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MAIN COMPONENTS OF AN OPTIMIZATION PROBLEM
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FORMULATION OF AN OPTIMIZATION PROBLEM

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒: 𝒇 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏
𝑆𝑢𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔
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THE ROLE OF AN OPTIMIZATION ALGORITHM
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WHAT ARE WE ACTUALLY TRYING TO DO?

Inputs OutputConstraints
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INPUTS

• Large number of inputs 

• Variables with different ranges 

• Dependency between the inputs

• Discrete variables  

• Mix variables 

• Noisy inputs 

• ….
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OUTPUTS

• Multiple/many objectives 

• Conflicting objectives

• Dynamic objectives

• Difficult-to-Measure Objectives

• …
9
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CONSTRAINTS

• Highly constrained landscape 

• Equality constraint 

• Inequality constraint 

• Priority (soft vs. hard)

• Non-linear constraints

• Dynamic constraints

• … 
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A TAXONOMY
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OPTIMIZATION LIFECYCLE
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Automate and Accelerate 

OPTIMIZATION LIFECYCLE
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INCREASING 

AUTOMATION



CONVENTIONAL ALGORITHMS
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1. Most Gradient-based

2. Sensitive to learning rate

3. Local optima

4. Saddle points

5. Not very practical 



RECENT ALGORITHMS
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EVOLUTIONARY COMPUTATION & SOFT COMPUTING 
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MODERN ALGORITHMS

19

Advantages: 

1. Avoid local solutions 

2. Higher chance of finding the global optimum

3. Low dependency on the initial solution

4. Mostly do not need gradient 

Drawbacks: 

1. Slow convergence speed 

2. Finding different answers in each run



WHERE WER ARE HEADING?
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Gradient-based         → Heuristic    → Meta-heuristic       → Hyper-heuristic → ?????

Increased Automation

Less Human Involvement 
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WHERE WER ARE HEADING?
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OPEN RESEARCH QUESTIONS
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1. How to automate algorithm development and improvement?  

2. How to automate problem formulation? 

3. How to reduce human involvement in both?

LLM

LLM
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1. GenAI-powered problem definition: 

• Gathers and structures qualitative data for precise requirement modeling.

• Maximizes stakeholder input and validates requirements for optimization.

2. GenAI-powered problem formulation:

• Creates accurate mathematical models from detailed requirements.

• Refines models iteratively to match real-world conditions effectively.

3. GenAI-powered algorithm design and development: 

• Generates, analyzes, and refines code for algorithm development.

• Enables rapid exploration of innovative meta-heuristic solutions.

4. GenAI-powered algorithm executor:

• Optimizes hardware and algorithm settings for efficient execution.

• Monitors and improves execution by addressing inefficiencies.

5. GenAI-powered solution evaluator:

• Evaluates results, identifies patterns, and suggests improvements.

• Accelerates iterative optimization with expert-level insights.

HOW GENAI CAN BE USED?

LLM

LLM

LLM

LLM

LLM
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HOW GENAI CAN BE IN ALGORITHM DESIGN AND 
DEVELOPMENT?
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Improving PSO 20 times without human inevrtion using GPT 4o (temperature 0.7)

EXAMPLE 1
Algorithm 

Development 
LLM
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Sustainable Facility Site Location Selection

EXAMPLE 2
Algorithm 

Development 
LLM

Choose a set of distribution-centre locations that minimises the

total distance travelled (a proxy for overall transport cost) while

satisfying geographic, capacity and service-level constraints.

Why it is challenging

• The search space grows exponentially with the number of

candidate sites (NP-hard).

• Multiple, often conflicting criteria (cost, coverage,

environmental impact, risk) must be balanced.

• Real-world data are noisy and dynamic (demand shifts,

new constraints).
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Sustainable Facility Site Location Selection

EXAMPLE 2
Algorithm 

Development 
LLM



28

Sustainable Facility Site Location Selection

EXAMPLE 2
Algorithm 

Development 
LLM
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We used a generic prompt engineering framework

EXAMPLE 2
Algorithm 

Development 
LLM



EXAMPLE 3: A NEW PROMPTING FRAMEWORK
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EXAMPLE 3: A NEW PROMPTING FRAMEWORK
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EXAMPLE 3: A NEW PROMPTING FRAMEWORK
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EXAMPLE 4: A NEW SET OF PERFORMANCE METRICS
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Code Complexity

Code Results

Code Quality

Code Results

Code Complexity



THE RISK OF OVER 
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EVERYTHING CAN BE OPTIMIZED, BUT SHOULD WE?

35
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WHAT IF WE OVER OPTIMIZE? 

• Small errors can lead to big failures: Tiny mistakes in how

we set up the problem or prompt the model can grow into

serious issues later, like wrong or unsafe solutions.

• Chain reaction of errors: If we use LLMs in several steps

of optimization, a small error early on can spread and

affect the final outcome without being noticed.

• Too tuned to the simulator: If we train or test the optimiser

only using a simulator, it might learn tricks that work there

but fail in the real world, because it’s just fitting to the

simulator’s rounding errors or unrealistic assumptions.



AN EXAMPLE

Propeller efficiency is the ratio of thrust power to shaft power; every extra percentage point is real fuel

money) unless it comes with cavitation(.
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AN EXAMPLE
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Effects of uncertainties in operating conditions on the objectives
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Effects of uncertainties in operating conditions on the objectives

Perturbation may 
causse extra 40 liter of 
fuel consumption per 

day!!!
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Considering 1.5% noise according to ISO 484/2-1981



CURRENT GAPS AND FUTURE DIRECTIONS
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WHAT TO DO TO 

MINIMIZE THE 

RISK? 



OPTIMIZATION LIFECYCLE/WORKDFLOW MUSK STYLE
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ELON MUSK’s AGILE WORKFLOW
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1. Make the requirements less dumb: “your requirements are definitely dumb, it does not 
matter who gave them to you”, so question the question. 

2. Delete the part or process: “If you’re not adding things back in at least 10% of the 
time, you’re clearly not deleting enough”, so regularly review and remove parts or 
processes that don’t add significant value.

3. Simplify or optimize the design: “Possibly the most common error of a smart engineer 
is to optimize a thing that should not exist”, so focus on essential elements 

4. Accelerate cycle time: “Every process can be speeded up. But only do this after you 
have followed the first three steps. In the Tesla factory, I mistakenly spent a lot of time 
accelerating processes that I later realized should have been deleted.” , so focus on 
valuable progress instead of mere speed. 

5. Automate:  “That comes last. The big mistake in Nevada and at Fremont was that I 
began by trying to automate every step. We should have waited until all the 
requirements had been questioned, parts and processes deleted, and the bugs were 
shaken out.”, so only automate after the first four steps.



EXAMPLES
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Source: Spacex.com and Tesla.com



TAKE AWAYS? 



KEY TAKE AWAYS
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1. GenAI can automate the whole optimization lifeycle

2. Early evidences are convincing (e.g. large-language-model guidance
has already delivered >20X gains in PSO with zero human tweaking,
hinting at the power of GenAI-designed optimizers)

3. Open challenges remain: fully automating algorithm improvement and
problem formulation while keeping humans only where their insight
truly matters.

4. Question requirements, delete what doesn’t add value, simplify first,
speed up second, automate last.

5. Bottom line: anything can be optimized, but not everything should be.
Beware the “too-perfect” solution. Over-optimization can make
systems fragile and expensive when real-world noise or constraints
shift.



https://seyedalimirjalili.com ali.mirjalili@gmail.com


