AGILE WORKFLOWS & GENERATIVE Al in A
New Era of Autonomous Optimization

rrrrrrrr

VSB TECHNICKA TORRENS
||| UNIVERZITA '|'|' UNIVERSITY
II" osTrRAVA AUSTRALIA

CONTENTS

1. Introduction

2. Optimization problems

3. Optimization workflow

5. Increasing automation using GenAl

6. Our recent works and current gaps

7. Agile workflow and simplification

8. Take aways

Al-generated Image

MAIN COMPONENTS OF AN OPTIMIZATION PROBLEM
Inputs Output

Constraints

FORMULATION OF AN OPTIMIZATION PROBLEM

Inputs Output

Constraints

Minimise: f[(xq4,%x5,...,%,)
Suject to: Constraints

THE ROLE OF AN OPTIMIZATION ALGORITHM

000080
e
1(3_

Al-generated image

WHAT ARE WE ACTUALLY TRYING TO DO?

INPUTS

« Large number of inputs

* Variables with different ranges

* Dependency between the inputs
« Discrete variables

* Mix variables

* Noisy inputs

System

OUTPUTS

« Multiple/many objectives

» Conflicting objectives

« Dynamic objectives

 Difficult-to-Measure Objectives

System

CONSTRAINTS

« Highly constrained landscape
« Equality constraint

* Inequality constraint

* Priority (soft vs. hard)

* Non-linear constraints

« Dynamic constraints

A TAXONOMY

== =

— Discrete — Multi — Equality Dynamic Non-linear Multi-modal Non-convex
— Mixed — Expensive — Soft

OPTIMIZATION LIFECYCLE

ﬁ Pro_b!e_m Problem
Definition Formulation

T <

]_,

Evaluation &
6 ‘ [Validation]‘

|

Algorithm
Selection

|

l

|

Running the
Algorithm

|

OPTIMIZATION LIFECYCLE

Automate and Accelerate

a Pro_b!e_m Problem
Definition Formulation

T <

Evaluation & <
Validation

——

|

Algorithm
Selection

|

L

|

Running the
Algorithm

CONVENTIONAL ALGORITHMS

. Most Gradient-based R -
. Sensitive to learning rate sp I S

c
v
AR
[
f
vty
ﬂ/

AR I PR NN

. Saddle points ISR _

1
2
3. Local optima
4
5

. Not very practical 2 s 4 w5 0 s 1 15 2

SGD

SGD A /

= Momentum Momentum loss
4 —— NAG NAG = very high learning rate
W Adagrad | -)
g pe. Adagrad
i et i Adadelta Adadelta

Rmsprop

4 Rmsprop
LR
ST
S S BN
a?,g,’t,’o'

low learning rate

X
)
SOSIR

high learning rate

good learning rate

epoch

RECENT ALGORITHMS

Optimization
algorithms

Gradient-
based

Global search

Stochastic

Number of

solutions

B Single
solution based

Population

based

EVOLUTIONARY COMPUTATION & SOFT COMPUTING

Statistical methods

Expert System

Reasoning

Symbolic Al

Neural Networks

Fuzzy Logic Evolutionary algorithms

Artificial Intelligence

Computational
Intelligence/soft computing

Evolutionary Computation Swarm Intelligence

MODERN ALGORITHMS

Advantages:

1.

Avoid local solutions

2. Higher chance of finding the global optimum
3. Low dependency on the initial solution

4. Mostly do not need gradient

Drawbacks:

1. Slow convergence speed

2. Finding different answers in each run

WHERE WER ARE HEADING?

Gradient-based - Heuristic - Meta-heuristic = Hyper-heuristic > 2270?

Less Human Involvement

Increased Automation

WHERE WER ARE HEADING?

Al-Driven Optimization
100 (2020s-Present)

Autonomy Level (%)

Early Heuristics
(1970s-1980s)

Classigal Optimiz
(1Pp50s-19

1960 1970 1980 1990 2000 2010 2020
Year

uman-generated figure

OPEN RESEARCH QUESTIONS

1. How to automate algorithm development and improvement?
2. How to automate problem formulation?

3. How to reduce human involvement in both?

l [Simplification]

SO

@ Pro_b!e?m Problem Algorit_hm
Definition Formulation Selection
T @ ‘Ex l
‘) (o o o]

Evaluation & | _ Running the
5 [Validation]‘ [Algorithm]

HOW GENAI CAN BE USED?

1. GenAl-powered problem definition:

. Gathers and structures qualitative data for precise requirement modeling.
. Maximizes stakeholder input and validates requirements for optimization.

2. GenAl-powered problem formulation:
. Creates accurate mathematical models from detailed requirements.
. Refines models iteratively to match real-world conditions effectively.

3. GenAl-powered algorithm design and development:
. Generates, analyzes, and refines code for algorithm development.
. Enables rapid exploration of innovative meta-heuristic solutions.

4. GenAl-powered algorithm executor:
. Optimizes hardware and algorithm settings for efficient execution.
. Monitors and improves execution by addressing inefficiencies.

5. GenAl-powered solution evaluator:
. Evaluates results, identifies patterns, and suggests improvements.
. Accelerates iterative optimization with expert-level insights.

|

Problem
Definition

|

|

Problem
Formulation

Algorithm
Selection

Running the
Algorithm

Evaluation &
Validation

fée- fHe- fde- fHe- Bee-

HOW GENAI CAN BE IN ALGORITHM DESIGN AND
DEVELOPMENT?

Innovator
LLM

Value & Autonomy

Y

Difficulty & Complexity

Figure 14: Visualisation of LLM Roles in metaheuristic optimisation where Advisor, Refiner, Enhancer, and Innovator roles
each contribute uniquely to improving algorithm performance and adaptability.

EXAMPLE 1

Algorithm
Development

Improving PSO 20 times without human inevrtion using GPT 40 (temperature 0.7)

Halstead Effort

Lines of Code

,_.
2 o ® O
S o o o

= N
[=]

Cyclomatic Complexity
I
5

6000

4000

2000

PSO Version Metrics Analysis

& @&@@@@@@@@F@&F
& > O o Ll ol

S S S S

/ \/N/

N s
‘\A ‘\-\

‘e

)

-l
K q"

/\h/\ /\/

/"*—1‘
6‘ S of oF o8 oF 68 2 6 5F oF 4F 4F o WS oF (F 4T o o8
R A S I $P PN T A S o
P E L L °’ &7 o oF oF oF c>"k oF oF oF oF oF of
& & e EE ?"&«%@@@@&q&@@@

PSO Version

Pairwise Comparison Heatmap (Simple Averages)

AutoPSO w0 - 0 H 21z 3
AutoPSO vl1-1 o 1 1 2 3
AutoPSO_v2
AutoPSO_v3
AutoPSO_vd
AutoPSO_v5
AutoPSO_vE
AutoPSO_v7
AutoPSO_vs
AutoPSO_v9
AutoPSO_v10
AutoPSO_v1l
AutoP50_v12
AutoPS0O_v13
AutoPSO_v14
AutoPSO_v15
AutoPSO_v1e
AutoPSO_v17
AutoPSO_v18
AutoPSO_v19
AutoP50_v20 -2

10

-

AUtoPSO_v1

AutoPS0_v2 -o
AUtoPSOVE & m o o o

AUtoPSO_vé - o [T

AutoPSO_v5 - 58

AUtoPSO V6 - w

AULOPSO_VT - o o)

AutoPSO_v8 - (58

AUtOPSO v9 - o [

1
~
-
=
o]
n
-
2
=]
<

AutePS0 v14 -o

AutoPSO_v15 - o

AutoPSO V16 -o

AutoPS0O_v17

AutoPS0_v1E - o
AUtoPSO w19 -o o

AutoPS0_v20 - o

AutoPSO_vO -
AutoPSO W10 -o m w = ~ w w

o
—
=
>
[l
el
-4
]
E]
<

b=3
o
°
=3
=
=3
3

b

EXAMPLE 2 EN =g -

Sustainable Facility Site Location Selection

Choose a set of distribution-centre locations that minimises the
total distance travelled (a proxy for overall transport cost) while
satisfying geographic, capacity and service-level constraints.

Why it is challenging

* The search space grows exponentially with the number of
candidate sites (NP-hard).

* Multiple, often conflicting criteria (cost, coverage,
environmental impact, risk) must be balanced.

* Real-world data are noisy and dynamic (demand shifts,
new constraints).

Figure 6. All DCs available for Gold Coast City (source Google Maps)[32]

Problem Algorithm tﬁl
EXAM P L E 2 Formulation Development o

Sustainable Facility Site Location Selection

ZERO-SHOT FEW-SHOT
Problem \ Problem \‘
@) — — (=l ol — -

Code Code Code Code

po

Results

Jo

T8 Baseline [0 Zero-Shot LLM | B0 Baseline 10 Few-Shot LLM

8,000 =
i
5 2 700 =
2 5
é ‘f: 6,000
: 8
5,000
Figure 6. All DCs available for Gold Coast City (source Google Maps)[32]

ALO GA GHO MFO PSO wo
Algerithm Algorithm

Figure 17 Performance comparison of aselne and zershot LU enhanced algorthms under Configeration & Figure 25: Performance comparison of baseline and few-shot LLM-enhanced algorithms under Configuration B

Problem Algorithm tﬁl
Formulation Development o

EXAMPLE 2

Sustainable Facility Site Location Selection

| 00 Zero-Shot LLM [8 Few-Shot LLM
30 | |

23.98

21.34

20

14.25
13.86

123
123

(=]

Performance Improvement (%)

—10
-20 g
E
-30 il
T T
ALO GA GHO MFO PSO WO
Algorithm

Figure 33: Comparative performance improvement across enhancement approaches (%)

Problem Algorithm tﬁl
Formulation Development o

EXAMPLE 2

We used a generic prompt engineering framework

Figure 6. AllDCs available for Gold Coast City (source Google Maps)[32]

Capacity and Role Insight Statement Personality Experiment

Define the role or capacity__ Provide necessary background or context Core of your prompt Define ChatGPT's tone Ask for multiple responses

B

CRISPE Framework

EXAMPLE 3: ANEW PROMPTING FRAMEWORK

Selecting

o an algorithm
N Tuning

existing algorithm

..._!
A]{ ~ Adapting :_2___.
Prompt existing algorithm o
H uman ta
\ _| Integrating/Hybridizing heuristic

existing algorithms

Developing
new algorithms

Figure 2: Human and LLM Collaboration in Meta-Heuristic Optimization Across Five Levels: Selection Level, Tuning Level,
Adapting Level, Integration Level, and Developing Level

EXAMPLE 3: ANEW PROMPTING FRAMEWORK

Table 2
RESOLUTION Hyper-Framework Aspects Across Levels
RESOLUTION Aspects Selection Tuning Adapting Integration Developing
s Level Level Level Level Level
R: Role Explaining roles * * * * *
E: Explanation Explaining what we require & & v & &
S: inStances Peflnlng the optimization problem o o - . o
instance
O: algOrithms Introducing the algorithm(s) & & v & &
L: variabLes Determining variables to be tuned - & o it &
U: modUles Introducing the pool of modules - - * * *
T: deTails Determining details of the desired * ® * * *
output code
I archltecture Determining structure or architecture of ~ - o . -
the output code
O: scOre Defining the scoring criteria & & v & &
Explaining what we require as the
N: returN output, including algorithm(s), o - - . -

experimental confirmation, final code(s),
etc.

EXAMPLE 3: ANEW PROMPTING FRAMEWORK

RESOLUTION Prompt (Adapting Existing Algorithms for Solving Traveling Salesman Problem)

Consider the following as an input prompt and do so carefully to the end. Roles phase (You act as a code
developer. You act as an optimization expert.) Explanation phase (I am looking for an optimized binary GA
code based on the provided code to use in my project.) InStances phase(To solve a TSP problem instance with
the given distance matrix.) AlgOrithms phase (I would like you to precisely adjust the parameters of the code
and the operators used in the code.) VariabLes phase (Consider tuning all parameters and variables.) ModUles
phase (Consider all possible operators could be found in MH literature.) DeTails phase (I require a detailed
Python code, with extensive comments to explain each part.) Archltecture phase (Revising the structure of
the code is also allowed.) ScOre phase (Revise the original code to enhance it based on a metric defined as
the product of the answer error and the number of lines of the code) ReturN phase (1- Provide the revised
code. 2- Highlight any tuning made. 3- Run both the original and the revised codes for 10 times to solve the
instance with the given distance matrix. 4- Which algorithm do you suggest based on the mentioned score
average? 5- Provide a table of the number of lines and the tour distance mean and standard deviation for both
codes confirming your answer.)

80 :) 102

70

65

60

Error mean

55

Number of code lines

50

et
—_
—

DeepSeek
e GPT-40]
Gemini

| JT J

45

0 2 4 6 8 10 0 2 4 6 8 10
Iterations Iterations

40

(a) Number of code lines. (b) Error mean.

EXAMPLE 4: A NEW SET OF PERFORMANCE METRICS

é

Code Complexity

=g

Code Results

Code Results f{h\ f{h\

Code Complexity

=g

Code Quality

EVERYTHING CAN BE OPTIMIZED, BUT SHOULD WE?

L

contact in 3D

+ | wference

i
R

[
500

it
i

600 500

Human-generated images

WHAT IF WE OVER OPTIMIZE?

« Small errors can lead to big failures: Tiny mistakes in how
we set up the problem or prompt the model can grow into —
serious issues later, like wrong or unsafe solutions.

* Chain reaction of errors: If we use LLMs in several steps
of optimization, a small error early on can spread and T Fp—
affect the final outcome without being noticed. 4

Robust solution

« Too tuned to the simulator: If we train or test the optimiser
only using a simulator, it might learn tricks that work there ,
but fail in the real world, because it's just fitting to the |
simulator’s rounding errors or unrealistic assumptions. —r— —r—

Non-robust

AN EXAMPLE

Cavitation
‘ / risk

e

Peak

efficiency
flow

Sdapa ¢

Propeller efficiency is the ratio of thrust power to shaft power; every extra percentage point is real fuel

money(unless it comes with cavitation).

AN EXAMPLE

20000 function evaluations

23 : : : (T
: i H :]
6 blades
5 blades
25.15]
=
£
3 4 blades
$
2 xx
5
5
253
2535 Bl : "": """"" : """" : """"" : """" 3 blades

PV Y RV VTR VR VT

0.5+

Normalized values
>
J

= 1 = = 3 y === —— !
Pl P2 P3 P4 P5 P6 P7 P8 P9 PO PIl PI2 PI3 PI4 PI5 PI6 PI7 PI§ PI9 P20 RPM Eff Cav
Parameiers objectives

-1

Effects of uncertainties in operating conditions on the objectives

0 Pareto optimal solutions 0 Pareto optimal solutions
become infeasible when & = +1 become infeasible when 6 =- 1
=255 ¢ o 1 =255 1
’ :.’ . Y
TN DO
256 ¢ “ay, 1 256t RN
. RS
Parameters Y e
F = ‘\ = \.,. Y
Type A: operating Type B: parameters S \ . S} bl
conditions e 3 -25.7 1 b 1 S -257 ¢ BT
\ - = L\ = v\
Type C: outputs 3 \‘ 3 \ ",
= ? IR b LY
= P 258} Y 1 258 | \
3 4
2 m “ “ \\\‘s
= 3 H
8 M — -25.9 ¢ o 259 ¢ v
L% /* “
, -26 : : : -26 : : :
Type D:
Lo 0.675 0.68 0.685 0.69 0.695 0.675 0.68 0.685 0.69 0.695
Figure 2.8: Different categories of uncertainties and their effects on a system: efficiency efficiency

Type A, Type B, and Type C

Figure 9.8: Pareto optimal solutions in case of (left) 6 = +1.5% (right) § =
—1.5% perturbations in parameters. Original values are shown in blue, perturbed
results in red.

Effects of uncertainties in operating conditions on the objectives

-cavitation

25 F

-255 ¢

26+

-26.5

0 Pareto optimal solutions
become infeasible when &, oM +1

-cavitation

0.68 0.682 0.684 0.686 0.688 0.69 0.692
efficiency

25

-255 ¢

=26 |

-26.5

0 Pareto optimal solutions
become infeasible when d epnr =" 1

. ey
t e e
..,

0.68 0.682 0.684 0.686 0.688 0.69 0.692
efficiency

Figure 9.7: Pareto optimal solutions in case of (left) dgpprr = +1, (right) drpr =
—1 fluctuations in RPM (right). Original values are shown in blue, perturbed
results in red.

Perturbation may
causse extra 40 liter of
fuel consumption per

day

Considering 1.5% noise according to ISO 484/2-1981

20000 function evaluations PF obtained by
22555 — L MOPSO
LIS
.
-25.6 S4
s
-25.65) o
2257 hi S
~
-25.75 3 \

-cavitation

-25.8 / \‘!‘
/ \\

-25.85
Robust PF obtained | kY
by CRMOPSO 259 3
b Y
-25.95
0.68 0685 0.69 0.695

efficiency

Figure 9.9: Robust front obtained by CRMOPSO versus global front obtained
by MOPSO

Table 9.1: Fuel consumption discrepancy in case of perturbation in all of the
structural parameters for both PS obtained by MOPSO and RPS obtained by
CRMOPSO

Algorithm average min max
MOPSO 0.1735 0.1676 0.1851
CRMOPSO 0.0825 0.0805 0.0863

CURRENT GAPS AND FUTURE DIRECTIONS

A\

Prompt
. Engineering |
Q y
- Architecture

&] Open

Source

/

Performance

LLM integration in
meta-heuristics

% Context
% Window

Best
° @
Ethics |

Figure 15: Suggested future research areas for using LLMs in metaheuristics. Each “dimension” represents a different focus
area, such as creating specific frameworks, setting ethical guidelines, using synthetic data, and promoting open-source

tools. The diagram highlights different paths researchers can take to advance research in this area.

Synthetic @

Data

OPTIMIZATION LIFECYCLE/WORKDFLOW MUSK STYLE
L ®]

W — o | — (| — | 2
| g |

Evaluation & Running the
8 ‘ [Validation]‘ [Algorithm]

Human-generated figure

ELON MUSK’s AGILE WORKFLOW

1. Make the requirements less dumb: “your requirements are definitely dumb, it does not
matter who gave them to you”, so question the question.

2. Delete the part or process: “If you're not adding things back in at least 10% of the
time, you’re clearly not deleting enough”, so regularly review and remove parts or
processes that don’t add significant value.

3. Simplify or optimize the design: “Possibly the most common error of a smart engineer
is to optimize a thing that should not exist”, so focus on essential elements

4. Accelerate cycle time: “Every process can be speeded up. But only do this after you
have followed the first three steps. In the Tesla factory, | mistakenly spent a lot of time
accelerating processes that | later realized should have been deleted.” , so focus on
valuable progress instead of mere speed.

5. Automate: “That comes last. The big mistake in Nevada and at Fremont was that |
began by trying to automate every step. We should have waited until all the
requirements had been questioned, parts and processes deleted, and the bugs were
shaken out.”, so only automate after the first four steps.

@ |

EXAMPLES m— []H[Fm::;n]i[*::;::;]

G |

SIMPLIFICATION OF VEHICLE STRUCTURE AND MANUFACTURING

Model 3 body structure Austin-made Model Y body structure

171 pieces of metal highlighted 2 pleces of metal highlighted

>1,600 fewer welds

Source: Spacex.com and Tesla.com

KEY TAKE AWAYS

GenAl can automate the whole optimization lifeycle

2. Early evidences are convincing (e.g. large-language-model guidance
has already delivered >20X gains in PSO with zero human tweaking,
hinting at the power of GenAl-designed optimizers)

3. Open challenges remain: fully automating algorithm improvement and
problem formulation while keeping humans only where their insight
truly matters.

4. Question requirements, delete what doesn’t add value, simplify first,
speed up second, automate last.

5. Bottom line: anything can be optimized, but not everything should be.
Beware the “too-perfect” solution. Over-optimization can make
systems fragile and expensive when real-world noise or constraints
shift.

e what

oul's

AUSTRALIA

https://seyedalimirjalili.com ali.mirjalili@gmail.com

