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MAIN COMPONENTS OF AN OPTIMIZATION PROBLEM
Inputs Output

Constraints



FORMULATION OF AN OPTIMIZATION PROBLEM

Inputs Output

Constraints

Minimise: f[(xq4,%x5,...,%,)
Suject to: Constraints



THE ROLE OF AN OPTIMIZATION ALGORITHM
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WHAT ARE WE ACTUALLY TRYING TO DO?




INPUTS

« Large number of inputs

* Variables with different ranges

* Dependency between the inputs
« Discrete variables

* Mix variables

* Noisy inputs

System




OUTPUTS

« Multiple/many objectives

» Conflicting objectives

« Dynamic objectives

 Difficult-to-Measure Objectives

System




CONSTRAINTS

« Highly constrained landscape
« Equality constraint

* Inequality constraint

* Priority (soft vs. hard)

* Non-linear constraints

« Dynamic constraints




A TAXONOMY
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OPTIMIZATION LIFECYCLE
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OPTIMIZATION LIFECYCLE
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CONVENTIONAL ALGORITHMS
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RECENT ALGORITHMS

Optimization
algorithms

Gradient-
based

Global search
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EVOLUTIONARY COMPUTATION & SOFT COMPUTING

Statistical methods

Expert System

Reasoning

Symbolic Al

Neural Networks

Fuzzy Logic Evolutionary algorithms

Artificial Intelligence

Computational
Intelligence/soft computing

Evolutionary Computation Swarm Intelligence




MODERN ALGORITHMS

Advantages:

1.

Avoid local solutions

2. Higher chance of finding the global optimum
3. Low dependency on the initial solution

4. Mostly do not need gradient

Drawbacks:

1. Slow convergence speed

2. Finding different answers in each run




WHERE WER ARE HEADING?

Gradient-based -  Heuristic - Meta-heuristic =  Hyper-heuristic > 2270?

Less Human Involvement

Increased Automation
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OPEN RESEARCH QUESTIONS

1. How to automate algorithm development and improvement?
2. How to automate problem formulation?

3. How to reduce human involvement in both?

l [ Simplification ]

SO

@ Pro_b!e?m Problem Algorit_hm
Definition Formulation Selection
T @ ‘Ex l
‘) (o o o]

Evaluation & | _ Running the
5 [ Validation ]‘ [ Algorithm ]




HOW GENAI CAN BE USED?

1. GenAl-powered problem definition:

. Gathers and structures qualitative data for precise requirement modeling.
. Maximizes stakeholder input and validates requirements for optimization.

2. GenAl-powered problem formulation:
. Creates accurate mathematical models from detailed requirements.
. Refines models iteratively to match real-world conditions effectively.

3. GenAl-powered algorithm design and development:
. Generates, analyzes, and refines code for algorithm development.
. Enables rapid exploration of innovative meta-heuristic solutions.

4. GenAl-powered algorithm executor:
. Optimizes hardware and algorithm settings for efficient execution.
. Monitors and improves execution by addressing inefficiencies.

5. GenAl-powered solution evaluator:
. Evaluates results, identifies patterns, and suggests improvements.
. Accelerates iterative optimization with expert-level insights.
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HOW GENAI CAN BE IN ALGORITHM DESIGN AND
DEVELOPMENT?

Innovator
LLM

Value & Autonomy

Y

Difficulty & Complexity

Figure 14: Visualisation of LLM Roles in metaheuristic optimisation where Advisor, Refiner, Enhancer, and Innovator roles
each contribute uniquely to improving algorithm performance and adaptability.



EXAMPLE 1

Algorithm
Development

Improving PSO 20 times without human inevrtion using GPT 40 (temperature 0.7)
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EXAMPLE 2 EN =g -

Sustainable Facility Site Location Selection

Choose a set of distribution-centre locations that minimises the
total distance travelled (a proxy for overall transport cost) while
satisfying geographic, capacity and service-level constraints.

Why it is challenging

* The search space grows exponentially with the number of
candidate sites (NP-hard).

* Multiple, often conflicting criteria (cost, coverage,
environmental impact, risk) must be balanced.

* Real-world data are noisy and dynamic (demand shifts,
new constraints).

Figure 6. All DCs available for Gold Coast City (source Google Maps)[32]
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Figure 17 Performance comparison of aselne and zershot LU enhanced algorthms under Configeration & Figure 25: Performance comparison of baseline and few-shot LLM-enhanced algorithms under Configuration B



Problem Algorithm tﬁl
Formulation Development o

EXAMPLE 2

Sustainable Facility Site Location Selection
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EXAMPLE 2

We used a generic prompt engineering framework

Figure 6. AllDCs available for Gold Coast City (source Google Maps)[32]

Capacity and Role Insight Statement Personality Experiment

Define the role or capacity__ Provide necessary background or context Core of your prompt Define ChatGPT's tone  Ask for multiple responses

B

CRISPE Framework




EXAMPLE 3: ANEW PROMPTING FRAMEWORK

Selecting

o an algorithm
N Tuning

existing algorithm

..._!
A]{ ~ Adapting :_2___.
Prompt existing algorithm o
H uman ta
\ _| Integrating/Hybridizing heuristic

existing algorithms

Developing
new algorithms

Figure 2: Human and LLM Collaboration in Meta-Heuristic Optimization Across Five Levels: Selection Level, Tuning Level,
Adapting Level, Integration Level, and Developing Level




EXAMPLE 3: ANEW PROMPTING FRAMEWORK

Table 2
RESOLUTION Hyper-Framework Aspects Across Levels
RESOLUTION Aspects Selection Tuning Adapting Integration Developing
s Level Level Level Level Level
R: Role Explaining roles * * * * *
E: Explanation Explaining what we require & & v & &
S: inStances Peflnlng the optimization problem o o - . o
instance
O: algOrithms Introducing the algorithm(s) & & v & &
L: variabLes Determining variables to be tuned - & o it &
U: modUles Introducing the pool of modules - - * * *
T: deTails Determining details of the desired * ® * * *
output code
I archltecture Determining structure or architecture of ~ - o . -
the output code
O: scOre Defining the scoring criteria & & v & &
Explaining what we require as the
N: returN output, including algorithm(s), o - - . -

experimental confirmation, final code(s),
etc.




EXAMPLE 3: ANEW PROMPTING FRAMEWORK

RESOLUTION Prompt (Adapting Existing Algorithms for Solving Traveling Salesman Problem)

Consider the following as an input prompt and do so carefully to the end. Roles phase (You act as a code
developer. You act as an optimization expert.) Explanation phase (I am looking for an optimized binary GA
code based on the provided code to use in my project.) InStances phase(To solve a TSP problem instance with
the given distance matrix.) AlgOrithms phase (I would like you to precisely adjust the parameters of the code
and the operators used in the code.) VariabLes phase (Consider tuning all parameters and variables.) ModUles
phase (Consider all possible operators could be found in MH literature.) DeTails phase (I require a detailed
Python code, with extensive comments to explain each part.) Archltecture phase (Revising the structure of
the code is also allowed.) ScOre phase (Revise the original code to enhance it based on a metric defined as
the product of the answer error and the number of lines of the code) ReturN phase (1- Provide the revised
code. 2- Highlight any tuning made. 3- Run both the original and the revised codes for 10 times to solve the
instance with the given distance matrix. 4- Which algorithm do you suggest based on the mentioned score
average? 5- Provide a table of the number of lines and the tour distance mean and standard deviation for both
codes confirming your answer.)
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EXAMPLE 4: A NEW SET OF PERFORMANCE METRICS
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EVERYTHING CAN BE OPTIMIZED, BUT SHOULD WE?
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WHAT IF WE OVER OPTIMIZE?

« Small errors can lead to big failures: Tiny mistakes in how
we set up the problem or prompt the model can grow into —
serious issues later, like wrong or unsafe solutions.

* Chain reaction of errors: If we use LLMs in several steps
of optimization, a small error early on can spread and T Fp—
affect the final outcome without being noticed. 4

Robust solution

« Too tuned to the simulator: If we train or test the optimiser
only using a simulator, it might learn tricks that work there ,
but fail in the real world, because it's just fitting to the |
simulator’s rounding errors or unrealistic assumptions. —r— —r—

Non-robust




AN EXAMPLE
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Propeller efficiency is the ratio of thrust power to shaft power; every extra percentage point is real fuel

money( unless it comes with cavitation).



AN EXAMPLE
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Effects of uncertainties in operating conditions on the objectives
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Figure 9.8: Pareto optimal solutions in case of (left) 6 = +1.5% (right) § =
—1.5% perturbations in parameters. Original values are shown in blue, perturbed
results in red.



Effects of uncertainties in operating conditions on the objectives
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Figure 9.7: Pareto optimal solutions in case of (left) dgpprr = +1, (right) drpr =
—1 fluctuations in RPM (right). Original values are shown in blue, perturbed
results in red.
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Considering 1.5% noise according to ISO 484/2-1981
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Figure 9.9: Robust front obtained by CRMOPSO versus global front obtained
by MOPSO

Table 9.1: Fuel consumption discrepancy in case of perturbation in all of the
structural parameters for both PS obtained by MOPSO and RPS obtained by
CRMOPSO

Algorithm  average min max
MOPSO 0.1735 0.1676 0.1851
CRMOPSO 0.0825 0.0805 0.0863




CURRENT GAPS AND FUTURE DIRECTIONS
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Figure 15: Suggested future research areas for using LLMs in metaheuristics. Each “dimension” represents a different focus
area, such as creating specific frameworks, setting ethical guidelines, using synthetic data, and promoting open-source

tools. The diagram highlights different paths researchers can take to advance research in this area.
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ELON MUSK’s AGILE WORKFLOW

1. Make the requirements less dumb: “your requirements are definitely dumb, it does not
matter who gave them to you”, so question the question.

2. Delete the part or process: “If you're not adding things back in at least 10% of the
time, you’re clearly not deleting enough”, so regularly review and remove parts or
processes that don’t add significant value.

3. Simplify or optimize the design: “Possibly the most common error of a smart engineer
is to optimize a thing that should not exist”, so focus on essential elements

4. Accelerate cycle time: “Every process can be speeded up. But only do this after you
have followed the first three steps. In the Tesla factory, | mistakenly spent a lot of time
accelerating processes that | later realized should have been deleted.” , so focus on
valuable progress instead of mere speed.

5. Automate: “That comes last. The big mistake in Nevada and at Fremont was that |
began by trying to automate every step. We should have waited until all the
requirements had been questioned, parts and processes deleted, and the bugs were
shaken out.”, so only automate after the first four steps.
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SIMPLIFICATION OF VEHICLE STRUCTURE AND MANUFACTURING

Model 3 body structure Austin-made Model Y body structure

171 pieces of metal highlighted 2 pleces of metal highlighted

>1,600 fewer welds

Source: Spacex.com and Tesla.com






KEY TAKE AWAYS

GenAl can automate the whole optimization lifeycle

2. Early evidences are convincing (e.g. large-language-model guidance
has already delivered >20X gains in PSO with zero human tweaking,
hinting at the power of GenAl-designed optimizers)

3. Open challenges remain: fully automating algorithm improvement and
problem formulation while keeping humans only where their insight
truly matters.

4. Question requirements, delete what doesn’t add value, simplify first,
speed up second, automate last.

5. Bottom line: anything can be optimized, but not everything should be.
Beware the “too-perfect” solution. Over-optimization can make
systems fragile and expensive when real-world noise or constraints
shift.
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