

Metal oxide layer influence on the sensitivity of SPR fiber optic sensor

Dalibor Ciprian and Petr Hlubina

Department of Physics, Technical University Ostrava, 17. listopadu 15, Ostrava 70833, Czech Republic dalibor.ciprian@vsb.cz, petr.hlubina@vsb.cz

Motivation

- To enhance the sensitivity of SPR fiber-optic sensor based on silver film
- To solve potential problems related to chemical stability of Ag film using protective overlayer (formed by Ag layer oxidation)
- To simulate the response of the sensor with respect to potential application case (ethanol content investigation in ethanol-water mixture)

Computed results and discussion

Numerical simulations were performed for step-index, silica core, multimode optical fiber characterized by NA = 0.22, $D = 200 \,\mu \text{m}$, and the sensing part length $L = 1 \,\text{cm}$.

The shift of dip position λ_D

• Dip position was computed as a function of ethanol mass concentration $c_{\rm Eth}$

Theoretical model of the sensor

- Sensing structure is based on step-index, multimode optical fiber (easy coupling and decoupling of the light beam)
- The interrogation in the wavelength domain is considered
- The real cylindrical geometry is approximated in frame of planar optics by four-layer thin film structure

• Performance parameters are computed using the normalized power transfer spectrum for the case of excitation by collimated centrosymmetric beam focused at the fiber core center (no skew rays):

Sensitivity of the system

Detection accuracy

- Dip shift exhibits monotonous increase with increasing $c_{\rm Eth}$ it is given by increasing of analyte refractive index
- Growth of silver oxide dielectric layer introduces notable red shift even for overlayer thickness in nanometer range (x increase is denoted by arrow direction)
- Operational range in wavelength domain is extended with growing overlayer thickness
- Sensitivity of the sensor with respect to ethanol mass concentration is defined as:

- Sensitivity of is substantially enhanced with the growing of overlayer thickness
- Despite of the overlayer thickness increase, the top sensitivity keeps its position
- The top sensitivity enhancement ratio 1:1.647 was achieved for the overlayer thickness corresponding to x = 0.3
- Because of broad shallow dips, detection accuracy is defined as (dip width $\delta\lambda_{10}$ taken at $1.1 \times P_{tn}(\lambda_D)$):

- $N_{\rm ref} = L/(D \tan \theta)$ is the number of reflections in the sensing part, *L* is the sensing part length, *D* is the fiber diameter, $R_{\rm s}$, $R_{\rm p}$ are power reflectances, $\theta_{\rm c}$ is the critical angle (wavelength dependent)
- When the fiber is approximated by planar structure, the contribution of both polarization component has to be taken into account
- Optical dispersion of all media has to be included into the computation

Optical dispersion of used materials

- Fiber core: fused silica, dispersion described by three-term Sellmeier formula [1]
 SPR layer: Ag, dispersion described by Drude-Lorentz model [2]
- Protective overlayer: Ag₂O, dispersion described by single-oscillator model [3]
- Analyte: ethanol-water mixture, refractive index obtained by Lorentz-Lorenz formula [4], its value controlled by content of ethanol (concentration $c_{\rm Eth}$ expressed in mass%)

Protective oxide layer

- SPR silver layer has to be protected to keep its chemical stability
- Silver layer itself can be oxidized to form a protective overlayer (for example by oxygencontaining plasma)
- The oxidation process is connected with the expansion of the formed silver oxide layer thickness, described by expansion ratio K = 1.55 (see the schematic picture)

Figure if merit of the sensor

$DA_{10} = 1/\delta\lambda_{10}$

- Sensitivity enhancement is accompanied by the broadening of the spectral dip $\Rightarrow DA_{10}$ decreases with the relative oxide thickness
- Only in the case of low content of ethanol in water ($c_{\rm Eth} < 10 \, {\rm mass}\%$) and very thin overlayers ($x \le 0.1$), presence of the overlayer enhances the detection accuracy
- Figure of merit is defined as the ratio between the sensitivity and dip width:

$FOM = S \times DA_{10}$

- At first *FOM* increases with the overlayer thickness up to $x \approx 0.2$ (see left arrow), then it goes down (right arrow)
- FOM behavior goes on the account of detection accuracy DA_{10}
- For any specific ethanol concentration $c_{Eth} \in (0, 75) \text{ mass}\%$ an optimal value of relative oxide thickness exists

oxidation

- The structure containing oxide overlayer is characterized by dimensionless parameter: relative oxide layer thickness $x = t_{Ag_2O}/(t_{Ag_2O} + t_{Ag})$
- For the computation, the initial thickness of Ag layer was chosen as $t_{in} = 40 \text{ nm}$
- For the chosen set of parameter x (see the thicknesses in the table), the sensing structure works in wavelength range from 380 nm to 1000 nm in pure SPR regime (no lossymode-resonance is excited)

Acknowledgment

This work has been supported by the Grant Agency of the Czech Republic under the contract P102/11/0675, by the COST TD1001 action "OFSESA" through project LD12003, and by the project CZ.1.05/2.1.00/01.0040.

References

Malitson, I. H. *J. Opt. Soc. Am.* 55, 1205-1208, (1965)
 Drachev, V. P. et all *Opt. Express* 16, 1186-1195, (2008)
 Gao, X. et all *Physica B* 405, 1922-1926, (2010)
 Ciprian, D., Hlubina P. *Proc. SPIE* 8306, 830612, (2011)