3}+x}=\frac{7 x^{2}+3 x+5}{x\left(x^{2}+1\right)}=\frac{a}{x}+\frac{b+c x}{x^{2}+1}=\frac{\left(a\left(x^{2}+1\right)+b x+c x^{2}\right.}{x\left(x^{2}+1\right)} \\
& x=0 \Rightarrow 7 \cdot 0^{2}+3 \cdot 0+5=a\left(0^{2}+1\right)+b \cdot 0+c .0^{2} \\
& 5=\omega \\
& x=1 \quad 7 \cdot 1^{2}+3 \cdot 1+5=a\left(1^{2}+1\right)+b \cdot 1+c \cdot 1^{2} \\
& 15=2 a+b+c \quad / a=5 \\
& 15=10+b+c \\
& b+c=5 \\
& x=-1 \\
& 7(-1)^{2}+3(-1)+5=a\left((-1)^{2}+1\right)+b(-1)+c(-1)^{2} \\
& 9=2 a-b+c \quad l a=5 \\
& -1=-b+c \\
& \begin{aligned}
b+c & =5 \\
-b+c & =-1 \\
\hline 2 c & =4
\end{aligned} \\
& c=2 \text { dosadime dor } \\
& b+2=5 \\
& b=3 \\
& \begin{aligned}
\Rightarrow \int \frac{7 x^{2}+3 x+5}{x^{3}+x} d x & \left.=\int \frac{5}{x}+\frac{3+2 x}{x^{2}+1} d x=5 \int \frac{1}{x} d x+3 \int \frac{1}{x^{2}+1} d x+\int \frac{2 x}{x^{2}+1} d x\right)= \\
& =5 \cdot \ln |x|+3 \operatorname{arclg} x+\int \frac{1}{1} d d=5 \ln |x|+3 \operatorname{arctg} x+\ln |d x|=
\end{aligned} \\
& =5 \ln |x|+3 \operatorname{arctg} x+\ln \left|x^{2}+1\right|
\end{aligned}
$$

Wini Vricte $\int \frac{x^{2}+x+1}{x^{4}-1} d x$

$$
\begin{aligned}
& \frac{x^{2}+x+1}{x^{4}-1}=\frac{x^{2}+x+1}{\left(x^{2}-1\right)\left(x^{2}+1\right)}=\frac{x^{2}+x+1}{(x-1)(x+1)\left(x^{2}+1\right)}=\frac{a}{x-1}+\frac{b}{x+1}+\frac{c x+d}{x^{2}+1} \quad \Rightarrow \quad \forall x \in \mathbb{R}-\{-1,-1\}: \\
& \Rightarrow a=?, b=?, c=?, d=? \quad \\
& \frac{x^{2}+x+1}{x^{4}-1}=\frac{a(x+1)\left(x^{2}+1\right)+b(x-1)\left(x^{2}+1\right)+c x(x-1)(x+1)+d(x-1)(x+1)}{(x-1)(x+1)\left(x^{2}+1\right)} \\
& \Rightarrow \forall x \in \mathbb{R}: \quad x^{2}+x+1=a(x+1)\left(x^{2}+1\right)+b(x-1)\left(x^{2}+1\right)+c x(x-1)(x+1)+d(x-1)(x+1)
\end{aligned}
$$

volhme: $\mid x=1] 3=a \cdot 2 \cdot 2+0+0+0 \Rightarrow a=\frac{3}{4}$

$$
\left.\begin{array}{rl}
|x=-1| \Rightarrow 1=0-4 b+0+0 & \Rightarrow b=\frac{1}{4} \\
|x=0| \Rightarrow 1=\frac{3}{4}+\frac{1}{4}+0-d & \Rightarrow d=-\frac{1}{4} \\
\left\lfloor x=2 \left\lvert\, \Rightarrow 7=\frac{45}{4}-\frac{5}{4}+6 c+0\right.\right. & \Rightarrow c=-\frac{1}{2}
\end{array}\right\} \Rightarrow
$$

Pru: Urecte $\int \frac{x^{2}-x+2}{x^{4}+3 x^{3}+2 x^{2}} d x$

$$
\begin{aligned}
& \frac{x^{2}-x+2}{x^{4}+3 x^{3}+2 x^{2}}=\frac{x^{2}-x+2}{x^{2}\left(x^{2}+3 x+2\right)}=\frac{x^{2}-x+2}{x^{2}(x+1)(x+2)}=\frac{a}{x}+\frac{b}{x^{2}}+\frac{c}{x+1}+\frac{d}{x+2} \Rightarrow \\
& \frac{x^{2}-x+2}{x^{4}+3 x^{3}+2 x^{2}}=\frac{a x(x+1)(x+2)+b(x+1)(x+2)+e x^{2}(x+2)+d x^{2}(x+1)}{x^{2}(x+1)(x+2)} \\
& \Rightarrow \forall x \in \mathbb{R}: \quad x^{2}-x+2=a x(x+1)(x+2)+b(x+1)(x+2)+c\left(x^{2}(x+2)+d x^{2}(x+1)\right. \\
& |x=0| \Rightarrow \quad 2=0+2 b+0+0 \Rightarrow b=1 \\
& \langle x=-1| \Rightarrow \quad 4=0+0+c+0 \Rightarrow c=4 \\
& |x=-2| \Rightarrow \quad 8=0+0+0-4 d \Rightarrow d=-2 \\
& x=1 \Rightarrow \quad 2=6 a+6+12-4 \quad \Rightarrow a=-2 \\
& \int \frac{x^{2}-x+2}{x^{4}+3 x^{3}+2 x^{2}} d x=\int \frac{-2}{x}+\frac{1}{x^{2}}+\frac{4}{x+1}+\frac{2}{x+2} d x= \\
& =-2 \ln x-x^{-1}+4 \ln |x+1|+2 \ln |x+2|
\end{aligned}
$$

Pin:

Pir: Urète $\int \frac{x^{4}+4 x^{3}-4 x^{2}-11 x+14}{x^{2}+6 x+8} d x$
Pozor! Nem' oplnèsa paduriúlad st $(q(x))<s \Delta(q(x))!\Rightarrow$ ncjprue polèlione:

$$
\begin{aligned}
& \left(\frac{\left.x^{4}+4 x^{3}-4 x^{2}-11 x+14\right):\left(\underline{x^{2}}+6 x+8\right)=x^{2}-2 x}{-}\left(x^{4}+6 x^{3}+8 x^{2}\right)\right. \\
& \quad-\left(-2 x^{3}-12 x^{2}-11 x+14\right. \\
& -\left(-2 x^{3}-16 x\right)
\end{aligned}
$$

$$
26: \quad 5 x+14
$$

$$
\int \frac{x^{4}+4 x^{3}-4 x^{2}-11 x+14}{x^{2}+6 x+8} d x=\int x^{2}-2 x+\frac{5 x+14}{x^{2}+6 x+8} d x
$$

a) $\int x^{2} d x=\frac{x^{3}}{3}$
B) $\int-2 x d x=-x^{2}$
fi) $\int \frac{5 x+14}{x^{2}+6 x+8} d x \Rightarrow$ pareialno zlomky

$$
\begin{aligned}
& \frac{5 x+14}{x^{2}+6 x+8}=\frac{5 x+14}{(x+2)(x+4)}=\frac{a}{x+2}+\frac{b}{x+4} \\
& \frac{5 x+14}{x^{2}+6 x+8}=\frac{a(x+4)+b(x+2)}{(x+2)(x+4)} \Rightarrow \quad 5 \quad 5 x+14=a(x+4)+b(x+2) \\
& (x=-4 \Rightarrow-6=0-2 b \Rightarrow b=3 \\
& \\
& \quad x=-2 \mid \Rightarrow 4=2 a+0 \Rightarrow a=2
\end{aligned}
$$

$$
\Rightarrow \quad \int \frac{x^{4}+4 x^{3}-4 x^{2}-11 x+14}{x^{2}+6 x+8} d x=\frac{x^{3}}{3}-x^{2}+2 \ln |x+2|+3 \ln |x+4|
$$

Pri: Urcele inlegrál

$$
I=\int \frac{x^{3}+2 x^{2}-x+3}{x^{3}-6 x^{2}+5 x} d x \quad \text { - Idenem' spluèno, se shupei } f(x)>\text { slupai } g(x) \Rightarrow
$$

$\Rightarrow$ nejprve polynony podiline :

$$
\begin{aligned}
& \begin{array}{l}
\quad\left(x^{3}+2 x^{2}-x+3\right):\left(x^{3}-6 x^{2}+5 x\right)=1+\underbrace{\frac{\left.8 x^{3}-6 x^{2}+5 x\right)}{x^{3}-6 x^{2}+5 x}}_{\text {Trozlozime na parciálui' zlomky }} \quad \begin{array}{l}
8 x^{2}-6 x+3
\end{array}
\end{array} \\
& \left.\Rightarrow x^{3}-6 x^{2}+5 x=x\left(x^{2}-6 x+5\right)=x(x-5)(x-1) \quad \Rightarrow \text { koren }\right\rangle: x_{1}=0, x_{2}=5, x_{3}=1 \\
& \Rightarrow \frac{8 x^{2}-6 x+3}{x^{3}-6 x^{2}+5 x}=\frac{a}{x}+\frac{b}{x-5}+\frac{c}{x-1} \\
& \frac{8 x^{2}-6 x+3}{x^{3}-6 x^{2}+5 x}=\frac{a(x-5)(x-1)+b(x-1) x+c(x-5) x}{x(x-5)(x-1)} \\
& \Rightarrow \quad 8 x^{2}-6 x+3=a(x-5)(x-1)+b(x-1) x+c(x-5) x \Rightarrow \text { dasadime karieng } \Rightarrow \\
& \left.\begin{array}{l}
\begin{array}{l}
\left.x_{1}=0\right] \\
x_{2}=5
\end{array} \Rightarrow 8 \cdot 25-30+3=b \cdot 20 \\
x_{3}=1
\end{array}\right\} 8-6+3=c(-4) \cdot 1 \quad\left[\begin{array}{l}
a=\frac{3}{5} \\
\Rightarrow \\
2=\frac{173}{20} \\
c=-\frac{5}{4}
\end{array}\right\} \Rightarrow \begin{array}{l}
\frac{8 x^{2}-6 x+3}{x^{3}-6 x^{2}+5 x}=\frac{3}{5 x}+\frac{173}{20(x-5)}-\frac{5}{4(x-1)} \\
\Rightarrow \int \frac{x^{3}+2 x^{2}-x+3}{x^{3}-6 x^{2}+5 x} d x=\int 1+\frac{8 x^{2}-6 x+3}{x^{3}-6 x^{2}+5 x} d x=
\end{array} \\
& \left.\left.=\int 1+\frac{3}{5 x}+\frac{173}{20(x-5)}-\frac{5}{4(x-1)} d x=x+\frac{3}{5} \ln |x|+\frac{173}{2} \ln \right\rvert\, x-5\right] \left.-\frac{5}{4} \ln \right\rvert\, x-
\end{aligned}
$$

