Přeskočit na hlavní obsah
Přeskočit hlavičku

Odborné skupiny fakulty

Katedra aplikované matematiky

Numerická analýza a HPC

Numerická analýza se zabývá hledáním přibližných řešení náročných matematických úloh jako jsou časo-prostorové parciální diferenciální rovnice popisující fyzikální pole. Zaměřujeme se na vývoj metod, jejichž výpočetní složitost je přímo úměrná počtu platných cifer, které chceme v řešení mít. Úlohy se diskretizují na posloupnost soustav lineárních rovnic, jejichž velikost dosahuje miliard rovnic o miliardě neznámých. Tyto soustavy je nutné řešit na paralelním počítači (superpočítači) prostředky HPC (high performance computing). Náš výzkum reflektuje vývoj superpočítačů. S ohledem na počítačovou architekturu měníme výpočetní paradigma např. minimalizujeme přístup do paměti. Výzkum je většinou veden konkrétními průmyslovými aplikacemi. Vývoj nových numerických metod zahrnuje v naší skupině i rigorózní matematickou analýzu např. optimální konvergence (konstantní počet iterací nezávisle na velikosti úlohy), numerické stability (metody fungují v double, single i half precision) a paralelní škálovatelnosti metod. V současnosti vyvíjíme open-source softwarové knihovny implementující paralelní metody konečných (FETI) a hraničních (BETI) prvků na grafických akcelerátorech. Vyvíjíme také real-time optimalizační metody v robotice. Zabýváme se náročnými molekulovými simulacemi.

 


Výzkumná témata:

  • Paralelně škálovatelné metody pro řešení vedení tepla, akustiky, elektromagnetismu a kontaktních úloh mechaniky - FETI, BETI, paralelní BEM
  • Vývoj softwarových open-source knihoven.
  • Optimální algoritmy kvadratického programování
  • Využití metod nehladké optimalizace pro tvarovou optimalizaci pro úlohy proudění
  • Využití optimalizačních metod v robotice.
  • Metody (neadiabatické) molekulové dynamiky
  • Metody Monte Carlo v molekulové fyzice
  • Motivace průmyslovými problémy např. ultrazvuková defektoskopie letadel ve spolupráci s Honeywell